ctools “user” Tutorial

Francesco Longo
Universita’ di Trieste and INFN Trieste

Summary

Status of ctools SW
Gammalib installation
ctools installation
ctools examples

CTA response functions
cscripts examples

ctools introduction

Home Get it

Cherenkov Telescope Array Science Analysis Software

ctools

About

ctools is a software package developed for the scientific analysis of Cherenkov Telescope Array (CTA) data. Analysis of
data from existing Imaging Air Cherenkov Telescopes (such as H.E.S.S., MAGIC or VERITAS) is also supported, provided
that the data and response functions are available in the format defined for CTA.

ctools comprises a set of ftools-like binary executables with a command-line interface allowing for interactive step-
wise data analysis. ctools comprises also a Python module allowing to control all executables. Creation of shell or
Python scripts and pipelines is supported. ctools comprises also cscripts, which are Python scripts that behave like
binary ftools executables. Extensions of the ctools package by user defined binary executable or Python scripts is
supported.

ctools are based on Gammalib, a versatile toolbox for the high-level analysis of astronomical gamma-ray data. Besides
CTA. GammalLib supports also the analysis of Fermi/LAT and COMPTEL data, and extensions to support further gamma-
ray instruments are planned. An interface to virtual observatory ressources is also in preparation. By making use of
the GammaLib multi-instrument capabilities, ctools supports the joint analysis of CTA (or any IACT providing data in
the CTA format), Fermi/LAT and COMPTEL data.

ctools is free software distributed under the GNU GPL license version 3

http://cta.irap.omp.eu/ctools/

Status of ctools

‘ctools CTA

cherenkov telescope array

Home Download
Cherenkov Telescope Array Science Analysis Software

Home | Documentation »

Download

ctools can be obtained in form of releases or directly from the git development repository. Prefer a release if you intend
using ctools for production (and publications). Clone the code from git if you need the most recent code that implements
new features and corrects known bugs.

Releases

The latest ctools release is ctools-0.9.0 (22 May 2015).

Below a table of ctools releases. Please note that at this stage of the project there is a strict link between the ctools and
gammalib versions. Please make sure that you have the corresponding gammalib version installed before installing ctools.
The Mac OS X packages comprise both ctools and gammalib.

ctools gammalib Mac OS X package

0.9.0 0.10.0 ctools-0.9.0-macosx10.3.dmg
0.8.1 0.9.1 ctools-00-08-01-macosx10.3.dmg
0.8.0 0.9.0 ctools-00-08-00-macosx10.3.dmg
0.7.1 0.8.1 ctools-00-07-01-macosx10.3.dmg
0.7.0 0.8.0 ctools-00-07-00-macosx10.3.dmg

Gammalib installation

Gammalib

.-.Gammalib

Home Get it

*
Lib A versatile toolbox for scientific analysis of astronomical gamma-ray data

Gammalib

About

The Gammalib is a versatile toolbox for the high-level analysis of astronomical gamma-ray data. It is implemented as a
C++ library that is fully scriptable in the Python scripting language. The library provides core functionalities such as
data input and output, interfaces for parameter specifications, and a reporting and logging interface. It implements
instruments specific functionalities such as instrument response functions and data formats. Instrument specific
functionalities share a common interface to allow for extension of the GammalLib to include new gamma-ray
instruments. The Gammalib provides an abstract data analysis framework that enables simultaneous multi-mission
analysis.

Gammalib does not rely on any third-party software, except of HEASARC's cfitsio library that is used to implement the
FITS interface. Large parts of the code treat gamma-ray observations in an abstract representation, and do neither
depend on the characteristics of the employed instrument, nor on the particular formats in which data and
instrument response functions are delivered. Instrument specific aspects are implemented as isolated and well
defined modules that interact with the rest of the library through a common interface. This philosophy also enables
the joint analysis of data from different instruments, providing a framework that allows for consistent broad-band
spectral fitting or imaging. So far, GammalLib supports analysis of COMPTEL, Fermi/LAT, and Cherenkov telescope data
(CTA, H.E.S.S., MAGIC, VERITAS).

