)
INFN

L/ Geants

Interaction with the Geant4

!'_ kernel — part 3

Luciano Pandola
INFN — Laboratori Nazionali del Sud

Partially based on a presentation by G.A.P. Cirrone (INFN-LNS)

Part V: Write information

!'_ on output files

Introduction: data analysis
i with Geant4

= For a long time, Geant4 did not attempt to
provide/support any data analysis tools

= The focus was given (and is given) to the central mission
as a Monte Carlo simulation toolkit

= As a general rule, the user is expected to provide her/his
own code to output results to an appropriate analysis
format

= Basic classes for data analysis have recently been
Implemented in Geant4 (g4analysis)
= Support for histograms and ntuples
= Output in ROOT, XML, HBOOK and CSV (ASCII)

= Appropriate only for easy/quick analysis: for advanced
tasks, the user must write his/her own code and to use
an external analysis tool

Introduction: how to write
i simulation results

= Formatted (= human-readable) ASCII files

= Simplest possible approach is comma-separated values
(.csv) files

= The resulting files can be opened and analyzed by tools
such as: Gnuplot, Excel, OpenOffice, Matlab, Origin,
ROOT, PAW, ...

= Binary files with complex analysis objects (Ntuples)
= Allows to control what plot you want with modular choice

of conditions and variables

= EX: energy of electrons knowing that (= cuts): (1)
position/location, (2) angular window, (3) primary/secondary ...

= Tools: Root , PAW, AIDA-compliant (PI, JAS3 and
OpenScientist)

i Output stream (G4cout)

= G4cout is a 1ostream object defined by Geant4.

= The usage of this objects is exactly the same as the
ordinary std: zcout except that the output
streams will be handled by G4Ulmanager

= G4endl is the equivalent of std::endl toend a
line
= Output strings may be displayed on another
window or stored In a file

= One can also use the file streams o
(std: :ofstream) provided by the C++ libraries

Output on screen — an
example

vold Steppinghction: :UserSteppinghction(const Gd5tep* aStep)

evtlh = eventhction -» Trasporto();

GdString particlelane = aStep -» GetTrack(] -» GetDynamicParticle() -» GetDefinition() -» GetParticleName();
Gdstring volumelzne = aStep -»GetPreStepPoint() -» GetPhysicalVolume() -» GetName();

Gddouble particleCharge = aStep -» GetTrack() -» GetDefinition() -» GetAtomicMumber();

Gddouble PDG=aStep-:GetTrack()-»GetDefinition()- Gethtomicass();

GdTrack* theTrack = aStep-»GetTrack();

Gddouble kineticEnergy = theTrack -» GetRineticEnergy();
Gdint trackID = aStep -» GetTrack() -» GetTrackID();
Gddouble edep = aStep-»GetTotalEnergyDepositi);

GdString nateriallzne = theTrack-»GetMaterial()-»GetName () ;

G4cout << "Energy deposited--->" << " " << edep << " "
<< ”Charge--->" << " " << particleCharge << "™ "

<< 7Kinetic Energy --->" << " ' << kineticEnergy << " "
<< G4endl;

Output on screen — an

;| example

Part VI: User-defined sensitive
detectors: Hits and Hits

!’_ Collection

i The ingredients of user SD

= A powerful and flexible way of extracting information
from the physics simulation is to define your own SD

= Derive your own concrete classes from the base
classes and customize them according to your needs

Sensitive Detector MySensitiveDetector G4VSensitiveDetector

Hit MyHit G4VHit

Hits collection G4THitsCollection<MyHit*>

i Hit class - 1

s Hit is a user-defined class which derives from the
base class G4VHi1t. Two virtual methods

= Draw(Q)
= Print()

= You can store various types of information by
Implementing your own concrete Hit class

= Typically, one may want to record information like
= Position, time and AE of a step

= Momentum, energy, position, volume, particle type of
a given track

= EtC.

i Hit class - 2

A “Hit” Is like a “container”, a empty box which
will store the information retrieved step by step

The Hit concrete class (derived by

Xi ™ GAVHit) must be written by the user: the
i ’\> user must decide which variables and/or
T= information the hit should store and when

