
Interaction with the Geant4
kernel – part 3

Luciano Pandola
INFN – Laboratori Nazionali del Sud

Partially based on a presentation by G.A.P. Cirrone (INFN-LNS)

Part V: Write information
on output files

Introduction: data analysis
with Geant4

 For a long time, Geant4 did not attempt to
provide/support any data analysis tools
 The focus was given (and is given) to the central mission

as a Monte Carlo simulation toolkit
 As a general rule, the user is expected to provide her/his

own code to output results to an appropriate analysis
format

 Basic classes for data analysis have recently been
implemented in Geant4 (g4analysis)
 Support for histograms and ntuples
 Output in ROOT, XML, HBOOK and CSV (ASCII)
 Appropriate only for easy/quick analysis: for advanced

tasks, the user must write his/her own code and to use
an external analysis tool

Introduction: how to write
simulation results

 Formatted (= human-readable) ASCII files
 Simplest possible approach is comma-separated values

(.csv) files
 The resulting files can be opened and analyzed by tools

such as: Gnuplot, Excel, OpenOffice, Matlab, Origin,
ROOT, PAW, …

 Binary files with complex analysis objects (Ntuples)
 Allows to control what plot you want with modular choice

of conditions and variables
 Ex: energy of electrons knowing that (= cuts): (1)

position/location, (2) angular window, (3) primary/secondary …
 Tools: Root , PAW, AIDA-compliant (PI, JAS3 and

OpenScientist)

Output stream (G4cout)

 G4cout is a iostream object defined by Geant4.
 The usage of this objects is exactly the same as the

ordinary std::cout except that the output
streams will be handled by G4UImanager

 G4endl is the equivalent of std::endl to end a
line

 Output strings may be displayed on another
window or stored in a file

 One can also use the file streams
(std::ofstream) provided by the C++ libraries

Output on screen – an
example

 a

 G4cout << "Energy deposited--->" << " " << edep << " "
 << ”Charge--->" << " " << particleCharge << " "
 << ”Kinetic Energy --->" << " " << kineticEnergy << " "
 << G4endl;

Output on screen – an
example

Part VI: User-defined sensitive
detectors: Hits and Hits
Collection

The ingredients of user SD
 A powerful and flexible way of extracting information

from the physics simulation is to define your own SD
 Derive your own concrete classes from the base

classes and customize them according to your needs

Concrete class Base class

Sensitive Detector MySensitiveDetector G4VSensitiveDetector

Hit MyHit G4VHit

Template class

Hits collection G4THitsCollection<MyHit*>

Hit class - 1

 Hit is a user-defined class which derives from the
base class G4VHit. Two virtual methods
 Draw()
 Print()

 You can store various types of information by
implementing your own concrete Hit class

 Typically, one may want to record information like
 Position, time and ∆E of a step
 Momentum, energy, position, volume, particle type of

a given track
 Etc.

Hit class - 2

A “Hit” is like a “container”, a empty box which
will store the information retrieved step by step

The Hit concrete class (derived by
G4VHit) must be written by the user: the
user must decide which variables and/or
information the hit should store and when

store them

X =

Y =

T =

∆E =

The Hit objects are created and filled by the
SensitiveDetector class (invoked at each step in detectors
defined as sensitive). Stored in the “HitCollection”, attached

to the G4Event: can be retrieved at the end of the event

Hit class - 3

Example

data member (private)

public methods to
handle data member

Geant4 Hits

Since in the simulation one may have different
sensitive detectors in the same setup (e.g. a

calorimeter and a Si detector), it is possible to define
many Hit classes (all derived by G4VHit) storing

different information

X =

Y =

T =

∆E =

Class Hit1 :
public G4VHit

Z =

Pos =

Dir =

Class Hit2 :
public G4VHit

Hits Collection - 1
At each step in a detector defined as sensitive, the method
ProcessHit() of the user SensitiveDetector class is
inkoved: it must create, fill and store the Hit objects

X = 1

Y = 2

T =3

∆E = 1

Step 1

X = 2

Y = 0

T =3.1

∆E = 2

Step 2

X = 3

Y = 2

T =4

∆E = 3

Step 3

X = 3

Y = 2

T =6

∆E = 1

Step N

.....