Gammalib is free software distributed under the GNU GPL license version 3

http://gammalib.sourceforge.net/

Gammalib installation

Installation

Note

These installation instructions apply to gammalib-00-04-10 and later. gammalib-00-04-10 has been built, installed and tested
successfully on Debian, Ubuntu, Mandriva, OpenSUSE, Scientific Linux, CentOS, gentoo, Mac OS X, FreeBSD, and OpenSolaris
(using gcc), so hopefully it also installs on your distribution. In case you encounter problems, please post a report on the bug
tracker or send an e-mail to the mailing list.

Getting GammalLib

The latest version of the GammalLib source code, documentation, and example programs are available on the World-
Wide Web from https://sourceforge.net/projects/gammalib/.

Prerequisites

Gammalib should compile on every modern Unix system without any need to install other libraries. To enable support
for FITS file handling, however, the cfitsio library from HEASARC needs to be installed. cfitsio exists on many
distributions as a prebuilt library, so in general you can directly install it using your package manager. Make sure that
you install the library and the development package, as the cfitsio header file (which usually comes in the
development package) is needed to compiling GammalLib.

If cfitsio is not available as a prebuilt package, or if you encounter some problems with the prebuilt package, cfitsio
can be downloaded from http://heasarc.gsfc.nasa.gov/fitsio and be installed from the source (for details, please refer
to the installation instructions on the HEASARC site). We recommend installation of cfitsio in the default GammalLib
install directory as a shared library by typing

$./configure --prefix=/usr/local/gamma
$ make shared
$ make install

Gammalib can also benefit from the presence of the readline library that provides line-editing and history capabilities
for text input (Gammalib offers however also full functionality without having readline installed). readline (which
depends on ncurses) is available on most system as a prebuilt library, so also here we recommend to use your
package manager to install the libraries. Also here, the readline (and ncurses) development packages are required, so
that the header files become available and the symbolic links are set correctly.

http://gammalib.sourceforge.net/

gammalib installation

Building GammalLib

Download the latest source tarball, save it in an appropriate location, and type
$ tar xvfz GammalLib-XX-XX-XX.tar.gz

where XX-XX-XX is the version number of the library. Step in the created directory using
$ cd gammalib-XX-XX-XX

and build GammalLib by typing

$./configure
% make

at the operating system prompt. The configuration command customizes the Makefiles for the particular system, the
make command compiles the source files and builds the library, and the make install command installs the library in
the install directory. Type ./configure and not simply configure to ensure that the configuration script in the current
directory is run and not some other system-wide configuration script. By default, the install directory is set to
/usr/local/gamma. To change the install directory an optional --prefix argument should be given, for example

$./configure --prefix=/usr/local
If cfitsio and/or readline is not installed in a standard location for libraries (such as /usr/1ib or /usr/local/lib), the
appropriate location(s) can be specified using the LDFLAGS (for the library directory) and CPPFLAGS (for the include
directory) options:

$./configure LDFLAGS='-L/opt/local/lib" CPPFLAGS='-I/opt/local/include’

A full list of configuration options can be found using

$./configure --help

http://gammalib.sourceforge.net/

gammalib installation

Installing GammalLib

Install Gammalib by typing
% make install

at the operating system prompt.

Setting up your environment

Before using Gammalib you have to setup some environment variables. This will be done automatically by an
initialisation script that will be installed in the bin directory. Assuming that you have installed GammalLib in the
default directory /usr/local/gamma you need to add the following to your $HOME/.bashrc or $HOME/ .profile script
on a Linux machine:

export GAMMALIB=/usr/local/gamma
source $GAMMALIB/bin/gammalib-init.sh

If you use C shell or a variant then add the following to your $HOME/ . cshrc or $HOME/.tcshrc script:

setenv GAMMALIB /usr/local/gamma
source $GAMMALIB/bin/gammalib-init.csh

http://gammalib.sourceforge.net/

ctools installation

ctools installation

Building ctools

After downloading the ctools tarball (see Download), save it in an appropriate location (for example $HOME/builds), and

type

$ tar xvfz ctools-0.9.0.tar.gz

(the $ symbol indicates the console prompt and is not part of the command that you should type in).