/
AE = store them

The Hit objects are created and filled by the
SensitiveDetector class (invoked at each step in detectors

defined as sensitive). Stored in the “HitCollection”, attached
to the G4Event: can be retrieved at the end of the event

i Hit class - 3

/ header file: MyHit.hh
#include “GAVHt hh* Example

class MyHit : public G4VHit {

plhl/?lilg:' 0

LyHi1t(); . bli thods t

tual ~MvHit(); public methods to
VH - yHIL) handle data member

inline void SetEnergyDeposit(G4double energy) { energyDeposit = energy; }

inline G4double GetEnergyDeposit() { return energyDeposit;}

... Il more get and set methods

private:

G4double energyDeposit; - data member (private)
... Il more data members

I

i Geant4 Hits

Since In the simulation one may have different
sensitive detectors in the same setup (e.g. a
calorimeter and a Si detector), it is possible to define
many Hit classes (all derived by G4VHI1t) storing

different information

Class Hitl : 7 = Class Hit2 :

B public G4VHit bos = | Public G4VHit

Dir =

i Hits Collection - 1

At each step in a detector defined as sensitive, the method
ProcessHit() of the user SensitiveDetector class is

Inkoved: it must create, fill and store the Hit objects

X=1 X=2 X=3 X=3
Y=2 Y=0 Y=2 Y=2
T=3 T =3.1 T =4 T =6
AE =1 AE = 2 AE=3 | ~ ==sn=a AE =1
er 1 Step 2 Step 3 Step N

Hits collection (= vector<Hit>)

i Hits Collection - 2

= Once created in the sensitive detectors, objects of the

concrete hit class must be stored in a dedicated
collection

= Template class GATHItsCol lection<MyHIt>, which
IS actually an array of MyHIt*

= The hits collections can be accesses In different
phases of tracking

= At the end of each event, through the G4Event (a-
posteriori event analysis)

= During event processing, through the Sensitive Detector
Manager G4SDManager (event filtering)

The HCofThisEvent

Remember that you may have many kinds of Hits
(and Hits Collections)

HCofThisEvent

Attached to
G4Event™

i Hits Collections of an event

= A G4Event object has a G4AHCofThisEvent
object at the end of the event processing (if it
was successful)

= The pointer to the G4HCofThisEvent object can

be retrieved using the
G4Event: :GetHCofThisEvent() method

s The G4HCofThisEvent stores all hits
collections creted within the event

= Hits collections are accessible and can be processes
e.g. in the EndOfEventAction() method of the

User Event Action class

i SD and Hits

= Using information from particle steps, a
sensitive detector either
= constructs, fills and stores one (or more) hit object
= accumulates values to existing hits

= Hits objects can be filled with information in
the ProcessHiIts() method of the SD

concrete user class 2 next slides

= This method has pointers to the current G4Step and
to the G4TouchableHistory of the ReadOut

geometry (if defined)

i Sensitive Detector (SD)

= A specific feature to Geant4 is that a user can
provide his/her own implementation of the detector
and its response - customized

= To create a sensitive detector, derive your own
concrete class from the G4VSensitiveDetector
abstract base class

= The principal purpose of the sensitive detector is to
create hit objects

= Overload the following methods (see also next slide):
= Inttialize()

« ProcessHits() (Invoked for each step if step starts in
logical volume having the SD attached)

= EndOfEvent()

Sensitive Detector

class G4VSensitiveDetector { |
public: abstract base class

" virtual void Initialize (G4A4HCofThisEvent*);
virtual void EndOfEvent(G4HCofThisEvent®);
protected:

virtual G4bool ProcessHits(G4Step™,
G4TouchableHistory*) = 0;

// header file: MySensitiveDetector.hh _
#include “G4VSensitiveDetector.hh“ |} pure virtual method

class MySensitiveDetector : public G4VSensitiveDetector {

public;
MySensitiveDetector(G4Strin name),
virtual ~MySensitiveDetector(); User

virtual void Initialize(G4HCofT hlsEvent*HCE) : concrete

virtual G4bool ProcessHits(G4Step* steP
G4Touchab eHistory* ROhist); SD class

virtual void EndOfEvent(G4HCofThisEvent*HCE); -

private: _ _ _
MyHitsCollection * hitsCollection;

G4int collectionlD;

ti

i SD implementation: constructor

= Specify a hits collection (by its unigue name) for each
type of hits considered in the sensitive detector:

= Insert the name(s) in the collectionName vector

MySensitiveDetector::MySensitiveDetector(G4String detectorUniqueNarnnie)
: G4VSensitiveDetector(detectorUniquename),
collectionID(-1) {

collectionName.insert(“collection_name");

y

class G4VSensitiveDetector {

pfotected:
%4(}31011ecti0nN§1meVector collectiogl}lce?lllg;
This protected name vector must be filled in
Base class - // the constructor of the concrete class for
// registering names of hits collections

i SD implementation: Initialize()

= The Inttialize() method is invoked at the beginning of each event

s Construct all hits collections and insert them in the G4AHCofThisEvent
object, which is passed as argument to Initialize()

= The AddHitsCollection() method of G4HCofThisEvent requires the
collection ID

= The unique collection ID can be obtained with GetCollectionlD():

= GetCollectionID() cannot be invoked in the constructor of this SD class (It is
required that the SD is instantiated and registered to the SD manager first).

