Attività di analisi a Milano Bicocca

Paul Seyfert, per il gruppo LHCb di Milano Bicocca

INFN Milano Bicocca

LHCb Italia Meeting, 13 ottobre 2015, Frascati

$1 \sin(2\beta)$

2 B^0 mixing

 $3 V_{\rm ub}$

4 More on flavour tagging

$\sin(2\beta)$ in $B^0 \rightarrow D_{-}^+D^-$

- ${\scriptstyle \blacksquare}~ B^0 \rightarrow D^+ D^-$ is sensitive to $\sin(2\beta)$
- not as sensitive as other channels though...but interesting for other reasons¹:
- tension between Belle and BaBar

¹See arXiv:1505.01361 or Kristof De Bruyn at "B2OC Time-Dependent workshop, Padova, July 2015"

 $sin(2\beta)$

$\sin(2\beta)$ in $B^0 \rightarrow D^+D^-$

- $\blacksquare \ B^0 \rightarrow D^+ D^-$ is sensitive to $\sin(2\beta)$
- not as sensitive as other channels though...but interesting for other reasons¹:
- tension between Belle and BaBar
- measurement of CP violation parameters in $B^0 \to D^+D^-$ and $B^0 \to J/\psi K_S$ together provide handle on penguin contributions in $B_x \to D_y D_z$ systems

 \rightsquigarrow necessary to measure ϕ_{s} in ${\rm B^{0}_{s}} \rightarrow {\rm D_{s}D_{s}}$

¹See arXiv:1505.01361 or Kristof De Bruyn at "B2OC Time-Dependent workshop, Padova, July 2015"

Analysis details

signal channel

final states:

■ $B^0 \to D^+(K^-\pi^+\pi^+)D^-(K^+\pi^-\pi^-)$ ■ $B^0 \to D^\pm(K^\mp K^\pm \pi^\pm)D^\mp(K^\pm \pi^\mp \pi^\mp)$ adds ~ 20 % signal yield

- $\blacksquare \sim 1435\,\mathrm{B}^{0}$ yield
- $\blacksquare \sim 346\, B_s^0$ yield

Analysis details

signal channel

final states:

- $\blacksquare \sim 1435\,\mathrm{B}^{0}$ yield
- $\blacksquare \sim 346\,B_{\rm s}^0$ yield

Paul Seyfert (INFN MIB)

statistics increased by factor 2.5 over first analysis at LHCb!

Attività di analisi a Milano Bicocca

control channel

final states:

$$B^0 \to D_s^{\pm}(K^{\mp}K^{\pm}\pi^{\pm})D^{\mp}(K^{\pm}\pi^{\mp}\pi^{\mp})$$

LHCb Italia 2015

Backgrounds

If ixing the B^0 width to the width from $K\pi\pi$ does not describe the data

Backgrounds

- fixing the ${
 m B}^0$ width to the width from ${
 m K}\pi\pi$ does not describe the data
- \blacksquare fixing the ${\rm B}^0$ width and yield to the expected values requires an additional component
- f background sitting exactly at the signal peak!
- \blacksquare these are $B \to DKK\pi$ decays not going through a second D meson
- veto by requiring D flight length significance

 $sin(2\beta)$

 $sin(2\beta)$

- expect to be statistically dominated
- $\rightarrow\,$ need to optimise statistical sensitivity
 - use all available taggers including new (uncalibrated) taggers
 - $\blacksquare \text{ use } B^0 \to D_s D$
 - flavour specific final state
 - $\rightarrow\,$ know $\rm B\,$ flavour at decay
 - $\rightarrow\,$ fit oscillation amplitude to obtain mistag rate $\mathcal{A}\propto 1-2\omega$
- ✓ B^0 oscillation is slow ⇒ damping from time resolution not an issue
- ✓ clean signal ⇒ little to no complication from background expected

¿ Is ${\rm B}^0 \to {\rm D_s D}$ the right channel?

