Commissione II

A. Paoloni

Consiglio di laboratorio 1 Luglio 2015

Linee guida impegno in CSN2 (di fresca approvazione)

Partecipazione ad un esperimento non inferiore al 20%.

Assegnazione di Common Funds con FTE non inferiore al 50%.

Non piu' di due sigle (ma con qualche eccezione).

Art.23 ed AdR con percentuale non inferiore al 70% nella sigla per cui e' stato richiesto il contratto.

Apertura di sigla a livello locale: richiesti non meno di 1.5 FTE (ricercatori+tecnologi).

Apertura di sigla a livello nazionale: 1 sezione con 1.5 FTE ed FTE/(ric.+tecnologi) > 0.4.

Resp. Nazionale (locale) con percentuale non inferiore al 60% (40%).

Calcolo degli FTE "congelato" a Luglio.

Attivita' di CSN2 presso i laboratori nel 2016

Chiusura delle sigle OPERA e ROG nel 2016. Percentuali ancora da ricollocare.....

Fisica dei neutrini

Juno , T2K, ICARUS – oscillazioni CUORE – Decadimento doppio β senza neutrini KM3 – raggi cosmici

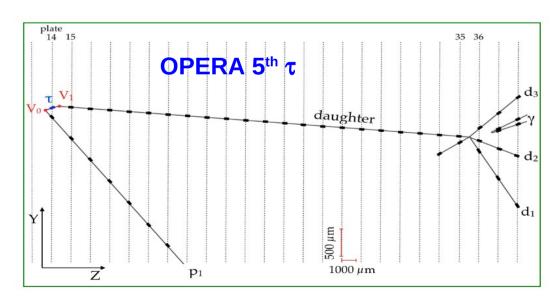
Fisica nello spazio

Wizard (Pamela), Jem-EUSO, Limadou – raggi cosmici Moonlight-2 – fisica della gravitazione

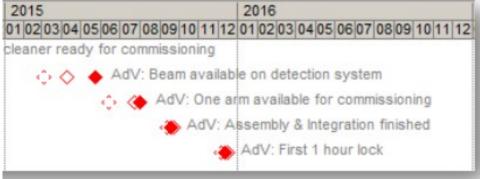
Circa 20 FTE (30 persone).

Dipendenti TI LNF: 6 ricercatori + 4 tecnologi M. Ricci resp. Nazionale di Jem-Euso-RD. S. Dell'Agnello di Moonlight-2.

Sigle senza richieste ai LNF:

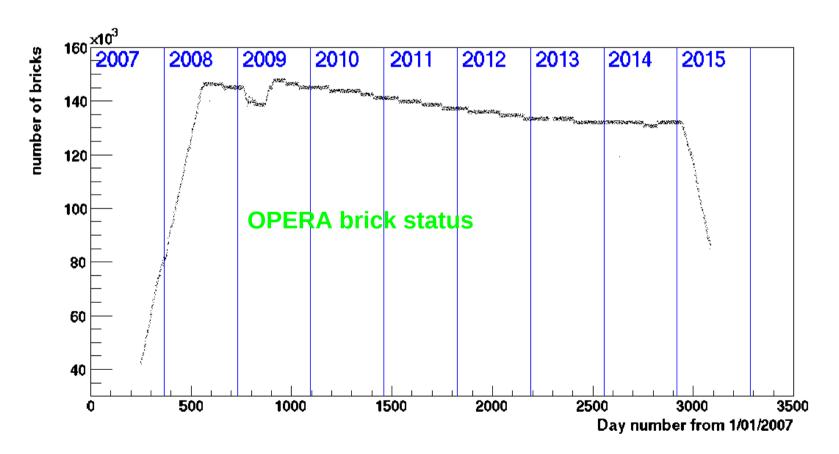

T2K (A. Longhin 50%)
ICARUS (P. Picchi, G. Mannocchi, H. Bilokon 20%)
Wizard (M. Martucci -dottorando RM2- 100%, M. Ricci 20%, G. Basini 60%, G. Pizzella)

OPERA/ROG


Le sigle OPERA e ROG chiuderanno nel 2016.

