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Euclidean Quantum Gravity

In the spirit of QFT, one would like to define a gravitational
path-integral

Z(Λ,G ) =

∫
Geom(M)

D [g ] e−SΛ,G [g ]

where Geom(M) = Metric(M)/Diff (M), and

SΛ,G [g ] =
1

16πG

∫
M
ddx

√
| det g |(−R + 2Λ)

is the Euclidean Einstein-Hilbert action.
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Lattice regularization
A convenient choice to make sense of the gravitational
path-integral is to consider discrete spacetime built out of
simplices, d-dimensional generalization of triangles.

Several choices of triangulations can be made:
I Regge Calculus: variable edge lengths (dynamical variables),

fixed incidence matrix. Good for classical gravity, but too
many equivalent triangulations in the path-integral.

I Dynamical Triangulation (DT): all edge lengths fixed to a
(cut-off parameter), variable incidence matrix (geometry
encoded in the connectivity). Emergence of causality violating
geometries.

I Causal Dynamical (Lorentzian) Triangulation (CDT): causality
imposed from the start by choosing DTs that can be sliced
perpendicularly to the time-like direction and space-like
subgraphs with fixed topology.
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2d discrete Quantum Gravity

In 2 dimensions the curvature term in the Einstein-Hilbert action is
purely topological (Gauss-Bonnet theorem)

SΛ,G [g ] =
1

16πG

∫
M
d2x
√
| det g |(−R + 2Λ)

= −χ(h)

4G
+

Λ

8πG
Vg

χ(h) is the Euler characteristic of M and Vg its volume for a given
(diffeomorphism class of) metric g .
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2d discrete Quantum Gravity

Fixing the topology and noting that for a given triangulation T
Vg ∝ |F (T )|, where |F (T )| is the number of triangles in T , the
2-dimensional discrete action can be defined as

Sµ(T ) = µ|F (T )|

and the gravitational path-integral reduces to

Z (µ) =
∑
T∈T

e−µ|F (T )|,

where the sum is intended over inequivalent triangulations.
The original path-integral problem is now reduced to a
combinatorial one and the continuum can be restored by a proper
scaling limit procedure.
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2d Quantum Gravity as a theory of random geometry
This construction can be seen in the more general mathematical
framework of random graphs.

I For each N ∈ N, define a set GN of finite graphs (say, with N
faces) embedded e.g. on the plane (or S2).

I Give to each G ∈ GN a weight w(G ) and define a probability
measure on GN

pN(G ) =
w(G )

ZN
, ZN =

∑
G∈GN

w(G )

I Construct an infinite random graph as a (weak) limit of the
sequence pN , as N →∞ (if it exists)

Examples: Uniform Infinite Planar Triangulation (O. Angel, O.
Schramm, 2002), Infinite Random Trees (B. Durhuus, T. Jonsson,
J.F. Wheater 2006), Infinite Causal Triangulation (B. Durhuus, T.
Jonsson, J.F. Wheater 2010)
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2d Quantum Gravity as a theory of random geometry
Alternatively, one can study scaling limits of such random graphs.
In analogy with random walk and the related Brownian motion,
one can see the scaling limit of random triangulations as some sort
of Brownian surface. Indeed, it has been proved (J.F. Le Gall, 2011
and G. Miermont, 2011) that a (unif. distrib.) p-angulation of S2

converges, in some sense, to a unique compact metric space
homeomorphic to S2 (the so-called Brownian map).

