
Interaction with the Geant4
kernel – part 1

Luciano Pandola
INFN – Laboratori Nazionali del Sud

Partially based on a presentation by G.A.P. Cirrone (INFN-LNS)

Part I: The main ingredients

Optional user classes - 1
 Five concrete base classes whose virtual member

functions the user may override to gain control of the
simulation at various stages
 G4UserRunAction
 G4UserEventAction
 G4UserTrackingAction
 G4UserStackingAction
 G4UserSteppingAction

 Each member function of the base classes has a
dummy implementation (not purely virtual)
 Empty implementation: does nothing

e.g. actions to be done
at the beginning and
end of each event

Optional user classes - 2

 The user may implement the member
functions he desires in his/her derived classes
 E.g. one may want to perform some action at each

tracking step

 Objects of user action classes must be
registered to the G4(MT)RunManager via
the ActionInitialization
runManager->SetUserAction(new
MyActionInitialization);

MyActionInitialization (MT
mode)

void MyActionInitialization::Build() const
{
 //Set mandatory classes
 SetUserAction(new MyPrimaryGeneratorAction());
 // Set optional user action classes
 SetUserAction(new MyEventAction());
 SetUserAction(new MyRunAction());
}

void MyActionInitialization::BuildForMaster() const
{
 // Set optional user action classes
SetUserAction(new MyMasterRunAction());
}

 Register thread-local user actions

 Register RunAction for the master

Geant4 terminology: an
overview

 The following keywords are often used in
Geant4
 Run, Event, Track, Step
 Processes: At Rest, Along Step, Post Step
 Cut (or production threshold)

The Run (G4Run)
 As an analogy with a real experiment, a run of Geant4

starts with ‘Beam On’
 Within a run, the User cannot change

 The detector setup
 The physics setting (processes, models)

 A Run is a collection of events with the same detector and
physics conditions

 At the beginning of a Run, geometry is optimised for
navigation and cross section tables are (re)calculated

 The G4RunManager class manages the processing of each
Run, represented by:
 G4Run class
 G4UserRunAction for an optional User hook

The Event (G4Event)
 An Event is the basic unit of simulation in Geant4
 At the beginning of processing, primary tracks are generated

and they are pushed into a stack
 A track is popped up from the stack one-by-one and ‘tracked’

 Secondary tracks are also pushed into the stack
 When the stack gets empty, the processing of the event is

completed
 G4Event class represents an event. At the end of a successful

event it has:
 List of primary vertices and particles (as input)
 Hits and Trajectory collections (as outputs)

 G4EventManager class manages the event
 G4UserEventAction is the optional User hook

The Step (G4Step)
 G4Step represents a step in the particle propagation
 A G4Step object stores transient information of the

step
 In the tracking algorithm, G4Step is updated each

time a process is invoked
 You can extract information from a step after the

step is completed
 Both, the ProcessHits() method of your sensitive

detector and UserSteppingAction() of your
step action class file get the pointer of G4Step

 Typically , you may retrieve information in these
functions (for example fill histograms in Stepping
action)

The Track (G4Track)
 The Track is a snapshot of a particle and it is represented

by the G4Track class
 It keeps ‘current’ information of the particle (i.e. energy,

momentum, position, polarization, ..)
 It is updated after every step

 The track object is deleted when
 It goes outside the world volume
 It disappears in an interaction (decay, inelastic scattering)
 It is slowed down to zero kinetic energy and there are no

'AtRest' processes
 It is manually killed by the user

 No track object persists at the end of the event
 G4TrackingManager class manages the tracking
 G4UserTrackingAction is the optional User hook

Run, Event and Tracks

 One Run consists of
 Event #1 (track #1, track #2,)
 Event #2 (track #1, track #2,)

 Event #N (track #1, track #2,)

Example of an Event and
Tracks

 Tracking order follows ‘last in first out’ rule:
T1 -> T4 -> T3 -> T6 -> T7 -> T5 -> T8 -> T2

(ParentID = 1) (ParentID = 3)

Example:
retrieving information from tracks

The Step in Geant4

 The G4Step has the information about the two points (pre-step
and post-step) and the ‘delta’ information of a particle (energy loss
on the step,)

 Each point knows the volume (and the material)
 In case a step is limited by a volume boundary, the end point

physically stands on the boundary and it logically belongs to the
next volume

 G4SteppingManager class manages processing a step; a ‘step’
in represented by the G4Step class

 G4UserSteppingAction is the optional User hook

The G4Step object
 A G4Step object contains

 The two endpoints (pre and post step) so one has
access to the volumes containing these endpoints

 Changes in particle properties between the points
 Difference of particle energy, momentum,
 Energy deposition on step, step length, time-of-flight, ...