Hits collection (= vector<Hit>)

Hits Collection - 2

 Once created in the sensitive detectors, objects of the
concrete hit class must be stored in a dedicated
collection
 Template class G4THitsCollection<MyHit>, which

is actually an array of MyHit*

 The hits collections can be accesses in different
phases of tracking
 At the end of each event, through the G4Event (a-

posteriori event analysis)
 During event processing, through the Sensitive Detector

Manager G4SDManager (event filtering)

The HCofThisEvent
Remember that you may have many kinds of Hits

(and Hits Collections)

X = 1

Y = 2

T =3

∆E = 1

X = 2

Y = 0

T =3.1

∆E = 2

X = 3

Y = 2

T =4

∆E = 3

X = 3

Y = 2

T =6

∆E = 1

Z = 5
Pos =
(0,1,1)
Dir
=(0,1,0)

Z = 5.2
Pos =
(0,0,1)
Dir
=(1,1,0)

Z = 5.4
Pos =
(0,1,2)
Dir
=(0,1,1)

HCofThisEvent

Attached to
G4Event*

Hits Collections of an event

 A G4Event object has a G4HCofThisEvent
object at the end of the event processing (if it
was successful)
 The pointer to the G4HCofThisEvent object can

be retrieved using the
G4Event::GetHCofThisEvent() method

 The G4HCofThisEvent stores all hits
collections creted within the event
 Hits collections are accessible and can be processes

e.g. in the EndOfEventAction() method of the
User Event Action class

SD and Hits

 Using information from particle steps, a
sensitive detector either
 constructs, fills and stores one (or more) hit object
 accumulates values to existing hits

 Hits objects can be filled with information in
the ProcessHits() method of the SD
concrete user class  next slides
 This method has pointers to the current G4Step and

to the G4TouchableHistory of the ReadOut
geometry (if defined)

Sensitive Detector (SD)

 A specific feature to Geant4 is that a user can
provide his/her own implementation of the detector
and its response  customized

 To create a sensitive detector, derive your own
concrete class from the G4VSensitiveDetector
abstract base class
 The principal purpose of the sensitive detector is to

create hit objects
 Overload the following methods (see also next slide):

 Initialize()
 ProcessHits() (Invoked for each step if step starts in

logical volume having the SD attached)
 EndOfEvent()

Sensitive Detector

User
concrete
SD class

SD implementation: constructor

 Specify a hits collection (by its unique name) for each
type of hits considered in the sensitive detector:
 Insert the name(s) in the collectionName vector

Base class

SD implementation: Initialize()
 The Initialize() method is invoked at the beginning of each event
 Construct all hits collections and insert them in the G4HCofThisEvent

object, which is passed as argument to Initialize()
 The AddHitsCollection() method of G4HCofThisEvent requires the

collection ID
 The unique collection ID can be obtained with GetCollectionID():

 GetCollectionID() cannot be invoked in the constructor of this SD class (It is
required that the SD is instantiated and registered to the SD manager first).

 Hence, we defined a private data member (collectionID), which is set at the
first call of the Initialize() function

SD implementation: ProcessHits()
 This ProcessHits() method is invoked for every step in the

volume(s) which hold a pointer to this SD (= each volume
defined as “sensitive”)

 The main mandate of this method is to generate hit(s) or to
accumulate data to existing hit objects, by using information
from the current step
 Note: Geometry information must be derived from the

“PreStepPoint”

// 1) create hit

// 2) fill hit

// 3) insert in the collection

G4bool

SD implementation: EndOfEvent()

 This EndOfEvent() method is invoked at the
end of each event.
 Note is invoked before the EndOfEvent function

of the G4UserEventAction class

Processing hit information - 1

 Retrieve the pointer of a hits collection with the
GetHC()method of G4HCofThisEvent collection
using the collection index (a G4int number)

 Index numbers of a hit collection are unique and
don’t change for a run. The number can be obtained
by G4SDManager::GetCollectionID(“name”);