Step in the directory and build the ctools by typing

$ cd ctools-0.9.0
$./configure
$ make

at the operating system prompt. The ./configure command customizes the Makefiles for the particular system, the make
command compiles the source files and builds the executables. Type ./configure and not simply configure to ensure
that the configuration script in the current directory is run and not some other system-wide configuration script.

You can get the full list of configuration options by typing

$./configure --help

http://cta.irap.omp.eu/ctools/

ctools installation

Testing ctools

Before installing the ctools you should execute the unit test suite to make sure that ctools have been built correctly. For
this, type

% make check

If you have automake version 1.13 or newer installed, you should see the following output at the end of the unit testing:

PASS: test_ctools.sh

PASS: test_cscripts.sh

PASS: test_python.py

make[4]: Nothing to be done for “all'.

http://cta.irap.omp.eu/ctools/

ctools installation

For older automake version, you should see

kkkkREkRERER KKK

* Test ctools *
EEEEE RS

Test ctobssim: ok
Test ctskymap: .. ok
Test ctbin: ok

Test ctmodel: ok
Test ctselect: .. ok
Test ctlike: ok

PASS: test_ctools.sh

kkkERERERRR KR KRR %

* Test cscripts *
EEEEEE XXX EE R EREX X

Test cspull: .. ok
Test cstsdist: .. ok
PASS: test_cscripts.sh

FEEEXEE XXX EXE XX XXX X XXX XX R X R KR XX

* ctools Python interface testing *
EEEEEXEXEXEEE XXX XXX R XXX KRR KK KR XX

Test executable analysis: ... ok

Test in-memory analysis: ... ok

Test diffuse map cube with constant analysis: ok
Test diffuse map cube with power law analysis: ok

PASS: test_python.py

All 3 tests passed

The same detailed information is also available for the newer automake versions, but there it is written in log files that
you can find in the test directory of the ctools:

test_ctools.sh.log
test_cscripts.sh.log
test_python.py.log

http://cta.irap.omp.eu/ctools/

ctools installation

Installing ctools
The ctools are installed by typing
% make install

If the destination directory is owned by root (which is normally the case when using the default), administrator
privileges are needed for installation. In this case, type

% sudo make install

By default, the install directory is set to /usr/local/gamma. To change the install directory (for example in case that
you do not have system administrator privileges), an optional --prefix argument can be given, for example:

$./configure --prefix=$HOME/gamma

Setting up the ctools environment

You have to configure ctools by setting up some environment variables. This will be done automatically by an
initialisation script that is found in the bin directory of the directory into which ctools has been installed. Assuming
that you have installed ctools into /usr/local/ctools you need to add the following to your $HOME/ .bashrc or
$HOME/ . profile script on a Linux machine:

export CTOOLS=/usr/local/ctools
source $CTOOLS/bin/ctools-init.sh

If you use C shell or a variant then add the following to your $HOME/.cshrc or $HOME/.tcshrc script:

setenv CTOOLS /usr/local/ctools
source $CTOOLS/bin/ctools-init.csh

http://cta.irap.omp.eu/ctools/

ctools installation

Known problems

Gammalib unit tests fail

Some users have reported failure of a large fraction of the GammalLib unit tests after after typing make check. In all
cases, this was related to the absence of the directory where the shared libcfitsio library resides in the library load
path. To solve the issue, locate the directory where the shared libcfitsio library resides and then type

export LD _LIBRARY_PATH=/directory/to/lib:$LD_LIBRARY_PATH
on Unix based systems or
export DYLD_LIBRARY_PATH=/directory/to/1lib:$DYLD_LIBRARY_PATH

on Mac OS X (/directory/to/1ib should be replaced by the correct library path on your system).