 A pointer to the associated G4Track object
 G4Step provides many Get methods to access

these information or object istances
 G4StepPoint* GetPreStepPoint(),

The geometry boundary

 To check, if a step ends on a boundary, one may
compare if the physical volume of pre and post-step
points are equal

 One can also use the step status
 Step Status provides information about the process that

restricted the step length
 It is attached to the step points: the pre has the status

of the previous step, the post of the current step
 If the status of POST is “fGeometryBoundary” the

step ends on a volume boundary (does not apply to
word volume)

 To check if a step starts on a volume boundary you can
also use the step status of the PRE-step point

Step concept and boundaries

Illustration of step starting and ending on boundaries

Geant4 terminology: an
overview

Example of usage of the hook
user classes - 1

 G4UserRunAction
 Has two methods (BeginOfRunAction() and
EndOfRunAction()) and can be used e.g. to
initialise, analyse and store histogram

 Everything User want to know at this stage
 G4UserEventAction

 Has two methods (BeginOfEventAction() and
EndOfEventAction())

 One can apply an event selection, for example
 Access the hit-collection and perform the event

analysis

Example of usage of the hook
user classes - 2

 G4UserStakingAction
 Classify priority of tracks

 G4UserTrackingAction
 Has two methods (PreUserTrakingAction()
and PostUserTrackinAction())

 For example used to decide if trajectories should
be stored

 G4UserSteppingAction
 Has a method which is invoked at the end of a

step

Example of usage of the hook
user classes - 3

 Derived G4Run class
 User-custom class which derives from G4Run of Geant4

MyRun : public G4Run()

 Can overwrite two methods:
 RecordEvent()

 Called at the end of each event: alternative to
EndOfEventAction() of the EventAction class

 Merge()
 Called at the end of each run by the master

 When/why to use it?
 Convenient in MT-mode, because allows the merging of

information (global quantities) from thread-local runs
into the master
 UserEventAction is thread-local

Concept for multi-thread …

Master

Workers

Geometry Physics RunAction

READONLY

Primary

RunAction

EvtAction

Primary

RunAction

EvtAction

Primary

RunAction

EvtAction

Part II: Retrieving information
from steps and tracks

Example:
check if step is on boundaries

Example: step information in
SD

Something more about tracks

 After each step the track can change its state
 The status can be (in red can only be set by the

User)

Particles in Geant4
 A particle in general has the following three sets

of properties:
 Position/geometrical info

 G4Track class (representing a particle to be tracked)

 Dynamic properties: momentum, energy, spin,..
 G4DynamicParticle class

 Static properties: rest mass, charge, life time
 G4ParticleDefinition class

 All the G4DynamicParticle objects of the same
kind of particle share the same
G4ParticleDefinition

Particles in Geant4

Examples: particle information
from step/track

Part III: Sensitive Detectors

Sensitive Detector (SD)
 A logical volume becomes sensitive if it has a pointer

to a sensitive detector (G4VSensitiveDetector)
 A sensitive detector can be instantiated several times,

where the instances are assigned to different logical
volumes
 Note that SD objects must have unique detector names
 A logical volume can only have one SD object attached (But you

can implement your detector to have many functionalities)
 Two possibilities to make use of the SD functionality:

 Create your own sensitive detector (using class
inheritance)
 Highly customizable

 Use Geant4 built-in tools: Primitive scorers

Adding sensitivity to a logical
volume

 Create an instance of a sensitive detector
 Assign the pointer of your SD to the logical volume of

your detector geometry
 Must be done in ConstructSDandField() of the

user geometry class

create
instance

assign to logical
volume

G4VSensitiveDetector* mySensitive
 = new MySensitiveDetector(SDname="/MyDetector");

boxLogical->SetSensitiveDetector(mySensitive);
(or)
SetSensitiveDetector("LVname",mySensitive); assign to logical

volume
(alternative)