 \checkmark Taggers perform the same on the signal and the calibration channel

- tagging efficiency
- mistag rate
- mistag rate as a function of predicted mistag rate (plot)

Tagging calibration in data (standard opposite side taggers)

proof of principle: look at standard opposite side tagger combination

- we see an oscillation in data
- divide the the data according to predicted mistag probability
- fit oscillation in each category

Tagging calibration in data (standard opposite side taggers)

proof of principle: look at standard opposite side tagger combination

Calibrazione_OS

- we see an oscillation in data
- divide the the data according to predicted mistag probability
- fit oscillation in each category
- ✓ predicted mistags are accurate
 - \bullet $p_0 \approx p_2$
 - $p_1 \approx 1$

- first calibration fits are there
- ✓ very high tagging power (expect combined $\sim 6\%$)
- ; why is χ^2/ndf so good?
- \rightarrow need to understand systematics!
 - sWeights
 - acceptance effects
 - remaining background

1 $sin(2\beta)$

2 B^0 mixing

 $3 V_{\rm ub}$

4 More on flavour tagging

One short item in between

 $\blacksquare~B^0$ oscillation frequency measurement with $B^0 \to D^{(*)} \mu \nu$

Fit projections: $B^0 \rightarrow D^{*-} \mu^+ \nu_{\mu}$

• Time/asymmetry projections for 2012 sWeighted data

- world's most precise $\Delta m_{\rm d}$ measurement
- ✓ shown at EPS as CONF note $(0.5036 \pm 0.0020 \pm 0.0013) \text{ ps}^{-1}$
- paper in preparation this might be the last Δm_d for a long time. It must be done as good as we can!

2 B^0 mixing

 $3 V_{\rm ub}$

4 More on flavour tagging

 $V_{\rm ub}$

 $V_{\rm u\,b}$

- Iong standing tension between exclusive and inclusive measurements
- so far only one measurement from LHCb: $\Lambda_b \to p \mu \nu$

 $V_{\rm u\,b}$

- Iong standing tension between exclusive and inclusive measurements
- \blacksquare so far only one measurement from LHCb: $\Lambda_b \to p \mu \nu$
- ${\scriptstyle \blacksquare}~ B^0_s \rightarrow K \mu \nu$ may become the second channel
- ✓ theoretically well studied

 $V_{\rm ub}$

plots from arXiv:1501.05373

comparing to $\Lambda_b \rightarrow p \mu \nu$

- normalising: $\mathcal{B}(D_s \to KK\pi)$ better known than $\mathcal{B}(\Lambda_c \to pK\pi)$
- production: $f_{\Lambda} \sim 2f_{\rm s}$
- \blacksquare no background from D decays in Λ_b analysis

comparing to $\Lambda_b \to p \mu \nu$

- normalising: $\mathcal{B}(D_s \to KK\pi)$ better known than $\mathcal{B}(\Lambda_c \to pK\pi)$
- production: $f_{\Lambda} \sim 2 f_{\rm s}$
- \blacksquare no background from D decays in Λ_b analysis

Backgrounds: a challenge we attacked already

 \blacksquare any N-body B decay with at least one μ and one K is a background

$$B^+ \to J/\psi K^+$$

$$B \to D_s(K + X)\mu\nu$$

$$\bullet B^0 \to J/\psi K^*$$

 $\rightarrow\,$ need to veto these

- backgrounds can be $H_{
 m b} o {
 m K} \mu + X$ where X contains at least one more charged particle
- \rightarrow we should be able to find X

Isolation variables

- once developed in Marseille for $B^0_s
 ightarrow \mu\mu$ (reject backgrounds)
- further improved with a BDT in Milano Bicocca for $\tau \rightarrow \mu \mu \mu$ (reject partially reconstructed backgrounds)
- (approach also taken by Matteo Rama for $B \rightarrow \mu\mu$, as seen yesterday)
- retuned for $\Delta m_{\rm d}$ (distinguish B⁺ from B⁰)

