CTA Italia software meeting

Status and results of Monte Carlo activities for CTA

F. Di Pierro INAF Osservatorio Astrofisico di Torino

- 1. MC TOOLS
 - corsika
 - sim_telarray
 - MC pipeline
- 2. MC reconstruction and analysis software
- 3. Second large scale MC production (Prod2)
 - description
 - results
 - site evaluation support
- 4. Third large scale MC production
- 5. Example of telescope simulation setup
 checks

6. Examples of dedicated productions

THE MC PIPELINE

It is a complex instrument, made of several subsystems both software and infrastructural (computing and storage resources).

It is fully operative.

Products: MC data, IRF (real data analysis, performances, science cases)...

Involved CTA WPs: MC, DM, PHYS

CTA MC pipeline: main components

credit G. Maier

CTA MC pipeline: use case example

CTA MC pipeline: interface to Data pipe

cta

CTA MC pipeline: archive

CTA MC reconstruction and analysis

1.From HESS, MAGIC, VERITAS

2.The standard common scheme:

- trace integrataion
- image cleaning
- second-moment Hillas parameterization
- stereo reconstruction
- background suppression
- energy (LUT)

3.Differences

- gamma/hadron separation
 - Random Forest
 - Boosted decision tree, multivariate analysis
 - mscw, mscl...
- data format
 - ROOT
 - eventio

CT 1

0.70 o 387mm

Pixel Charge reconstruction

Double-pass trace integration (to look for small pulses in a reduced time window)

First pass:

- "Local peak search" to find highest peak in each

pixel. 4 slices for the peak search (3 for SC-SSTs),

- 2 more for integration
- 2-level cleaning & image parametrization
- Time gradient along major axis obtained from (robust) linear fit

Second pass:

If time fit is good: re-calculate signal for all non-core pixels, in a fixed window around the (pixel-dependent) time from the fit
This reduces the noise in pixels, hence allows to lower the cleaning in the final analysis

Image reconstruction

 Image Cleaning standard 2 levels cut, SC-SST mini-array = 2/4 p.e. (MARS), 3/6 (read_hess)

Hillas parameters

GEO: c_x=1.30,c_y=-1.72,dist=2.16,length=0.521,width=0.131,size=684/684,loss=0.00,lossDead=0.00,fui=1.00

Shower reconstruction: geometry

Core positionArrival direction

Shower reconstruction: geometry

Core positionArrival direction

Event reconstruction: energy

Lookup tables of E/Size (mean and RMS) vs. impact parameter and height of shower maximum

 E_{est} = weighted average of N telescopes

cta cherenkov telescope array

Event reconstruction scheme

Event reconstruction: γ -like sel.

Shape and other parameters, lookup tables (read_hess and EventDisplay)

Hadronness (MARS)
 Random Forest

CTA MC Prod2

- Several equal cost full layouts and reduced layouts studied
- Several sites (geomagnetic field, altitude, atmospheric profile)
- zenith: 20°, 45°, azimuth: North/South
- different NSB levels

CTA MC Prod2

Core resampling 10 (g) , 20 (bkg), Radius 2500m (g) , 3000m (bkg) Viewcone 0° (point-like), 10° (diffuse), Spectral index -2.0 (rescaled in analysis step)

Primary	Energy [TeV]	Events [10 ⁹]	Triggered [10 ⁶]
Gamma (point)	0.003-330	5	36
Protons	0.004-600	100	68
Electrons	0.003-330	5.2	5
Helium	0.01-1200	7.6	6.6
Nitrogen	0.04-4000	0.52	1.2
Silicon	0.05-5000	0.52	1
Iron	0.06-6000	1.8	3.2
Gamma (diff.)	0.003-330	20	22

- run on GRID vo.cta.in2pr.fr and MPIK
- 10-20 10⁶ HS06 CPU hours, 20 TB

CTA MC Prod2: sensitivity, subarrays

CTA MC Prod2: effective area

CTA MC Prod2: background rate

CTA MC Prod2: offaxis

 Effective areas, angular and energy resolutions, background rates, off-axis performances are the input for high level simulations (see CTOOLS's presentation by Franz)

CTA MC Prod2: PPUT

performance per unit time (PPUT)

red: pointing south, green: pointing north

The approaching Prod3

- Aims:
 - to update the simulation of the telescopes (examples, next slides)
 - to define the final (optimal!) CTA layout
 - depending on the site and on the number of telescopes...
- Several types of telescopes will be simulated:
 - LST
 - MST
 - SCT
 - SST-1M
 - SST-2M GCT-M
 - SST-2M GCT-S
 - SST-2M ASTRI

The approaching Prod3

- Aims:
 - to update the simulation of the telescopes (examples, next slides)
 - to define the final (optimation)
 - depending on the site
- Several types of telescop
 - LST
 - MST
 - SCT
 - SST-1M
 - SST-2M GCT-M
 - SST-2M GCT-S
 - SST-2M ASTRI

Example of telescope configuration ASTRI SST-2M

- ASTRI SST-2M implementation in Prod3
 - optics
 - camera
 - photosensors
 - FEE
 - BEE

- M1 maximum diameter: 430 cm
- 18 hexagonal tiles (84.9 cm face to face)
- M2 diameter: 180 cm
- Equivalent focal length: 215.0 cm
- plate scale 37.5 mm/°

M1 segmentation, M2 structure and baffle: new features of sim_telarray.