Part IV: Native Geant4
scoring

Extract useful information
 Geant4 provides a number of primitive scorers,

each one accumulating one physics quantity (e.g.
total dose) for an event

 This is alternative to the customized sensitive
detectors (see later in this lecture), which can be
used with full flexibility to gain complete control

 It is convenient to use primitive scorers instead of
user-defined sensitive detectors when:
 you are not interested in recording each individual

step, but accumulating physical quantities for an
event or a run

 you have not too many scorers

G4MultiFunctionalDetector
 G4MultiFunctionalDetector is a concrete class

derived from G4VSensitiveDetector
 It should be assigned to a logical volume as a kind of

(ready-for-the-use) sensitive detector
 It takes an arbitrary number of
G4VPrimitiveSensitivity classes, to define the
scoring quantities that you need
 Each G4VPrimitiveSensitivity accumulates one physics

quantity for each physical volume
 E.g. G4PSDoseScorer (a concrete class of
G4VPrimitiveSensitivity provided by Geant4)
accumulates dose for each cell

 By using this approach, no need to implement
sensitive detector and hit classes!

G4VPrimitiveSensitivity
 Primitive scorers (classes derived from
G4VPrimitiveSensitivity) have to be registered to
the G4MultiFunctionalDetector
 ->RegisterPrimitive(), ->RemovePrimitive()

 They are designed to score one kind of quantity
(surface flux, total dose) and to generate one hit
collection per event
 automatically named as

 <MultiFunctionalDetectorName>/<PrimitiveScorerName>
 hit collections can be retrieved in the EventAction or

RunAction (as those generated by sensitive detectors)
 do not share the same primitive scorer object among

multiple G4MultiFunctionalDetector objects (results may
mix up!)

MyDetectorConstruction::ConstructSDandField()

{

 G4MultiFunctionalDetector* myScorer = new
G4MultiFunctionalDetector(“myCellScorer”);

myCellLog->SetSensitiveDetector(myScorer);

G4VPrimitiveSensitivity* totalSurfFlux = new
G4PSFlatSurfaceFlux(“TotalSurfFlux”);

myScorer->RegisterPrimitive(totalSurfFlux);

G4VPrimitiveSensitivity* totalDose = new
G4PSDoseDeposit(“TotalDose”);

myScorer->RegisterPrimitive(totalDose);

}

instantiate multi-
functional detector

create a primitive
scorer (surface

flux) and register
it

create a primitive
scorer (total dose)

and register it

attach to volume

For example ...

myCellScorer/TotalSurfFlux
myCellScorer/TotalDose

 Concrete Primitive Scorers ( Application Developers Guide 4.4.5)
 Track length

 G4PSTrackLength, G4PSPassageTrackLength
 Deposited energy

 G4PSEnergyDepsit, G4PSDoseDeposit
 Current/Flux

 G4PSFlatSurfaceCurrent,
G4PSSphereSurfaceCurrent,G4PSPassageCurrent,
G4PSFlatSurfaceFlux, G4PSCellFlux, G4PSPassageCellFlux

 Others
 G4PSMinKinEAtGeneration, G4PSNofSecondary, G4PSNofStep,

G4PSCellCharge

Some primitive scorers that
you may find useful

angle

V : Volume

L : Total step length in the cell

SurfaceCurrent :
Count number of
injecting particles
at defined surface.

SurfaceFlux :
Sum up
1/cos(angle) of
injecting particles
at defined surface

CellFlux :
Sum of L / V of
injecting particles
in the geometrical
cell.

V : Volume

A closer look at some scorers

 A G4VSDFilter can be attached to
G4VPrimitiveSensitivity to define which kind of
tracks have to be scored (e.g. one wants to know surface flux
of protons only)
 G4SDChargeFilter (accepts only charged particles)
 G4SDNeutralFilter (accepts only neutral particles)
 G4SDKineticEnergyFilter (accepts tracks in a defined

range of kinetic energy)
 G4SDParticleFilter (accepts tracks of a given particle type)
 G4VSDFilter (base class to create user-customized filters)

G4VSDFilter

MyDetectorConstruction::ConstructSDandField()

{

 G4VPrimitiveSensitivity* protonSurfFlux

 = new G4PSFlatSurfaceFlux(“pSurfFlux”);

G4VSDFilter* protonFilter = new

 G4SDParticleFilter(“protonFilter”);

protonFilter->Add(“proton”);

protonSurfFlux->SetFilter(protonFilter);

myScorer->RegisterPrimitive(protonSurfFlux);

}

create a primitive
scorer (surface
flux), as before

create a particle
filter and add
protons to it

register the filter
to the primitive

scorer

register the scorer to the
multifunc detector (as

shown before)

For example ...