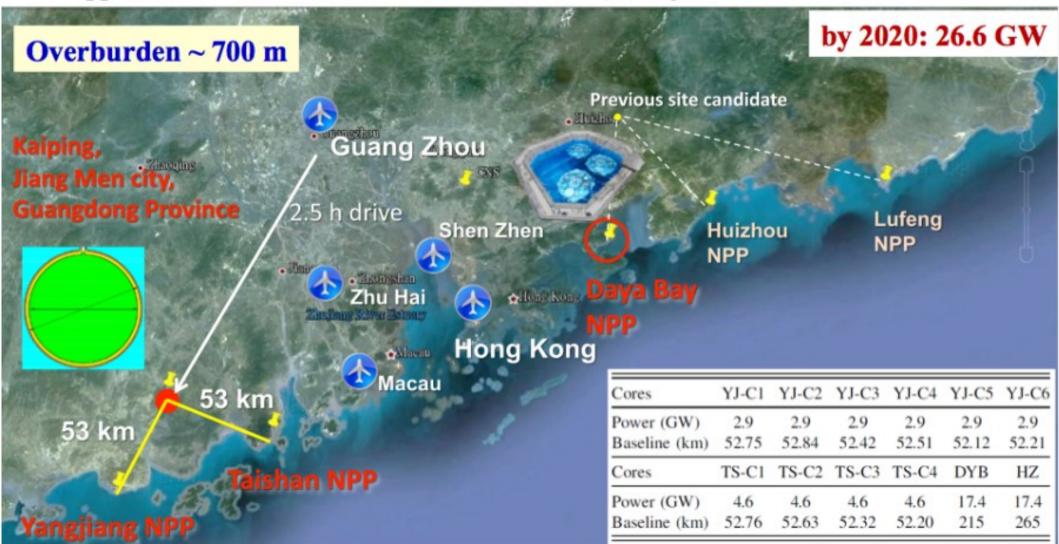
Una piccola coda di scanning (OPERA) e di presa dati (Nautilus) verranno finanziate dalla CSN2 in dotazione.

Il decommissioning di OPERA (iniziato da Gennaio 2015) proseguira' nel 2016, con la richiesta di supporto dello SPAS (1 FTE) e degli "esperti" (tecnici e ricercatori) dei Detectors. Finanziamento (anche delle missioni) da parte della giunta.



Advanced VIRGO schedule

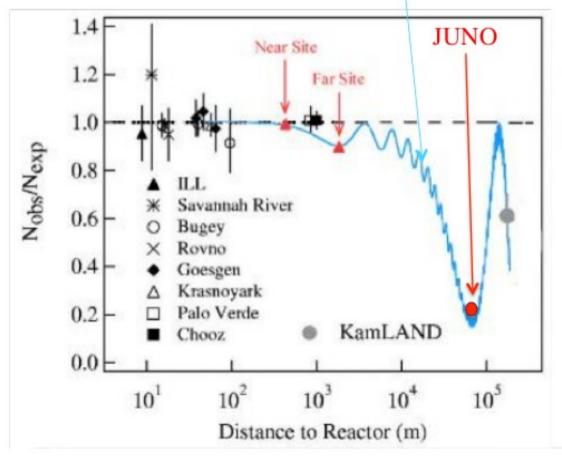
OPERA decommissioning

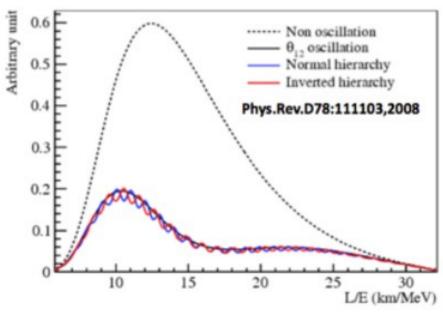

- L'estrazione dei mattoni e' stata quasi completata nel Supermodulo 2.
- A breve seguira' lo smontaggio dei tubi a drift e del TT nel secondo supermodulo (Settembre).
- Lo smontaggio del magnete del secondo supermodulo dovrebbe partire a Gennaio 2016, con uno slittamento di un paio di mesi rispetto alla schedula originaria.

JUNO

(Jiangmen Underground Neutrino Observatory)

- Jiangmen Underground Neutrino Observatory (JUNO) is a reactor anti-neutrino experiment under construction in Jiangmen City, Guangdong Province, China.
- Approved in Feb 2013 in China with ~300 M\$ budget.