Optical PSF

- Cross-checked with independent ray-tracing software (Zemax and astri_simulator)
 - star spots
 - PSF
 - incidence angles distributions (M1, M2, focal surface)

Optical PSF within CTA requirements

 Additional random angle scattering to reproduce the expected real PSF (preliminary, 0.007°)

- M1 multilayer dielectric coating
 - baseline filter for wavelength > 600 nm, not the only considered option
 - measured focused reflectivity
- M2 standard AlSiO₂ coating

reflectivity for the mean incidence angle (33°)

2 different reflectivities: new feature of sim_telarray

PMMA window transmission

Relative to Odeg

PMMA window transmission

- Including anti-reflection coating expected improvement
- Agreement with other measurements of PMMA transmission

Obscurations

Graph

Directly simulated:

- M2 supporting structure
- Baffle
- M1 segmentation
- Camera body shadowing

Average photon loss: Masts

Graph

Optical efficiency

- After all shadowing (M2, M2 struct, baffle, M1, camera, masts) as a function of (θ) .
- and including: refl_m1(λ), refl_m2(λ), pmma_transmission(λ , θ)

- Cta cherenkov telescope array
 - 2368 pixels
 - size: next generation 6.975 mm (0.19°), prototype 6.2 mm (0.17°)
 - PDM filling factor 94%.
 - 37 PDM, FoV: 9.6°
 - focal surface radius of curvature: 1060 mm
 - complete 3D camera model (x,y,z, tilts)
 - new feature in sim_telarray: pixel orientation normal to surface

- New Hamamatsu SiPMs (LCT4)
 - higher filling factor
 - improved low wavelenght PDE
 - reduced cross-talk
 - no PDE loss with incidence angle

MPPC LCT4 75µm Photon flux versus angle of incidence preliminary results

Calibration events

- We get several sensor and electronics characteristics from real data (led calibration events):
 - ADC pedestal
 - ADC noise
 - Single photoelectron spectrum (1 pe amplitude fluctuations and Xtalk)
 - ADC <-> Pe conversion factor

Single Photoelectron spectrum

 Single photoelectron spectrum (1 pe amplitude fluctuations and Xtalk)

Calibration events

- We reproduce calibration events with sim_telarray, including the extracted parameters:
 - ADC pedestal
 - ADC noise
 - Single photoelectron spectrum (1 pe amplitude fluctuations and Xtalk)
 - ADC <-> Pe conversion factor

PRODUCTIONS of calibration events (exploring a large phase space) run at CNAF/Farm. See Ciro's talk.

Pulse shapes

- every photoelectron (NSB and Cherenkov) is generated with its arrival time and its amplitude is fluctuated accordingly to SPE.
- 2 pulse shapes:
 - readout signal (slow)
 - input to discriminator (fast)
- Pedestal and fluctuations are added to the final signal

- The ASTRI FEE is based on the CITIROC ASIC
 - integrating and shaping the signal
 - peak detection
- We have checked that the sim_telarray signal simulation is equivalent to the simulation of the ASIC transfer function by means of Laplace transform.
- The new sim_telarray version provides (peak_sensing = 1) the maximum value of every pixel traces (both HG and LG).

see A. Segreto's talk about ASTRI camera, SST session.

dymanic range

da

- set by maximum fadc signals: 12 bits = 4096 ADC ch.
- ADC <-> pe and pedestals
- relative gain LG/HG

 reconstruction software have to be adapted to use 2 gains and the peak signals (i.e.: no further integration)

NSB diff. spectrum

Convolution of:

- NSB photon spectrum
 Benn and Ellison, LaPalma
- Telescope equivalent area
- Pixel fov
- Mirror reflectivities
- PMMA transmission
- PDE

Individual pixel pe rate: 44 MHz

Camera trigger conditions:

- 4 (5) adjacent pixels (same PDM)
- → above discriminator threshold (1st guess ≈ 5pe)
- coincidence within 20 ns
- "safe trigger" threshold now under evaluation: CNAF/Farm production
 - 1.5 * proton trigger rate = 2 * NSB trigger rate

Trigger

Single telescope trigger rate evaluation runs at CNAF/Farm. See Ciro's talk.