How to retrieve information -
part 1

 At the end of the day, one wants to retrieve the
information from the scorers
 True also for the customized hits collection

 Each scorer creates a hit collection, which is
attached to the G4Event object
 Can be retrieved and read at the end of the event,

using an integer ID
 Hits collections mapped as
G4THitsMap<G4double>* so can loop on the
individual entries

 Operator += provided which automatically sums up
hits (no need to loop)

How to retrieve information –
part 2

//needed only once
G4int collID = G4SDManager::GetSDMpointer()
 ->GetCollectionID("myCellScorer/TotalSurfFlux");

G4HCofThisEvent* HCE = event->GetHCofThisEvent();

G4THitsMap<G4double>* evtMap =
 static_cast<G4THitsMap<G4double>*>
 (HCE->GetHC(collID));

 std::map<G4int,G4double*>::iterator itr;
 for (itr = evtMap->GetMap()->begin(); itr !=
 evtMap->GetMap()->end(); itr++) {
 G4double flux = *(itr->second);
 G4int copyNb = *(itr->first);
}

Get ID for the
collection (given

the name)

Get all HC
available in this

event

Get the HC with the
given ID (need a cast)

Loop over the
individual entries of
the HC: the key of the

map is the copyNb,
the other field is the

real content

Command-based scoring
Thanks to the newly developed parallel navigation, an

arbitrary scoring mesh geometry can be defined which
is independent to the volumes in the mass geometry.

Also, G4MultiFunctionalDetector and primitive scorer classes
now offer the built-in scoring of most-common quantities

• Define a scoring mesh
/score/create/boxMesh <mesh_name>
/score/open, /score/close

• Define mesh parameters
/score/mesh/boxsize <dx> <dy> <dz>
/score/mesh/nbin <nx> <ny> <nz>
/score/mesh/translate,

• Define primitive scorers
/score/quantity/eDep <scorer_name>
/score/quantity/cellFlux <scorer_name>
currently 20 scorers are available

UI commands for scoring  no C++ required, apart
from instantiating G4ScoringManager in main()

• Define filters
/score/filter/particle <filter_name>
<particle_list>
/score/filter/kinE <filter_name>
<Emin> <Emax> <unit>
 currently 5 filters are available

• Output
/score/draw <mesh_name>
 <scorer_name>
/score/dump, /score/list

How to learn more about
built-in scoring

examples/extended/runAndEvent/RE02
(use of primitive scorers)

examples/extended/runAndEvent/RE03

(use of UI-based scoring)

Have a look at the dedicated
extended examples released with

Geant4:

	Interaction with the Geant4 kernel – part 1
	Part I: The main ingredients
	Optional user classes - 1
	Optional user classes - 2
	MyActionInitialization (MT mode)
	Geant4 terminology: an overview
	The Run (G4Run)
	The Event (G4Event)
	The Step (G4Step)
	The Track (G4Track)
	Run, Event and Tracks
	Example of an Event and Tracks
	Diapositiva numero 13
	Example:�retrieving information from tracks
	The Step in Geant4
	The G4Step object
	The geometry boundary
	Step concept and boundaries
	Geant4 terminology: an overview
	Example of usage of the hook user classes - 1
	Example of usage of the hook user classes - 2
	Example of usage of the hook user classes - 3
	Concept for multi-thread …
	Part II: Retrieving information from steps and tracks
	Example: �check if step is on boundaries
	Example: step information in SD
	Something more about tracks
	Particles in Geant4
	Particles in Geant4
	Examples: particle information from step/track
	Part III: Sensitive Detectors
	Sensitive Detector (SD)
	Adding sensitivity to a logical volume
	Part IV: Native Geant4 scoring
	Extract useful information
	G4MultiFunctionalDetector
	G4VPrimitiveSensitivity
	For example ...
	Some primitive scorers that you may find useful
	A closer look at some scorers
	G4VSDFilter
	For example ...
	How to retrieve information - part 1
	How to retrieve information – part 2
	Command-based scoring
	How to learn more about built-in scoring