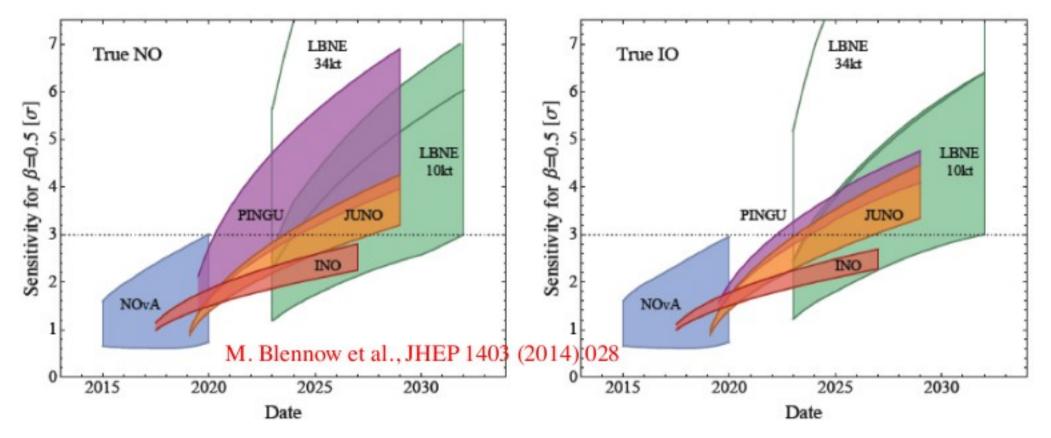

Reactor neutrino oscillations

$$\begin{aligned} P_{ee} &= 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} \\ &- \cos^2 \theta_{12} \sin^2 2\theta_{13} \sin^2 \Delta_{31} \\ &- \sin^2 \theta_{12} \sin^2 2\theta_{13} \sin^2 \Delta_{32} \end{aligned}$$

$$\Delta_{ij} = 1.27 \Delta m_{ij}^2 L/E$$

 $\sin^2 \Delta_{ee} = \cos^2 \theta_{12} \sin^2 \Delta_{31}$
 $+ \sin^2 \theta_{12} \sin^2 \Delta_{32}$

-There is the interference between Δ_{31} and Δ_{32} that depends on the mass hierarchy.



Juno scientific aims

Juno is deisgned to reach 3-4 σ significance in the determination of the three neutrinos **mass hierarchy** exploiting the frequency difference between Δm_{32}^2 and Δm_{31}^2 .

It is a different technique with respect to other atmospheric and accelerators experiments which exploit the matter effect.

Juno result is independent from matter effect, θ_{23} and δ_{CP} .

Other issues:

Precision measurement (sub% level) of $\sin^2 2\theta_{12}$, Δm_{21}^2 , $|\Delta m_{32}^2|$ Geoneutrinos, Solar neutrinos, Supernova neutrinos, proton decay

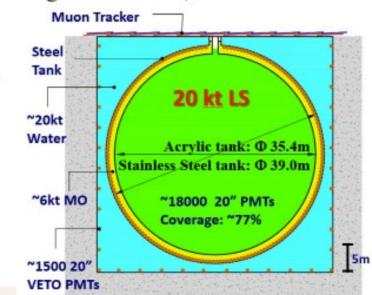
Juno design and requirements

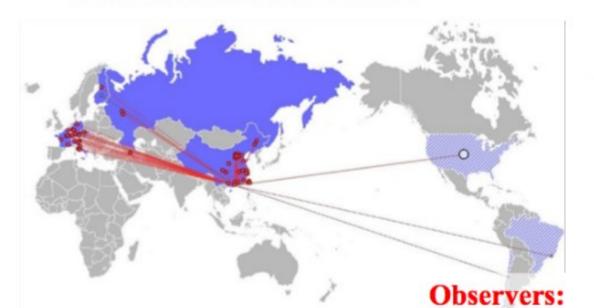
Physics requirements

-High Resolution Scintillator Detector: achieve energy resolution of better than

1.9% at 2.5 MeV.

-Not statistics limited.


Low backgrounds.


	KamLAND	BOREXINO	JUNO
LS mass	1 kt	0.5 kt	20 kt
Energy Resolution	$6\%/\sqrt{E}$	5%/√ <i>E</i>	3%/√ <u>E</u>
Light yield	250 p.e./MeV	511 p.e./MeV	1200 p.e./MeV

Experimental Requirements

- -JUNO central detector is a 20 kton LS detector with 1850 mwe overburden.
- -High performance LS (>14,000 photons/MeV, attenuation length of >30 m).
- -High photo-cathode coverage ~75%.
- -High quantum efficiency PMTs (~35%).
- -Central detector placed instrumented water pool (identify cosmic muons and provide shielding from radioactivity).
- A muon tracker on top of the detector to enhance muon identification.
- Sophisticated calibration system.

JUNO Collaboration

Europe (23)

APC Paris
Charles U
CPPM Marseille
FZ Julich
INFN-Frascati
INFN-Ferrara
INFN-Milano
INFN-Padova
INFN-Perugia
INFN-Roma 3
IPHC
Strasbourg

INR Moscow
JINR
LLR Paris
RWTH Aachen
Subatech Nantes
TUM
U.Hamburg
ULB
U Mainz
U Oulu
U Tuebingen
YPI Armenia

Asia (28)

BNU
CAGS
CQ U
CIAE
DGUT
ECUST
Guangxi U
HIT
IHEP
Jilin U

US institutions

HEPHY Vienna

Nanjing U
Nankai U
Natl. CT U
Natl. Taiwan U
Natl. United U
NCEPU
Pekin U
Shandong U
Shanghai JTU
Sichuan U

SYSU
Tsinghua
UCAS
USTC
Wuhan U
Wuyi U
Xiamen U
Xi'an JTU

Tasks dei gruppi italiani

Milano: purificazione dello scintillatore.

