Riunione di LHCb-Italia 13-14 October 2015

Attività di analisi dati a Padova

Silvia Amerio, Alessandro Bertolin, Giovanni Busetto, Stefano Gallorini, Donatella Lucchesi, Anna Lupato, Emanuele Michielin, Mauro Morandin, <u>Marcello Rotondo</u>, Lorenzo Sestini, Gabriele Simi

Analisi in corso

- Decadimento $B_s \rightarrow D_s^* K/\pi$:
 - Updates e preparazione alla misura TD
- Fisica con i Jets
 - Wb \overline{b} e ricerca di risonanze b \overline{b}
- Semileptonici
 - algoritmi multivariati per la determinazione del momento del B

$B_s \rightarrow D_s^* K/\pi$

Bertolin, Rotondo, Dziurda

$B_s \rightarrow D_s^* K/\pi$

 MeV/c^2

3500

3000

2500

2000

- Pubblicazione JHEP06(2015)130 •
 - Misura del rapporto $D_s^*K/D_s^*\pi$
 - Stripping 20, dati 2011+2012 (3fb⁻¹)

Data

•••••• Signal $B_s^{\ 0} \rightarrow D_s^{*-} \pi^+$

Combinatorial

• $D_s^* \rightarrow D_s \gamma \text{ con } D_s \rightarrow KK\pi$

LHCb

N = 16513 ± 227 eventi (σ_{stat}=1.4%)

N = 1025 ± 71 eventi

 $\mathcal{R}^* \equiv \mathcal{B}(B^0_s \to D^{*\mp}_s K^{\pm}) / \mathcal{B}(B^0_s \to D^{*-}_s \pi^+) = 0.068 \pm 0.005 \text{ (stat)} \stackrel{+0.003}{_{-0.002}} \text{ (syst)}$

Preparazione per l'analisi TD

- Migrazione alla Stripping21
 - Migliore ricostruzione del fotone "soffice"
- Improvements:
 - "Ridefinizione" della massa del Bs
 - Tagli di PID separati per $Ds \rightarrow \phi \pi$, K*K, KK π n.r.
 - Aggiunta di altri modi: $Ds \rightarrow K\pi\pi$, $\pi\pi\pi$

```
• Phi Pi
PIDK(K) > -5
```

• Kst K

PIDK(K|Kst) > -5, PIDK(K) > 5

• K K Pi non res.

```
PIDK(K) > 5, PIDK(Pi) < 0
```

• K Pi Pi

PIDK(K) > 10, PIDK(Pi) < 0

- Pi Pi Pi
- PIDK(Pi) < 0

$B_s \to {D_s}^*\pi$

- Taglio sulla BDT non è stato ancora ottimizzato
 - BDT > 0.025 per avere circa lo stesso S/N della pubblicazione
- Fit 2D: massa del $B_s e \Delta M + M(D_s)_{PDG}$

N(Ds* π) = 20055 ± 199 (σ_{stat} =1.0%)

Fit simultaneo dei 5 modi di decadimento del D_s considerati

 $B_s \rightarrow D_s^* \pi$

• Distribuzione del tempo proprio (fondo sottratto con gli sWeights)

• To do list: Accettanza, tagging, fit...

Primo sguardo a $B_s \rightarrow D_s^*K$

Ci aspettiamo circa 1250 eventi

L'analisi deve ancora essere ottimizzata: per adesso ci siamo concentrati sulla messa a punto dei tools (il codice e' comune ad altre misure TD del tipo B \rightarrow D π/K)

Fisica con i Jets

Amerio, Lucchesi, Michielin, Sestini

Studio del campione dijet + leptone

- Studio del sample jet + jet + leptone per :
 - Misura della sezione d'urto di produzione W + bb
 - Limite sulla sezione d'urto di produzione in avanti di H →bb associato ad un bosone vettore

Studio del campione dijet + leptone

- Studio del sample jet + jet + leptone per :
 - Misura della sezione d'urto di produzione W + bb
 - Limite sulla sezione d'urto di produzione in avanti di H ${\rightarrow} b\overline{b}$ associato ad un bosone vettore
- Trigger sul leptone + ricostruzione dei jets tramite anti-kt (R=0.5) e b-tagging ufficiale di LHCb
 - Dati 2011 e 2012 per i muoni + dati 2012 per gli elettroni (Padova)

