Riunione di LHCb-Italia 13-14 October 2015

Attività di analisi dati a Padova

Silvia Amerio, Alessandro Bertolin, Giovanni Busetto, Stefano Gallorini, Donatella Lucchesi, Anna Lupato, Emanuele Michielin, Mauro Morandin, Marcello Rotondo, Lorenzo Sestini, Gabriele Simi

Analisi in corso

- Decadimento $B_s \to D_s^* K/\pi$:
 - Updates e preparazione alla misura TD
- Fisica con i Jets
 - Wbb e ricerca di risonanze bb
- Semileptonici
 - algoritmi multivariati per la determinazione del momento del B

$$B_s \rightarrow D_s^* K/\pi$$

Bertolin, Rotondo, Dziurda

$B_s \rightarrow D_s * K/\pi$

- Pubblicazione JHEP06(2015)130
 - Misura del rapporto D_s*K/D_s*π
 - Stripping 20, dati 2011+2012 (3fb⁻¹)
 - $D_s^* \to D_s \gamma \text{ con } D_s \to KK\pi$

N = 16513 ± 227 eventi (σ_{stat} =1.4%)

5200 5300 5400 5500 $N = 1025 \pm 71$ eventi $\mathcal{R}^* \equiv \mathcal{B}(B_s^0 \to D_s^{*\mp} K^{\pm}) / \mathcal{B}(B_s^0 \to D_s^{*-} \pi^+) = 0.068 \pm 0.005 \text{ (stat)} ^{+0.003}_{-0.002} \text{ (syst)}$

Preparazione per l'analisi TD

- Migrazione alla Stripping21
 - Migliore ricostruzione del fotone "soffice"
- Improvements:
 - "Ridefinizione" della massa del Bs
 - Tagli di PID separati per Ds→φπ, K*K, KKπ n.r.
 - Aggiunta di altri modi: Ds→Kππ, πππ

Phi Pi
PIDK(K) > -5
Kst K
PIDK(K|Kst) > -5, PIDK(K) > 5
K K Pi non res.
PIDK(K) > 5, PIDK(Pi) < 0
K Pi Pi
PIDK(K) > 10, PIDK(Pi) < 0
Pi Pi Pi

PIDK(Pi) < 0

$B_s \rightarrow D_s^* \pi$

- Taglio sulla BDT non è stato ancora ottimizzato
 - BDT > 0.025 per avere circa lo stesso S/N della pubblicazione
- Fit 2D: massa del B_s e ΔM + $M(D_s)_{PDG}$

N(Ds*π) = 20055 ± 199 (σ_{stat} =1.0%)

Fit simultaneo dei 5 modi di decadimento del D_s considerati

$B_s \rightarrow D_s^* \pi$

• Distribuzione del tempo proprio (fondo sottratto con gli sWeights)

• To do list: Accettanza, tagging, fit...

Primo sguardo a B_s → D_s*K

Ci aspettiamo circa 1250 eventi

L'analisi deve ancora essere ottimizzata: per adesso ci siamo concentrati sulla messa a punto dei tools (il codice e' comune ad altre misure TD del tipo $B \to D\pi/K$)

Fisica con i Jets

Amerio, Lucchesi, Michielin, Sestini

Studio del campione dijet + leptone

- Studio del sample jet + jet + leptone per :
 - Misura della sezione d'urto di produzione W + bb
 - Limite sulla sezione d'urto di produzione in avanti di H →bb associato ad un bosone vettore

Studio del campione dijet + leptone

- Studio del sample jet + jet + leptone per :
 - Misura della sezione d'urto di produzione W + bb
 - Limite sulla sezione d'urto di produzione in avanti di H →bb associato ad un bosone vettore
- Trigger sul leptone + ricostruzione dei jets tramite anti-kt (R=0.5) e b-tagging ufficiale di LHCb
 - Dati 2011 e 2012 per i muoni + dati 2012 per gli elettroni (Padova)

Studi sui possibili backgrounds da includere ancora in corso.