= Hence, we defined a private data member (collectionID), which is set at the
first call of the Initialize() function

void MySensitiveDetector::Initialize(G4AHCofThisEvent*HCE) {
if(collectionID < 0)

collectionID = GetCollectionID(0); // Argument : order % collect.

, , . [l as stored in the collectionName
hitsCollection = new MyHitsCollection

(SensitiveDetectorName, collectionName[0]¥

: HCE -> AddHitsCollection(collectionID, hitsCollection);

i SD implementation: ProcessHits()

This ProcessHits() method is invoked for every step in the
volume(s) which hold a pointer to this SD (= each volume
defined as “sensitive”)

= The main mandate of this method is to generate hit(s) or to
accumulate data to existing hit objects, by using information
from the current step

= Note: Geometry information must be derived from the
“PreStepPoint”

G4bool. MySensitiveDetector::ProcessHits(G4Step* stell:)
G4TouchableHistory*ROhist) {
MyHit* hit = new MyHit(); // 1) create hit

" // some set methods, e. g. for a tracking detector: o
G4double energyDeposit = step -> GetTotalEnergyDeposit(); // 2) fill hit
hit -> SetEnergyDeposit(energyDeposit); // See implement. of our Hit class

" hitsCollection -> insert(aHit); // 3) insert in the collection
return true;

i SD implementation: EndOfEvent()

= This EndOfEvent() method is invoked at the
end of each event.

= Note Is iInvoked before the EndOfEvent function
of the G4UserEventAction class

void MySensitiveDetector::EndOfEvent(G4HCofThisEvent* HCE) {
;

i Processing hit information - 1

= Retrieve the pointer of a hits collection with the
GetHC()method of GAHCofThisEvent collection

using the collection index (a G4int number)

= Index numbers of a hit collection are unique and

don’t change for a run. The number can be obtained
by G4SDManager: :GetCol lectionlID(*“name”);

= Notes:

= If the collection(s) are not created, the pointers of the
collection(s) are NULL: check before trying to access
it

= Need an explicit cast from G4VHi1ItsCollection (see
code)

i Processing hit information - 2

= Loop through the entries of a hits collection to
access individual hits
= Since the HitsCollection Is a vector, you can

use the [] operator to get the hit object
corresponding to a given index

= Retrieve the information contained in this hit
(e.g. using the Get/Set methods of the
concrete user Hit class) and process it

= Store the output in analysis objects

i Process hit: example

void MyEventAction::EndOfEventAction(const G4Event* event) {
// index is a data member, representing the hits collection index of the
// considered collection. It was initialized to -1 in the class constructor _
if(index < 0) index= retrieve
G4SDManager::GetSDMpointer() -> GetCollectionID("myDet/myColl"); index
G4HCofThisEvent* HCE = event-> GetHCofThisEvent(); } retrieve all hits

collections
MvHitsCollection* hitsColl = 0;

if(HCE) hitsColl = (MyHitsCollection*) (HCE->GetHC(index)); retrieve hits
fhitsColl) | '\ collection by index
int numberHits = hitsColl->entries();
cast
for(int 1]>l_<:h 0;1l jhnulélbﬁrHits s1144) {
MyHit* hit = (*hitsColl)[il]; TR
// Retrieve information from hit object, e.g. I.oop Ov?r individual
G4double energy = hit -> GetEnergyDeposit; hits, retrieve the data

... I/ Further process and store information

}
I
}

The HCofThisEvent

Remember that you may have many kinds of Hits
(and Hits Collections)

HCofThisEvent

Attached to
G4Event™

i Recipe and strategy - 1

= Create your detector geometry
= Solids, logical volumes, physical volumes

= Implement a sensitive detector and assign an
iInstance of it to the /ogical vo/ume of your
geometry set-up
= Then this volume becomes “sensitive”