Studio dijet + leptone

• Studio data-driven del combinatorio: Fit 2D Isolation-PT del leptone (PD)

Misura della sezione d'urto $Z \rightarrow b\overline{b}$

- Misura propedeutica per la ricerca di H → bb inclusivo e ricerca di risonanze bb nella regione in avanti
 - B-jet reconstruction e scala di energia dei jets
- Trigger topologico sul Jet. Ricostruzione tramite anti-kt (R=0.5)
 - Energy correction ottimizzata per la risoluzione del picco della risonanza
 - Selezione ottimizzata per S/N

Misura della sezione d'urto $Z \rightarrow b\overline{b}$

- I primi fit (unbinned) sul sample ad altissima statistica sono sensibili alla presenza della Z
 - Significanza= $\sqrt{2\Delta \mathcal{L}} \approx 15$, errore sulla massa, libera nel fit, ~2%

• E' assolutamente necessario definire una regione di controllo priva di segnale per validare il modello di background utilizzato

$Z \rightarrow b\overline{b}$

- Studio del terzo jet dell'evento (selezionato in modo tale che il PT totale sia minimo)
 - Studiare variabili discriminanti scorrelate con la massa
 - Un esempio, ΔΘ_{bb3}: angolo tra il dijet nel sistema del laboratorio e il terzo jet nel sistema di riferimento del dijet

$Z \rightarrow b\overline{b}$

- Studio del terzo jet dell'evento (selezionato in modo tale che il PT totale sia minimo)
 - Studiare variabili discriminanti scorrelate con la massa

Semileptonici: algoritmi multivariati per la determinazione del P_B

Lupato, Rotondo, Simi

Semileptonic decays

 Long-standing problem: in any semileptonic decays, with the hypothesis of 1 neutrino missing, the B momentum is known with a two-fold ambiguity. In general there is no way to choose the best solution

 IDEA: to give the variables that discriminate a semileptonic decay as inputs of a MV regression

BDT regression

Momentum resolution

q2 resolution

Moments of "random" litted distribut

- Mean = -0.0009 GeV^2
- Sqrt(variance) = 1.78 GeV²
- asymmetry= -1 e-04
 - Moments of "regression" fitted distribution: Mean = -0.001 GeV² Sqrt(variance) = 1.27GeV² asymmetry= -0.14

Regression BDT output used as B momentum distribution

Momentum resolution

Moments of "Y" fitted distribution:

- Mean = 5.49 GeV/c
- Sqrt(variance) = 21.85 GeV/c
- asymmetry= 1. e-05

Moments of "regression" fitted distribution:

- Mean = -2.37 GeV/c
- Sqrt(variance) = 16.55 GeV/c
- asymmetry= -2 e-04

Moments of "Y" fitted distribution:

- Mean $= -0.82 \text{ GeV}^2$
- Sqrt(variance) = 1.65 GeV²
- asymmetry= -0.08
- Moments of "regression" fitted distribution:
- Mean = -0.42 GeV/c
- Sqrt(variance) = 1.4 GeV/c
- asymmetry= -0.08

Summary

- Decadimento $B_s \rightarrow D_s^* K/\pi$:
 - Selezione in corso di ottimizzazione. Adesso abbiamo tutto gli strumenti +/- sotto controllo
 - Risultato preliminare sui parametri di CP per inizio prossimo anno: combinazione con $B_s \rightarrow D_s K/\pi$ su 3fb⁻¹
- Fisica con i Jets
 - Il risultato Wbb e' abastanza avanzato: pubblicazione attesa per il prossimo anno)
 - Z/H non facile: sono state sviluppate molte idee nuove
- Semileptonici
 - La regression con la BDT(G) sembra dare risultati interessanti
 - Controllo sui dati con $B+ \rightarrow J/p K$
 - Aggiungere informazioni sui jets per migliorare le prestazioni