 Notes:
 if the collection(s) are not created, the pointers of the

collection(s) are NULL: check before trying to access
it

 Need an explicit cast from G4VHitsCollection (see
code)

Processing hit information - 2

 Loop through the entries of a hits collection to
access individual hits
 Since the HitsCollection is a vector, you can

use the [] operator to get the hit object
corresponding to a given index

 Retrieve the information contained in this hit
(e.g. using the Get/Set methods of the
concrete user Hit class) and process it

 Store the output in analysis objects

Process hit: example

retrieve
index

retrieve all hits
collections

retrieve hits
collection by index

loop over individual
hits, retrieve the data

The HCofThisEvent
Remember that you may have many kinds of Hits

(and Hits Collections)

X = 1

Y = 2

T =3

∆E = 1

X = 2

Y = 0

T =3.1

∆E = 2

X = 3

Y = 2

T =4

∆E = 3

X = 3

Y = 2

T =6

∆E = 1

Z = 5
Pos =
(0,1,1)
Dir
=(0,1,0)

Z = 5.2
Pos =
(0,0,1)
Dir
=(1,1,0)

Z = 5.4
Pos =
(0,1,2)
Dir
=(0,1,1)

HCofThisEvent

Attached to
G4Event*

Recipe and strategy - 1

 Create your detector geometry
 Solids, logical volumes, physical volumes

 Implement a sensitive detector and assign an
instance of it to the logical volume of your
geometry set-up
 Then this volume becomes “sensitive”
 Sensitive detectors are active for each particle steps, if

the step starts in this volume

Recipe and strategy - 2

 Create hits objects in your sensitive detector
using information from the particle step
 You need to create the hit class(es) according to your

requirements
 Store hits in hits collections (automatically

associated to the G4Event object)
 Finally, process the information contained in the

hit in user action classes (e.g.
G4UserEventAction) to obtain results to be
stored in the analysis object

Backup

To write a new ASCII file: a
recipe - 1

 Add to the include list of your class the <fstream>
header file
 This will allow to use the C++ libraries for stream on file

 Put into the class declaration (file .hh) an ofstream
(=output file stream) object (or pointer):
std::ofstream myFile;
 In this way, the file object will be visible in all methods

of the class
 Open the file, in the class constructor, or into a

specific method:
 myFile.open(“filename.out”,
std::ios::trunc);
 To append data to an existing file, you must specify
std::ios::app

To write a new ASCII file: a
recipe - 2

 Inside a regularly called method (e.g. inside a virtual
method of an User Class), where appropriate, write
your data (i.e. G4double, G4int, G4String,…) to
the file, in the same fashion of G4cout:

 This could be for instance the EndOfEventAction()

of the G4UserEventAction user class
 Finally close the file, in the class destructor, or into a

specific method: myFile.close();

if (myFile.is_open()) // Check that file is opened
 {
 myFile << kineticEnergy/MeV << " " << dose << G4endl;
 …
 }

Plotting with tools
EXCEL

GNUPLOT

OPENOFFICE

MATLAB

	Interaction with the Geant4 kernel – part 3
	Part V: Write information on output files
	Introduction: data analysis with Geant4
	Introduction: how to write simulation results
	Output stream (G4cout)
	Output on screen – an example
	Output on screen – an example
	Part VI: User-defined sensitive detectors: Hits and Hits Collection
	The ingredients of user SD
	Hit class - 1
	Hit class - 2
	Hit class - 3
	Geant4 Hits
	Hits Collection - 1
	Hits Collection - 2
	The HCofThisEvent
	Hits Collections of an event
	SD and Hits
	Sensitive Detector (SD)
	Sensitive Detector
	SD implementation: constructor
	SD implementation: Initialize()
	SD implementation: ProcessHits()
	SD implementation: EndOfEvent()
	Processing hit information - 1
	Processing hit information - 2
	Process hit: example
	The HCofThisEvent
	Recipe and strategy - 1
	Recipe and strategy - 2
	Backup
	To write a new ASCII file: a recipe - 1
	To write a new ASCII file: a recipe - 2
	Diapositiva numero 34