Padova: elettronica dei PMT nello scintillatore (con gruppi Tedeschi e Cinesi).

Milano Bicocca: stima del flusso di anti-neutrini e misure di bassa attivita' su campioni

di scintillatore.

Ferrara: analisi dei geo-neutrini.

Roma3: modelli di calcolo.

Frascati: elettronica del Top Tracker (con gruppi francesi e Dubna).

Composizione del gruppo LNF:

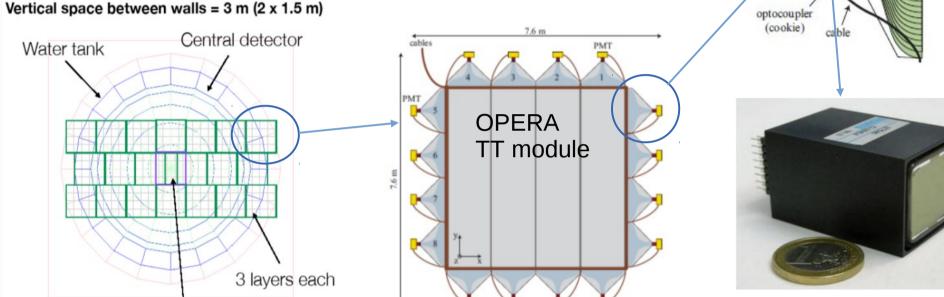
A. Paoloni (80%), L. Votano (80%), A. Longhin (30%), M. Spinetti Tot:1.9 FTE

Tecnici: A. Mengucci, M. Ventura

Richieste ai servizi:

La progettazione dell'elettronica verra' esternalizzata per non pesare sul servizio di elettronica (finanziamento di 15 kEuro nel 2015 e 35 kEuro nel 2016).

Si richiede pero' assistenza per la definizione delle specifiche e per l'installazione del prototipo (1-2 mu).


Top Tracker design study

Da OPERA:

62 piani di area 6.7*6.7 m².

2 layers above chimney

Strip scintillanti, lette con fibre WLS e MaPMTs.

1000 PMTs contributo in-kind dell'INFN.

light injection

electronic and

DAO boards

Counting rate stimata: 50 kHz/PMT (radioattivita' della roccia). Occorre rifare il DAQ.

Una scheda di Front-End per ogni PMT (acquisizione di carica e tempi con il chip MAROC3).

Un controller per ogni modulo (Trigger di primo livello con coincidenze tra i due piani di Strip ortogonali, interfaccia con l'acquisizione).

Fig. 3. Schematic view of a plastic scintillator strip wall.

Trigger di secondo livello in fase di studio dal gruppo dell'Ecole Politechnique di Parigi.

12

Juno schedule

JUNO Ground Breaking Ceremony

江门中微子实验建设启动会

Jiangmen Underground Neutrino Observatory Construction Start-up Meeting

Experimental plan calls for the construction through 2017, assembly and installation in 2018-2019 and data-taking start in 2020.

CUORE.DTZ @LNF

Resp. A. Franceschi

A. Franceschi, T. Napolitano Divisione Tecnica

+

C. Ligi Divisione Acceleratori

M.A. Franceschi

Impegno CUORE LNF.DTZ 2015

Responsabilità del gruppo LNF:

Coordinamento Ingegneria:
Ultrapulizia Rame
Meccanica Criostato
Schermature Piombo
Installazione Apparati

Integrazione Apparato Sperimentale

Installazione Detector

Wiring Criogenico e Detector

Anagrafica CSN2		2013	2014	2015	2016
A.Franceschi	Dir. Tecnologo	60%	70%	70%	60%
C.Ligi	Tecnologo	40%	20%	20%	50%
T.Napolitano	Tecnologo	60%	70%	70%	60%

M.A. Franceschi

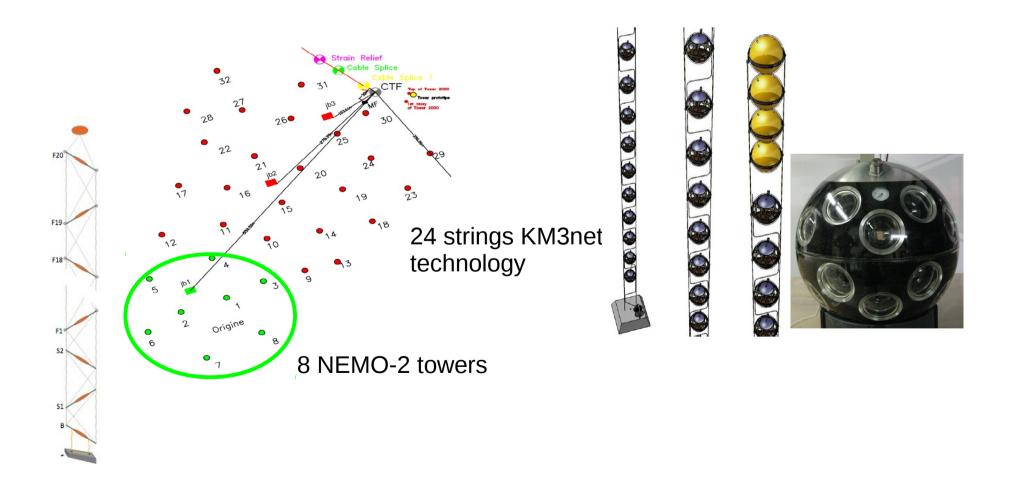
Richieste CIF a fine progetto (stima al 1 luglio 2015)