Python support

ctools comes with Python wrappers so that all classes can be directly used from Python. To compile-in Python support,
ctools needs the Python.h header file, which on many distributions is not installed by default. To make Python.h
available, install the Python developer package in your distribution. Otherwise you will not be able to use ctools from

Python.

http://cta.irap.omp.eu/ctools/

Example

[longof@farmui@®2 gammal$ more setup_new.sh

export
source
export
export
source
export
export

GAMMALIB=/gpfs/glast/CTA_Software/release_FL_newROOT/ctools/gamma
$GAMMALIB/bin/gammalib-init.sh
CALDB=/gpfs/glast/CTA_Software/release_FL_newR0OOT/ctools/gamma/share/caldb
CTOOLS=/gpfs/glast/CTA_Software/release_FL_newR0OOT/ctools/gamma

$CTOOLS/bin/ctools-init.sh

PATH=/gpfs/glast/Software/Utilities/saods9/bin/:${PATH}
LD_LIBRARY_PATH=/gpfs/glast/CTA_Software/release_FL_newR0OT/ctools/gamma/1lib:${LD_LIBRARY_PATH}

ctools examples

ctools

Reference Manual

This manual provides reference information for all ctools and csripts. General information on ctools usage can be found
here.

Below you find links to the command line reference for the tools and scripts that are available.

ctools

ctbin — Generates counts cube

ctbkgcube — Generates background cube
ctbutterfly — Compute butterfly

ctcubemask — Filter counts cube

ctexpcube — Generates exposure cube

ctlike — Performs maximum likelihood fitting
ctmodel — Computes model counts cube
ctobssim — Simulate CTA observations
ctpsfcube — Generates point spread function cube
ctselect — Selects event data

ctskymap — Generates sky map

cttsmap — Generates Test Statistics map
ctulimit — Calculates upper limit

How to use ctobssim?

Simulating CTA data

CTA data are simulated by the executable ctobssim. To start the executable, type ctobssim at the console prompt
(which is denoted by $). ctobssim will query for a number of parameters:

% ctobssim

Model [$CTOOLS/share/models/crab.xml]

RA of pointing (degrees) (©-368) [83.63]

Dec of pointing (degrees) (-90-90) [22.01]
Calibration database [dummy]

Instrument response function [cta_dummy_irf]
Radius of FOV (degrees) (@-180) [5.0]

Start time (MET in s) (@) [@.0]

End time (MET in s) (@) [1800.0]

Lower energy limit (TeVv) (@) [@.1]

Upper energy limit (TeV) (@) [100.0]

Output event data file or observation definition file [events.fits]

Each line represents a query for one parameter. The line starts with a short description of the parameter, followed by
the default parameter value proposed by ctobssim in squared brackets []. If no parameter is entered (which is the
case for the majority of parameters shown here), the default parameter will be used. Otherwise, the specified
parameter will overwrite the default parameter.

You may have recognised that the environment variable $CTOOLS has been used in the path names of the first two
parameters. ctools will automatically expand the environment variables.

The CTA instrument properties (effective area, PSF width) are taken for the moment from a dummy performance table
that is located in $CTOOLS/share/caldb/cta.

Events are simulated based on the instrument properties and based on a source and background model. Only events
that fall within the specified region of interest (ROI), defined as a circle around a sky position in Right Ascension and
Declination (in degrees), will be stored in the output event data file. The duration of the simulation is taken here to 30
minutes (or 1800 seconds). Events are simulated for energies between 0.1 and 100 TeV.

http://cta.irap.omp.eu/ctools/

How to?