Figure: Triangulation of a sphere (J.F. Le Gall, Proceedings of ICM2014,
Seoul).
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The 2d CDT model with matter
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Some useful notions

For a given graph G = (V ,E ), define

I Size of G , |G | = number of edges in G

I Degree of v , number of edges connecting to v

I Path γ in G , sequence of different edges

γ = {(v0, v1), (v1, v2), . . . , (vk−1, vk)}

I Graph distance dg (v , v ′), size of the shortest path between v
and v ′

dg (v , v ′) = min
{
|γ|
∣∣ γ has endpoints v , v ′

}
Connected graph: there exists a path between any two vertices.
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Lorentzian Triangulation
A rooted planar locally finite connected graph T = (V (T ),E (T ))
such that

1. The set of vertices at graph distance i from the root, together
with the edges connecting them form a cycle denoted by Si

2. All internal faces of the graph are triangles
3. One edge attached to the root vertex r is marked

TN = {Lorentzian triangulations with N layers}
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Pure CDT (no matter)
Define a probability measure on the set of Lorentzian
triangulations TN (note that this is a countable set)

pN,µ(T ) =
e−µ|F (T )|

ZN(µ)
,

where the partition function is

ZN(µ) =
∑
T∈TN

e−µ|F (T )|

=
∑
k

|Tk,N |e−µ(2
∑N

i=1 ki−kN)

.

TN can be partitioned by fixing the number k = (k1, . . . , kN) of
vertices on each layer, i.e. TN =

⋃
k
Tk,N . |Tk,N | is known and

|F (T )| = 2
∑N

i=1 ki − kN .
The partition function can be computed exactly!
It is critical for any N at µ = µcr = log 2.
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Pure CDT. Some results.

Theorem (V. Malyshev, A. Yambartsev and Zamyatin, 2001)

If µ > µcr (subcritical regime) the partition function

ZN,l(µ) =
∑

T∈TN,l

e−µF (T ), TN,l = {T ∈ TN : |SN | = l},

is finite for all N and its asymptotics as N →∞ is

ZN,l(µ) ∼ (1− λ(µ)2)2 (λ(µ))2N−l ,

where λ(µ) = 2e−µ

1+
√

1−4e−2µ
< 1.
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Pure CDT. Some results

In the thermodynamic limit, it as been proved (B. Durhuus, T.
Jonsson and J.F. Wheater, 2010) that, for N →∞,

I For µ > µcr , the average surface is long thin tube, i.e.
essentially 1-dimensional:

E2N |SN | < f (µ), ∀N ∈ N

I At criticality, µ = µcr , it looks like a paraboloid of revolution.

E2N |SN | ∼ N, as N →∞

The infinite triangulation has Hausdorff dimension dH = 2 a.s.
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Inserting matter

Matter can be inserted in the model by considering statistical
mechanical systems (e.g. an Ising model) running on the random
graphs. There are two ways to do that:

I Quenched coupling: first sample a triangulation with a
probability measure pµ, then run an Ising model on it.
The Ising model is known to undergo a phase transition on
the infinite critical Lorentzian triangulation (M. Krikun and A.
Yambartsev, 2012).

I Annealed coupling: triangulation and Ising spin configuration
sampled together. E.g. DT (V.A. Kazakov, 1986) and
random trees (GMN and B. Durhuus, 2012).
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Annealed coupling. Spin-graph

Let ΛN denote the set of graphs on finite triangulations of height
N, together with spin configurations on them,

ΛN =
{

(T , σ(T )) : T ∈ TN , σ(T ) ∈ {+1,−1}V (T )
}
.

We call a spin-graph an element of space ΛN . Notice that any
element of TN is a finite graph, therefore ΛN is a set of finite
spin-graphs.
We denote by ΛN,l the set of spin-graphs with fixed number of
vertices on the N-th layer,

ΛN,l =
{

(T , σ(T )) : T ∈ TN , |SN | = l , σ(T ) ∈ {+1,−1}V (T )
}
.
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Gibbs distribution
A Gibbs family on the space of finite spin-graphs ΛN is a
probability measure defined by

pN,β,µ(T , σ) =
e−βH(T ,σ)−µF (T )

ZN(β, µ)
,

β, µ ≥ 0, F (T ) is the number of triangles in T and

ZN(β, µ) =
∑

(T ,σ)∈ΛN

e−βH(T ,σ)−µF (T ).