Il semestre 2015 (Installazione Detector)

SPCM-Reparto Progettazione: ≈4 m.u.

I semestre 2016 (Commissioning – Eventuali code installazione)

SPCM-Reparto Progettazione: ≈2 m.u.


Il semestre 2016 (Presa dati)

Nessuna richiesta prevista

KM3 General Situation

20 Meuro budget from PON projects assigned for placing the orders of 8 towers (NEMO2-like), 24 strings (KM3net-like) and the relative infrastructures (before the end of November).

1 tower and 1 string prototypes are at present deployed and under test.

KM3

2015

- 3 torri integrate e pronte a essere installate
- A Luglio upgrade dell'infrastruttura di fondo in vista anche dell'installazione delle stringhe KM3Net
- Settembre installazione di almeno una torre e forse di una stringa e di un'altra Junction box

Frascati:

- Realizzazione di PORFIDO 2 con termomentro di alta sensibilita 10⁻³ °C montati sulla 3^a torre che verra' installata entro quest'anno
- Realizzazione del prototipo di sonda di salinita' ad alta sensibilita 1 ppm
- Realizzazione entro la fine dell'anno di altri 4-6 PORFIDO2 da installare su altre torri

2016

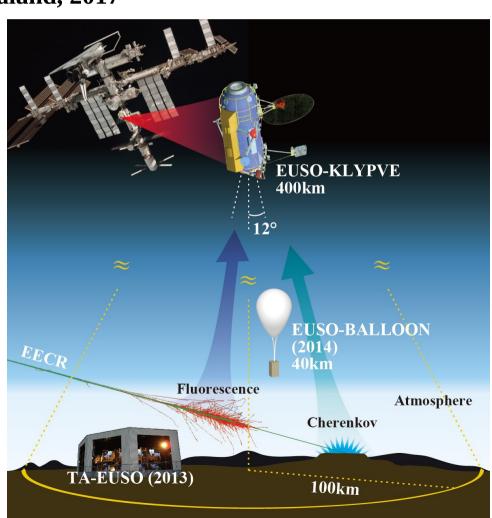
- Installazione di tutte le torri KM3
- Installazioni di Stringhe KM3Net

Frascati

 Realizzazione di prototipi di PORFIDO3 da integrare nei DOM (moduli ottici multiPMT delle stringhe)

richieste

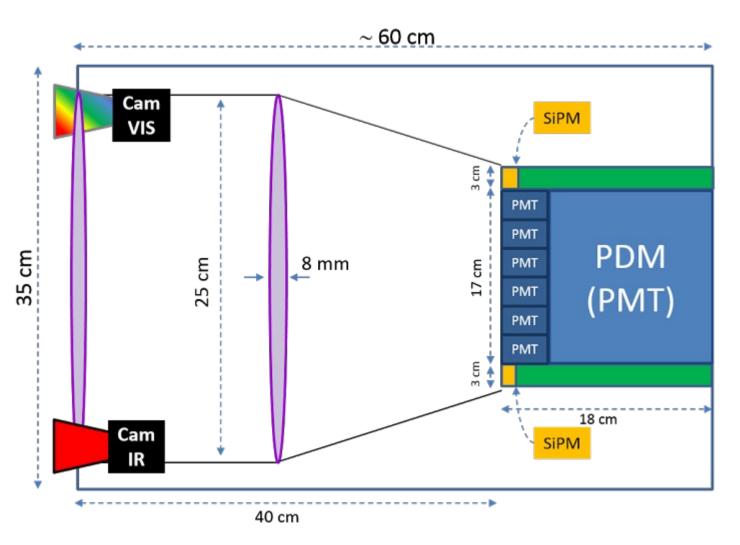
- 9000 euro di consumo per la realizzazione dei prototipi di PORFIDO3 da installare sulle stringhe
- 3000 euro di inventariabile per unita di backup informatici.
- 10000 euro di missioni