 $V_{\rm ul}$

• backgrounds can be $H_b \to K\mu + X$ where X contains at least one more charged particle \to we should be able to find X

Paul Seyfert (INFN MIB)

Attività di analisi a Milano Bicocca

- \blacksquare backgrounds can be $H_{\rm b} \to {\rm K} \mu + X$ where X contains at least one more charged particle
- \rightarrow we should be able to find X

Isolation variables

- once developed in Marseille for $B^0_s \rightarrow \mu \mu$ (reject backgrounds)
- further improved with a BDT in Milano Bicocca for $\tau \rightarrow \mu \mu \mu$ (reject partially reconstructed backgrounds)
- (approach also taken by Matteo Rama for $\mathrm{B} o \mu \mu$, as seen yesterday)
- retuned for $\Delta m_{\rm d}$ (distinguish ${\rm B}^+$ from ${\rm B}^0$)

- \blacksquare backgrounds can be $H_{\rm b} \to {\rm K} \mu + X$ where X contains at least one more charged particle
- \rightarrow we should be able to find X

Isolation variables

- once developed in Marseille for $B^0_s
 ightarrow \mu\mu$ (reject backgrounds)
- further improved with a BDT in Milano Bicocca for $\tau \rightarrow \mu \mu \mu$ (reject partially reconstructed backgrounds)
- (approach also taken by Matteo Rama for ${
 m B} o \mu \mu$, as seen yesterday)
- retuned for $\Delta m_{\rm d}$ (distinguish ${\rm B^+}$ from ${\rm B^0}$)

1 $sin(2\beta)$

2 B^0 mixing

 $3 V_{\rm ub}$

4 More on flavour tagging

Tagging in 2015

• use $B \rightarrow D^* \mu \nu$ (as in Δm_d analysis)

Paul Seyfert (INFN MIB)

More on flavour tagging

oscillation already visible in 2015!

$1 \sin(2\beta)$

2 B^0 mixing

 $3 V_{\rm ub}$

4 More on flavour tagging

Tracking

- The track reconstruction has a high fake rate at LHCb
 - (although, it depends on your signal and selection if you'll ever see them on ntuples)

 The track reconstruction has a high fake rate at LHCb (although, it depends on your signal and selection if you'll ever see them on ntuples)

Tracking

- 😕 fakes are bad for the trigger bandwidth
- 😕 fakes are bad for CPU time in HLT
 - RICH PID for fake tracks

- vertex fits for combinatorics with fake tracks
- \rightarrow use _TRACK_GhostProb already in the HLT

- The track reconstruction has a high fake rate at LHCb (although, it depends on your signal and selection if you'll ever see them on ntuples)
- 😕 fakes are bad for the trigger bandwidth
- 😕 fakes are bad for CPU time in HLT
 - RICH PID for fake tracks

- vertex fits for combinatorics with fake tracks
- \rightarrow use _TRACK_GhostProb already in the HLT
- $\pmb{\mathsf{X}}$ validation cannot wait for stripping and analysts to test it in their selections

test cases

$B \rightarrow J/\psi\gamma(ee)$ (reprocessing run1)

${\rm K}_{\rm S} \rightarrow \pi\pi$ with downstream tracks

$\mathrm{Z} ightarrow \mu \mu$ (Stephen Farry)

Paul Seyfert (INFN MIB)

Tracking

LHCb Italia 2015 22 /

INFN

- we're attacking the CKM triangle from three sides
 - ✓ $\Delta m_{\rm d}$ done
 - sin 2β ongoing
 - $V_{
 m ub}$ started
- reuse gained tools and expertise in new topics!
- focus on B2OC and SL
- combine tagging and analysis efforts!
- (not mentioned today) Wbb and $t\overline{t}$ production