The interaction energy between spins is described by the
Hamiltonian (nearest neighbor)

H(T , σ) = −
∑

(u,v)∈E(T )

σuσv .
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Gibbs distribution

Similarly on ΛN,l we define the probability measure

pN,l ,β,µ(T , σ) =
e−βH(T ,σ)−µF (T )

ZN,l(β, µ)
,

with
ZN,l(β, µ) =

∑
(T ,σ)∈ΛN,l

e−βH(T ,σ)−µF (T ).
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Critical parameters

Define for any fixed N, β and l critical values µcrN (β) and µcrN,l(β)
so that

ZN(β, µ) <∞, if µ > µcrN (β),

and
ZN(β, µ) =∞, if µ < µcrN (β),

and similar

ZN,l(β, µ) <∞, if µ > µcrN,l(β),

and
ZN,l(β, µ) =∞, if µ < µcrN,l(β).
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Existence of a critical curve

Since
ZN(β, µ) =

∑
l

ZN,l(β, µ)

we have for any l
µcrN,l(β) ≤ µcrN (β).

Proposition (GMN and T. Turova, 2015)

For any fixed l there exists µcr = µcr (β) such that

lim
N→∞

µcrN,l = µcr (β).
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Theorem (GMN and T. Turova, 2015)

The partition function ZN(β, µ) is finite for all N ∈ N in the region
of the (β, µ)-plane defined by

∆f = {(β, µ) ∈ R2 : β ≥ 0, µ > β + log(1 + 2 coshβ)}.

Moreover, if ZN(β, µ) is finite for all N, then we necessarily have

µ > max{log(1 + coshβ + cosh(2β)), β + log(1 + eβ)}.
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Asymptotics

Proposition (GMN and T. Turova, 2015)

At least for all µ > log 2 + β and such that log ZN,l(β, µ) is defined

lim
N→∞

log ZN,l(β, µ)

N
= α(β, µ, l),

where for all µ > µcr (β)

α(β, µ, l) < 0.
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Spin-graph with boundary conditions

Given a triangulation T ∈ TN,l , a spin configuration on T with
boundary conditions σ̃ ∈ {+1,−1}l is an element of the set

Ωσ̃(T ) = {σ ∈ Ω(T ) : σv = σ̃v , v ∈ V (SN)}

and a spin-graph (T , σ) of height N with (l , σ̃)-boundary
conditions is an element of

Λσ̃N,l =
{

(T , σ(T )) : T ∈ TN,l , σ(T ) ∈ Ωσ̃(T )
}
.
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Spin-graph with boundary conditions

A Gibbs distribution on the space of finite spin-graphs Λσ̃N,l is a
probability measure defined by

pσ̃N,l ,β,µ(T , σ) =
e−βH(T ,σ)−µ|F (T )|

Z σ̃
N,l(β, µ)

, (T , σ) ∈ Λσ̃N,l ,

where
Z σ̃
N,l(β, µ) =

∑
(T ,σ)∈Λσ̃N,l

e−βH(T ,σ)−µ|F (T )|.
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Magnetization of central spin

Theorem (GMN and T. Turova, 2015)

For β small enough and µ > 3
2 log(coshβ) + 3 log 2, the mean

magnetization of the central spin of spin-graphs with (l ,−)- as
well as with (l ,+)-boundary conditions converges to 0 as N goes
to infinity:

lim
N→∞

〈σ0〉+N,l ,β,µ = 0 = lim
N→∞

〈σ0〉−N,l ,β,µ.

However, for any finite N and any (β, µ) ∈ ∆f one has

〈σ0〉−N,l ,β,µ < 0 < 〈σ0〉+N,l ,β,µ.
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Conjectures

I Above the critical line the average surface is expected to be
1-dimensional. If so, no phase transition for the spin
configuration should occur.

I At criticality, i.e. for µ = µcr (β), the average surface should
behave as a 2-dimensional one, therefore the spin system is
expected to be critical at β = βcr .

Note that to obtain these results we do not need to know the
exact partition function, but “only” its asympotics as N →∞.

I Critical exponents identical to Onsager values (showed by
computer simulations J. Ambørn, K.N. Anagnostopoulos and
R. Loll, 1999).
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Thank you!
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