= Sensitive detectors are active for each particle steps, if
the step starts in this volume

i Recipe and strategy - 2

Create hits objects in your sensitive detector
using information from the particle step

= You need to create the hit class(es) according to your
requirements

Store hits in hits collections (automatically
associated to the G4Event object)

Finally, process the information contained in the

hit in user action classes (e.qg.
G4UserEventAction) to obtain results to be

stored in the analysis object

!’_ Backup

To write a new ASCII file: a
recipe - 1

= Add to the include list of your class the <fstream>
header file

= This will allow to use the C++ libraries for stream on file
= Put into the class declaration (file .hh) an ofstream

(=output file stream) object (or pointer):

std: :ofstream myFile;

= In this way, the file object will be visible in all methods
of the class

= Open the file, in the class constructor, or into a
specific method:
myFile.open(““filename.out”,
std::-10s::trunc);
= To append data to an existing file, you must specify
std::-10s::app

To write a new ASCII file: a

i recipe - 2

= Inside a regularly called method (e.g. inside a virtual

method of an User Class), where appropriate, write
your data (i.e. G4double, G41nt, G4String,...) to

the file, in the same fashion of G4cout:

iIT (myFile.i1s open()) // Check that file 1s opened
{

myFile << kineticEnergy/MeV << ' " << dose << G4endl;

= This could be for instance the EndOfEventAction()
of the G4UserEventAction user class

= Finally close the file, in the class destructor, or into a
specific method: myFile.close();

Plotting with tools

' e EE OPENOFFICE
Chart Wizard - S5tep 1 of 4 - Chart Tyy Selection
- T Range [6Sheetl $5A51.5B58
‘
| Standard Tvpes n Typies [~ Eirst row as label Chart results in worksheet
[~ First column as labegl Sheetl j
Chart type
|] !] Colum If the selected cells do not contain the desired data, select the data range now.
L Ra __/;'M'— Include the cells containing column and row labels if you want them to be included in your chart
% : sHala \ AutoFormat Chart
* Line

Choose a chart type

Pie 16

) | & i) B
Area 12
Seriesl @ “_'u.u /&
~| —m—Series2 R

a Lines

| S—

OB =@

&

[~ Show text elements in Data series in: " Rows * Columns
preview

e sequence al lhe conesponding valees of the first

: o | belp o | | |
MATIAB_| Lo
MATLAB

Area Graph
[rapiay 1he elements m & vanable 35 one or mare
curvs a0 fil the area banaath each curve

GNUPLOT

a singhe curve, malnces create one

Whn the variablo is & matre, the cunes 3
show I v coninbution of ach comse]
olomien 10 the tatal haight of the curs a8 any x interval

sincCxdxrykyd

Plotted Vardables
* Single vanable ~ plot & veclor or each column of &
abix &5 ong kb vs. 25 i

e ™ « Tt variables - plot the second variable in the

" wariable in the

qusnco

¥ the firs1 vaniable i3 & vector, i leagih must egusl
the sengih of the second vaniable and it rmust by
1 m nie

(=]
[SN R

il 1 vaeiable is a matrie, 15 size must aqual the
size of the second vanable and esch column must
| hir manatanic

More Information
See Ihe area reference page for more d d
nformation sbout the MATLAS area hs Sew also

Imnar boand wire B

[[| Ot Finee | | Close

	Interaction with the Geant4 kernel – part 3
	Part V: Write information on output files
	Introduction: data analysis with Geant4
	Introduction: how to write simulation results
	Output stream (G4cout)
	Output on screen – an example
	Output on screen – an example
	Part VI: User-defined sensitive detectors: Hits and Hits Collection
	The ingredients of user SD
	Hit class - 1
	Hit class - 2
	Hit class - 3
	Geant4 Hits
	Hits Collection - 1
	Hits Collection - 2
	The HCofThisEvent
	Hits Collections of an event
	SD and Hits
	Sensitive Detector (SD)
	Sensitive Detector
	SD implementation: constructor
	SD implementation: Initialize()
	SD implementation: ProcessHits()
	SD implementation: EndOfEvent()
	Processing hit information - 1
	Processing hit information - 2
	Process hit: example
	The HCofThisEvent
	Recipe and strategy - 1
	Recipe and strategy - 2
	Backup
	To write a new ASCII file: a recipe - 1
	To write a new ASCII file: a recipe - 2
	Diapositiva numero 34