Dedicated productions

- The MC producitons may run:
 - locally (test productions, how-to in the last meetings)
 - CNAF/Farm (relatively large productions or many jobs productions, how-to see Ciro's talk)
 - CNAF/Grid or VO (via DIRAC, large productions)
 - examples: next slides

MC SST production

- site: Leoncito++ (for cmp with prod2)
- 31 telescopes
- 5 hexagonal mini-arrays (7 tel)
- Telescope distance 150-350 m

	Gammas	Protons
Sp. index	-2	-2
E min [GeV]	315	315
E max [GeV]	330e3	330e3
R max [m]	1000	1000
N showers	1e6	1e7
N events	1e7	2e8
Viewcone	0	10°

- Aims:
 - test SST telescope simulations
 - test SST telescope handling in reconstruction software
 - provide a preliminary study of telescope distance effect on performance

Example: mispointing effects Graph

Graph

Dedicated productions

- Studies of not-std telescope configurations:
 - degraded psf, different coating, different camera geometry, different readout, different nsb levels.

- site: Armazones
- 33 SSTs + 5 MSTs
- 4 squared 3x3 mini-arrays (9 tel)
- Telescope distance 200-350 m
- Trigger: 1 and 2 telescopes
 - mono-analysis
 - single telescope trigger efficiency
 - optimization of image cleaning
 - Bug found in Eventdisplay, FIXED THRESHOLDS mode!
- Aims:
 - mini-arrays performance
 - telescope distances optimization

Using GRID

- The MC producitons may run:
 - locally (test productions, how-to in the last meetings)
 - CNAF/Farm (relatively large productions or many jobs productions, how-to see Ciro's talk)
 - CNAF/Grid or VO (via DIRAC, large productions)

Infrastrucures:

- GRID (vo.cta.in2p3.fr)
 - Sept. 2013: 21 EGI, 7 countries
 - Storage ~ 1 Pb
 - Computing ~10⁴ HS06
- INFN (CNAF) is the third contributors in terms of storage and computing resources

- The MC producitons may run:
 - locally (test productions, how-to in the last meetings)
 - CNAF/Farm (relatively large productions or many jobs productions, how-to see Ciro's talk)
 - CNAF/Grid or VO (via DIRAC, large productions)

CEIN/DIRAC evaluation for CTA - CtaWpcWiki - Mozilla Firefox			
<u>File Edit V</u> iew H CEIN/DIRAC evalu	i <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp ation for CT +		
www.cta-obs	ervatory.org/ctawpcwiki/index.php/CEIN/DIRAC_evaluation_for_CTA	😭 ▾ ♂ 🚷 ▾ Google	믹 🕹 🖒
navigation = Main page = Recent changes = Random page = Help search Search Co Search tools = What links here = Related changes = Special pages = Printable version = Permanent link = Page information	page discussion view source history CEIN/DIRAC evaluation for CTA Back to the CEIN main page. This Users guide page is OBSOLETE. Please refer to the NEW Redmine wiki page at the following links: • Main CTA-DIRAC project portal: https://forge.in2p3.fr/projects/cta_dirac/wiki@ • Users Guide: https://forge.in2p3.fr/projects/cta_dirac/wiki@ • Tutorials: https://forge.in2p3.fr/projects/cta_dirac/wiki@ • MC production Status and tools for data-search: https://forge.in2p3.fr/projects/cta_dirac/wiki@ • MC production Status and tools for data-search: https://forge.in2p3.fr/projects/cta_dirac/wiki@ • Introduction 2 Support 3 Links and talks related to this topic 4 How to install the DIRAC client 4.1 Prerequisites 4.2 Getting your Grid identity 4.2.1 Domvloading your certificate from the browser 4.2.2 Converting your certificate from P12 to PEM format 4.3 Installation 4.4 Configuration 4.5 Updating your client installation 5 How to use the DIRAC client 5.1 Introduction 5.2 Data Management concepts	viki/CTA-DIRAC_MC_production_Status	
F. Di Pierro	- INAF OATo - CTA ITALIA SW meeting - 22 nd June 2015		57

- First steps:
 - Getting a GRID certificate
 - Register to the VO
 - …follow the nice instructions!

Getting your Grid identity

To get a Grid certificate, you should contact your national Grid Certification Authority (CA):

https://www.eugridpma.org/members/worldmap/

Register to the CTA VO (vo.cta.in2p3.fr):

https://cclcgvomsli01.in2p3.fr:8443/voms/vo.cta.in2p3.fr/ 🔒

Once you receive confirmation of your registration connect again to the following link and ask for the 'users' Role:

https://cclcgvomsli01.in2p3.fr:8443/voms/vo.cta.in2p3.fr/@

- Running the CTA standard applications
 - corsika, sim_telarray, eventdisplay
 - just modify input/output in the python scripts
- It is also possibile to upload, to compile and to run modified versions of the sw