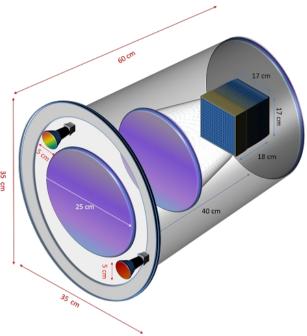

FTE

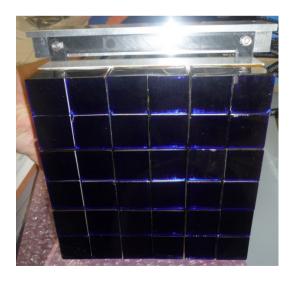
•	Agnese Martini 60%	Dipendente	Tecnologo
•	Marco Cordelli 20%	Dipendente	Primo Ricercatore
•	Luciano Trasatti 100%	Associato	Ricercatore
•	Roberto Habel 100%	Ospite	Ricercatore
•	Oralndo Ciaffoni 100%	Associato	Tecnico

EUSO program

- 1. EUSO-TA: Ground detector at Telescope Array site (Utah): running
- 2. EUSO-BALLON:
- 1st successful flight Timmins, Canada (CNES) Aug 2014;
- 2nd flight (CNES) 2016;
- 3rd flight SPB Long duration (NASA) New Zealand, 2017
- 3. Mini-EUSO on ISS (2017)
- 4. K-EUSO (2019) (Russian Module ISS)
- 5. JEM-EUSO -X (≥ 2021) ISS JEM KIBO module


Mini-EUSO-UV atmosphere A precursor of JEM-EUSO on board ISS for the Observation of Atmosphere and Earth in UV


Proposed to ASI (Italian Space Agency) in response to a call 2012 for Human Spaceflight.


Selected by ASI, July 2013 (Resources, upload mass, crew time). Approved by Roscosmos/STAC Committee May 2014 and selected for UV window on Zvesda Module, Russian Segment ISS. Protocol of Scientific Agreement (Role Sharing and Task Assignment) signed by all PI's of the Collaboration (April 2015).

Mini-EUSO/UV atmosphere

Bring one PDM (36 PMTs) and two Fresnel lenses (25 cm diam.) to ISS and expose it at the UV window on ISS Russian Module

Attività rilevanti in corso e previste del gruppo italiano per Mini-EUSO

- Sviluppo nuova PDM (Photo Detector Module) con 36 PMT Hamamatsu Multianodo
 - DAQ/CPU
 - Software
- Struttura Meccanica di supporto e interfaccia ai LNF (SPCM)
- Opzione di integrazione finale Flight Model nei LNF
- Simulazioni performance e assessment obiettivi scientifici

La Missione Principale: le due opzioni (dal General Meeting JEM-EUSO, Tokyo 22-26/6/2015)

Opzione Russa: K-EUSO sul modulo Russo ISS. Versione ridotta

con specchio da 3.5 m e una lente di Fresnel

Piano focale con FoV ± 14°

Lanciatore Progress Cargo

Data tentativa di lancio 2019

Paesi guida: Russia e Giappone

Opzione USA/NASA: JEM-EUSO-X

Call Mission Of Opportunity (MOO) NASA nella seconda metà 2016.

Proposta della missione JEM-EUSO originale sul modulo KIBO della ISS

Versione completa con tre lenti di Fresnel da 2.5 m

Piano focale con FoV ± 30°

Lanciatore Dragon/Space-X

Data tentativa di lancio inizio 2022

Paesi guida: USA, Francia, Germania e Italia

Non escluso, alla fine, un "merging" di K-EUSO su JEM-EUSO-X (per accordi tra Agenzie Spaziali)

JEM-EUSO richieste ai Servizi LNF per il 2016

Produzione strutture meccaniche PDM (Photo-Detector Module) per Mini-EUSO e Long Duration Balloon Flight – produzione spares Studio nuovi materiali (plastici, isolanti) e nuove configurazioni

SPCM

- Progettazione 1 mu
- Meccanica 2 mu

Opzione integrazione Mini-EUSO ai LNF (allo studio)

Anagrafica e attività

Gruppo LNF (percentuali)
A. Marini (40), G. Modestino (70), M.Ricci (Resp.) (70),
F. Ronga (40), B.Spataro (30); A. Franceschi (40), T. Napolitano (40)
TOT 3.3 FTE

Ruolo del gruppo LNF: esprime il Resp. nazionale; studio progettazione e produzione strutture meccaniche di supporto; design configurazioni di volo; studio fenomeni esotici rivelabili con JEM-EUSO (nucleariti, strangelets ...); studio delle opzioni di "space debris removal" dalla ISS; attività editorale ed organizzativa nel board pubblicazoni e conferenze

Richieste finanziarie in preparazione

LIMADOU-CSES

(Chinese Seismo-Electromagnetic Satellite)