Studio dijet + leptone

Studio data-driven del combinatorio: Fit 2D Isolation-PT del leptone (PD)

Lepton OwnJet PTRatio

Template dei fondi da QCD e mis-ID ottenuti dai dati

Limite sull'Higgs (CLs) preparato a Padova e in corso di ottimizzazione! A breve i primi risultati preliminari. Osservabili studiate:

- Massa invariante Jet-Jet
- Variabili di tagging
- 2 discriminatori uGB per separare l'Higgs dal tt e dal Wbb

uGB arXiv: 1410.4140

Misura della sezione d'urto Z → bb

- Misura propedeutica per la ricerca di H → bb inclusivo e ricerca di risonanze bb nella regione in avanti
 - B-jet reconstruction e scala di energia dei jets
- Trigger topologico sul Jet. Ricostruzione tramite anti-kt (R=0.5)
 - Energy correction ottimizzata per la risoluzione del picco della risonanza
 - Selezione ottimizzata per S/N

Misura della sezione d'urto $Z \rightarrow b\overline{b}$

- I primi fit (unbinned) sul sample ad altissima statistica sono sensibili alla presenza della Z
 - Significanza= $\sqrt{2\Delta\mathcal{L}} pprox 15$, errore sulla massa, libera nel fit, ~2%

 E' assolutamente necessario definire una regione di controllo priva di segnale per validare il modello di background utilizzato

$Z \rightarrow b\overline{b}$

- Studio del terzo jet dell'evento (selezionato in modo tale che il PT totale sia minimo)
 - Studiare variabili discriminanti scorrelate con la massa
 - Un esempio, $\Delta\Theta_{bb3}$: angolo tra il dijet nel sistema del laboratorio e il terzo jet nel sistema di riferimento del dijet

$Z \rightarrow b\overline{b}$

- Studio del terzo jet dell'evento (selezionato in modo tale che il PT totale sia minimo)
 - Studiare variabili discriminanti scorrelate con la massa

Semileptonici: algoritmi multivariati per la determinazione del P_B

Lupato, Rotondo, Simi

Semileptonic decays

Long-standing problem: in any semileptonic decays, with the hypothesis
of 1 neutrino missing, the B momentum is known with a two-fold
ambiguity. In general there is no way to choose the best solution

IDEA: to give the variables that discriminate a semileptonic decay as inputs
of a MV regression

BDT regression

Momentum resolution

Moments of "random" fitted distribution:

- Mean = 1.06 GeV/c
- Sqrt(variance) = 31.33 GeV/c
- asymmetry= 3 e-05

Moments of "regression" fitted distribution:

- Mean = -5.93 GeV/c
- Sqrt(variance) = 19.45 GeV/c
- asymmetry= -2 e-04

q2 resolution

Moments of "random" fitted distribution:

- Mean = -0.0009 GeV^2
- Sqrt(variance) = 1.78 GeV^2
- asymmetry= -1 e-04
- Moments of "regression" fitted distribution:

Mean = -0.001 GeV^2

 $Sqrt(variance) = 1.27GeV^2$

asymmetry= -0.14

Regression BDT output used as B momentum distribution

Momentum resolution

Moments of "Y" fitted distribution:

- Mean = 5.49 GeV/c
- Sqrt(variance) = 21.85 GeV/c
- asymmetry= 1. e-05

Moments of "regression" fitted distribution:

- Mean = -2.37 GeV/c
- Sqrt(variance) = 16.55 GeV/c
- asymmetry= -2 e-04

q2 resolution

Moments of "Y" fitted distribution:

- Mean = -0.82 GeV^2
- Sqrt(variance) = 1.65 GeV^2
- asymmetry= -0.08
- Moments of "regression" fitted distribution:
- Mean = -0.42 GeV/c
- Sqrt(variance) = 1.4 GeV/c
- asymmetry=-0.08

22

Summary

- Decadimento $B_s \to D_s^* K/\pi$:
 - Selezione in corso di ottimizzazione. Adesso abbiamo tutto gli strumenti +/- sotto controllo
 - Risultato preliminare sui parametri di CP per inizio prossimo anno: combinazione con $B_s \to D_s \ K/\pi$ su 3fb⁻¹
- Fisica con i Jets
 - Il risultato Wbb e' abastanza avanzato: pubblicazione attesa per il prossimo anno)
 - Z/H non facile: sono state sviluppate molte idee nuove
- Semileptonici
 - La regression con la BDT(G) sembra dare risultati interessanti
 - Controllo sui dati con B+ → J/p K
 - Aggiungere informazioni sui jets per migliorare le prestazioni