Geant 4

Biasing

http://geant4.org

Event biasing (1/2)

- What is analogue simulation?
 - Sample using natural probability distribution, N(x)
 - Predicts mean with correct fluctuations
 - Can be inefficient for certain applications
- What is non-analogue/event biased simulation?
 - Cheat apply artificial biasing probability distribution,
 B(x) in place of natural one, N(x)
 - B(x) enhances production of whatever it is that is interesting
 - To get meaningful results, must apply a weight correction
 - Predicts same analogue mean with smaller variance
 - Increases efficiency of the Monte Carlo
 - Does not predict correct fluctuations
 - Should be used with care

Event biasing (2/2)

- Geant4 provides built-in general use biasing techniques
- The effect consists in producing a small number of secondaries, which are artificially recognized as a huge number of particles by their statistical weights → reduce CPU time
- Event biasing can be used, for instance, for the transportation of particles through a thick shielding
- An utility class G4WrapperProcess supports user-defined biasing

Event biasing techniques (1)

- Production cuts / threshold
 - This is a biasing technique most popular for many applications: set high cuts to reduce secondary production
- Geometry based biasing
 - Importance weighting for volume/region
 - Duplication or sudden death of tracks
- Primary event biasing
 - Biasing primary events and/or primary particles in terms of type of event, momentum distribution > generate only primaries that can produce events that are interesting for you

Event biasing techniques (2)

- Forced interaction
 - Force a particular interaction, e.g. within a volume
- Enhanced process or channel and physicsbased biasing
 - Increasing cross section for a given process (e.g.bremsstrahlung)
 - Biasing secondary production in terms of particle type, momentum distribution, cross-section, etc.
- Leading particle biasing
 - Take into account only the most energetic (or most important) secondary
 - Currently NOT supported in Geant4

Variance Reduction

- Use variance reduction techniques to reduce computing time taken to calculate a result with a given variance (= statistic error)
- Want to increase efficiency of the Monte Carlo
- Measure of efficiency is given by

$$\varepsilon = \frac{1}{s^2 T}$$
 s = variance on calculated quantity T = computing time

Geometric Biasing

The purpose of geometry-based event biasing is to save computing time by sampling less often the particle histories entering "less important" geometry regions, and more often in more "important" regions.

- * Importance sampling technique
- * Weight window technique

Importance sampling technique (1)

less more important

- Importance sampling acts on particles crossing boundaries between "importance cells".
- The action taken depends on the importance value (I) assigned to the cell.
- In general, a track is played either split or Russian roulette at the geometrical boundary depending on the importance value assigned to the cell.

Importance sampling technique (2)

less more important

- Survival probability (P) is defined by the ratio of importance value P = I_{post} / I_{pre}
- The track weight is changed to W/P (weight necessary to get correct results at the end!)
- If **P>1**: splitting a track
 - E.g. creating two particles with half the 'weight' if it moves into volume with double importance value.
 - If P<1: Russian-roulette in opposite direction</p>
 - E.g. Kill particles according to the survival probability (1 - P).

Importance biasing

10 MeV neutron in thick concrete cylinder

Physics biasing

 Built-in cross section biasing for PhotoInelastic, ElectronNuclear and PositronNuclear processes

```
G4ElectroNuclearReaction * theeReaction = new G4ElectroNuclearReaction;
G4ElectronNuclearProcess theElectronNuclearProcess;
theElectronNuclearProcess.RegisterMe(theeReaction);
theElectronNuclearProcess.BiasCrossSectionByFactor(100);
```

Similar tool for rare EM processes (e⁺e⁻ annihilation to μ pair or hadrons, γ conversion to μ ⁺ μ ⁻)

```
G4AnnihiToMuPair* theProcess = new G4AnnihiToMuPair(); theProcess->SetCrossSecFactor(100);
```

- It is possible to introduce these factors for all EM processes, with a definition of customized processes that inherit from the "normal" ones (→ extended example)
- Artificially enhance/reduce cross section of a process (useful for thin layer interactions or thick layer shielding)

How to learn more about biasing

There are examples in Geant4, to show how to use the most common biasing techniques:

examples/extended/biasing

geometry-based biasing

examples/extended/medical/fanoCavity cross-section biasing (Compton scattering)

Additional documentation about biasing techniques available in the Geant4 User Guide, section 3.7

Biasing example B01

- Shows the importance sampling in the mass (tracking) geometry
- 10 MeV neutron shielding by cylindrical thick concrete
- 80 cm high concrete cylinder divided into 18 slabs (importance values assigned in the DetectorConstruction for simplicity)

Results of example B01

Built-in biasing options

- Cross section biasing, forced interactions, splitting of final state, Russian roulette
- Common interface (UI and C++) to apply them on the top of any EM configuration

Built-in biasing options

- Example of secondary particle splitting: medical linear accelerator
 - N photons (with weight 1/N) created in each bremsstrahlung interaction
 - Sampled independently
 - Energy spectrum is reproduced with high accuracy
 - Speed-up factor depends on geometry and cuts (up to factor on 8.5 here)