Progetto premiale ASI con partecipazione INFN e INGV

Misura dallo Spazio di perturbazioni magnetosferiche e loro correlazioni con fenomeni sismici - Interazione tra Magnetosfera, Ionisfera e Terra

Realizzazione di una serie di rivelatori e strumenti da collocare a bordo del Satellite Cinese CSES:

- Mini spettrometro magnetico
- Rivelatore di campo elettrico
- Rivelatore di campo magnetico
- Rivelatore di onde e.m. a bassa freguenza

Lancio previsto fine 2016 - inizio 2017

Bologna **LNF (M.Ricci 10%, B.Spataro 30%)**Perugia
Roma Tor Vergata
Trento
UniNettuno Roma
INGV

China Earthquake Administration Chinese National Space Agency

Work Packages

- WP1) Provide the High Energy Particle Detector (HEPD) (design, build, test, qualify, integrate, commission, calibration, analysis)
- WP2) Collaborate on the development of the Electric Field Detector (design, test, qualification, analysis) LNF (Rad. Hard Tests, e- beam lines BTF, SPARC-LAB)
- WP3) Develop modeling and analysis tools to analyze and understand CSES data, in particular HEPD and EFD LNF (simulations)
- WP4) Develop modeling and analysis tool towards an integrated modeling of space-based observations useful for earthquake early warning from space An additional area which will be developed is
- WP5) the area of data download to the Matera station and CSES ground segment

ISTITUTO NAZIONALE DI FISICA NUCLEARE

Laboratori Nazionali di Frascati

INFN-15-03/LNF 3rd April 2015

Tests of the HEPD device at the SPARC-LAB facility

Riccardo Pompili¹, Enrica Chiadroni¹, Cinzia De Donato², Massimo Ferrario¹, Giuseppe Masciantonio², Bruno Spataro¹

¹⁾INFN-Laboratori Nazionali di Frascati Via E. Ferni 40, Frascati, Italy ²⁾University of Rome Tor Vergata, Physics Departme

Abstract

We reported here simulation studies performed with the GPT code on the beam dynamics of the SPARCLAB photoinjector.

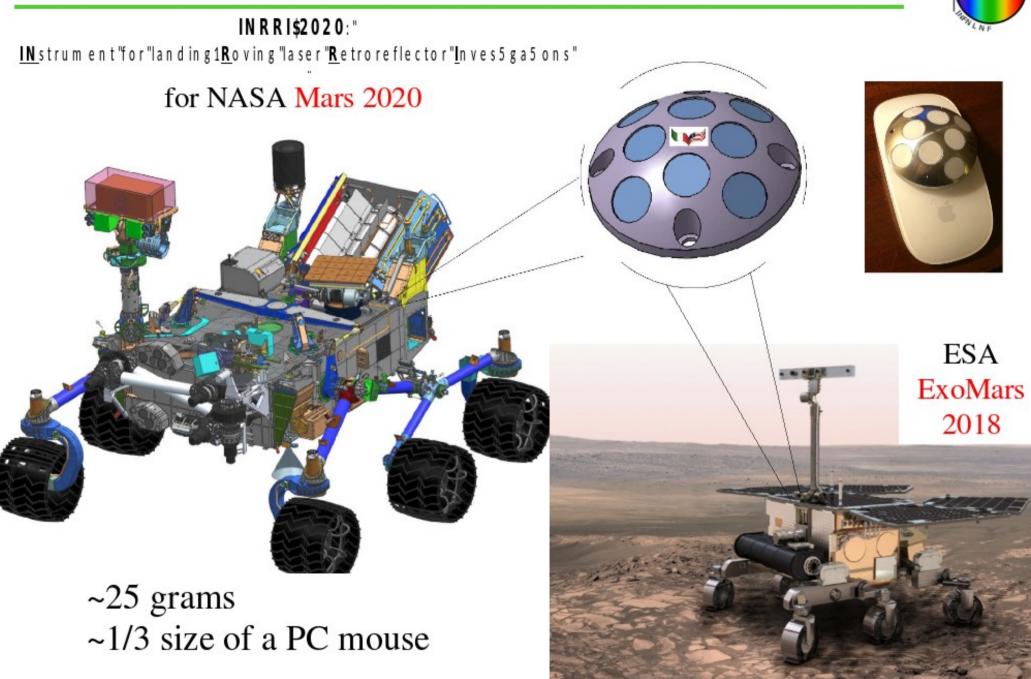
These studies are finalized to test an High Energy Particle Detector (HEPD) having the aim to identify the type of particle (proton, electron, ion) and the direction in order to be able to establish the angle between the trajectory of the particle and the Earth's magnetic field (pitch angle). The measurement of the incident particle direction is essential to understand the spatial correlation between the earthquake and detection sites. Good angular resolution is expected to play a key role for the understanding of the physics responsible for the phenomena. The data reported in this note foresees the use of the high brightness electron beam produced at SPARCLAB with energies in the range between 5 and 100 MeV.

Pubblicato da SIDS-Pubblicazioni Laboratori Nazionali di Frascati

PACS.: 29.20.Ej, 29.27.Bd, 29.40.-n

MoonLIGHT-2 (CSN2): Lunar Laser Reflector

- LNF, Padova, ASI-Matera, U. Maryland (Apollo)
- Precision tests of General Relativity. New Physics
- Missions: 4xMoon Express (US, ≥ 2017) agreement signed on May 15, 2015. Luna-27 (Russia), Chang'e (China)



Precision test of General	on test of General Time Apollo/Lunokhod		MoonLIGHTs	
Relativity	scale	few cm accuracy*	1 mm	0.1 mm
Parameterized	Few	β-1 <1.1×10 ⁻⁴	10 ⁻⁵	10-6
Post-Newtonian (PPN) β	years	ip-11<1.1×10	10	10
Weak Equivalence	Few	$ \Delta a/a < 1.4 \times 10^{-13}$	10 ⁻¹⁴	10-15
Principle (WEP)	years	1Δα/α <1.4×10	10	10
Strong Equivalence	Few	η <4.4×10 ⁻⁴	3×10 ⁻⁵	3×10 ⁻⁶
Principle (SEP)	years	111124.4710	3×10	3×10
Time Variation of the	~5	Ġ/G <9×10 ⁻¹³ yr ⁻¹	5×10 ⁻¹⁴	5×10 ⁻¹⁵
Gravitational Constant	years	id/di<9x10 yr	3X10	3X10
Inverse Square Law	~10	α <3×10 ⁻¹¹	10 ⁻¹²	10-13
(ISL)	years	IUI<3X10	10	10
Geodetic Precession	Few	Kgpl<6.4×10 ⁻³	6.4×10 ⁻⁴	6.4×10 ⁻⁵
George Freeession	years	iKgpi<0.4x10	0.4810	0.4810

MoonLIGHT-2: INRRI microreflector for Mars

INFN goes to Mars - Jan. 2016

INRRI on ExoMars EDM

(Entry, descent, landing Demo Module)

Delivery of INRRI: Aug. 14th 2015

Italian 'What Next' Enabling Technology

Laser Positioning for:

- Exploration
- Gravity
- Mars 'Greenwich'
- Lidar, Lasercomm

Team, Requests

- SCF_Lab

- LNF, SCF_Lab: 8 FTE
- INFN/Univ-Padova, 3 FTE
 - Group of P. Villoresi (U. Information Eng.)
 - Quantum laser (polarization) comm & encryption
 - 10-yr Work at lunar laser station of ASI-Matera
- Requests to LNF Services
 - DR: SPCM: ~5 mo, Automation: ~4 mo
 - DA: Cryogenics: ~1.5 mo
- Requests to CSN2: ~150k
- Requests to ASI: ~100k for ExoMars EDM
 - 2016-2022: ~2.2M ExoMars2018 & Mars2020

Bellettini Giovanni

Bianco Pippo (ASI) Alessandro Boni

Cantone Claudio

Contessa Stefania

Dell'Agnello S. (Resp.)

Delle Monache Giovanni

Filomena Luciana

Intaglietta Nicola

Lops Caterina

Maiello Mauro

Ciocci Emanuele

March Riccardo

Martini Manuele

Mondaini Chiara

Patrizi Giordano

Porcelli Luca

Salvatori Lorenzo

Stecchi Alessandro

Tauraso Roberto

Tibuzzi Mattia

Vittori Roberto

Currie Douglas (US)

John Chandler (US)

Dettaglio Anagrafica per il 2016 (preliminare)

Gruppo	Ricercatori FTE(pers)	Tecnologi FTE(pers)	Tecnici FTE(pers)
OPERA decom			1.3 (3)
JUNO	1.9 (4)		1 (2)
T2K.DTZ	0.5 (1)		
ICARUS.DTZ	0.2 (3)		
CUORE		1.7 (3)	
KM3	1.8 (3)		1 (1)
Wizard	1.8 (3)		
Jem-EUSO-RD	2.5 (5)	0.8 (2)	
Limadou.DTZ	0.4 (2)		

34

Per Moonlight-2 non ho il dettaglio. In totale 8 FTE per circa 20 persone (SCF lab).

Dettaglio delle richieste ai servizi per il 2015 (preliminare)

Gruppo	SPAS	SEA	SPCM	Other
OPERA decom	12 m.u.			
JUNO		1-2 m.u.		
Jem-EUSO-RD			1 m.u. (progett) 2 m.u. (meccanica)	
CUORE			2 m.u. (progett)	
Moonlight-2		4 m.u. (autom)	5 m.u.	1.5 m.u. (cryo)