Implementation

The general model is describe in ctools using a model definition XML file. Below is a simple example of such a file
comprising one source and one background model. Each model is factorised in a spectral (tag <spectrum>) and a spatial

component (tags <spatialModel> and <radialModel>):
Mx,y, E) = Mspectral (E) X Mspatial (x,y)

In this specific example, the source component Crab describes a point source at the location of the Crab nebula with a
power law spectral shape. The background component Background is modelled as a radial Gaussian function in offset
angle squared (with the offset angle being defined as the angle between pointing and measured event direction) and a
spectral function that is tabulated in an ASCII file.

<?xml version="1.0" standalone="no"?>
<source_library title="source library"»>
<source name="Crab" type="PointSource">

<spectrum type="PowerLaw">
<parameter name="Prefactor" scale="1e-16" value="5.7" min="1e-07" max="1000.0" free="1"/>

<parameter name="Index" scale="-1" value="2.48" min="0.0" max="+5.0" free="1"/>
<parameter name="Scale" scale="1e6" value="0.3" min="0.01" max="1000.0" free="0"/>
</spectrum>

<spatialModel type="SkyDirFunction">
<parameter name="RA" scale="1.0" value="83.6331" min="-360" max="360" free="1"/>

<parameter name="DEC" scale="1.0" value="22.0145" min="-90" max="90" free="1"/>
</spatialModel>
</source>
<source name="Background" type="RadialAcceptance" instrument="CTA">
<spectrum type="FileFunction" file="$CTOOLS/share/models/bkg_dummy.txt">
<parameter name="Normalization" scale="1.0" value="1.0" min="0.0" max="1000.0" free="1"/>
</spectrum>
<radialModel type="Gaussian">
<parameter name="Sigma" scale="1.0" value="3.0" min="0.01" max="10.0" free="1"/>
</radialModel>
</source>
</source_library>

How to use?

The source and background model is defined by the XML file $CTOOLS/share/models/crab.xml:

<?xml version="1.8" standalone="no"?>
<source_library title="source library">
<source name="Crab" type="PointSource">
<spectrum type="PowerLaw">
<parameter name="Prefactor” scale="1le-16" value="5.7" min="1e-07" max="1000.0" free="1"/>

<parameter name="Index" scale="-1" value="2.48" min="0.0" max="+5.0" free="1"/>
<parameter name="Scale” scale="1e6" value="0.3" min="0.01" max="1000.0" free="0"/>
</spectrum>

<spatialModel type="SkyDirFunction">
<parameter name="RA" scale="1.0" value="83.6331" min="-360" max="360" free="0"/>
<parameter name="DEC" scale="1.0" value="22.0145" min="-90" max="90" free="0"/>
</spatialModel>
</source>
<source name="Background” type="RadialAcceptance” instrument="CTA">
<spectrum type="FileFunction"” file="$CTOOLS/share/models/bkg_dummy .txt">
<parameter scale="1.0" name="Normalization” min="0.0" max="1000.0" value="1.0" free="1"/>
</spectrum>
<radialModel type="Gaussian">

<parameter name="Sigma" scale="1.0" value="3.0" min="0.01" max="10.0" free="1"/>
</radialModel>
</source>
</source_library>

The model consists of a source library that contains 2 “sources”: the Crab nebula and an instrumental background
model.

The Crab nebula is modelled by a factorized sky model that has a spectral and a spatial component (tags <spectrum>
and <spatialModel>, respectively). The spectrum is modelled by a power law, which is defined by 3 parameters: the
Prefactor, the Index and the Scale. The spatial model has 2 parameters: Right Ascension in degrees (RA), and
Declination in degrees (DEC). Each parameter has a value and a scale factor, the real value of the parameter being the
product value * scale. Typically, scale is chosen so that value is of the order of 1 (this is relevant for model fitting later).
In addition, value is bound by a minimum (min) and maximum (max) value, and a parameter may be free (free="1") or
fixed (free="6"). The min, max, and free attributes are not relevant here for the simulations, but they will be
important for the model fitting later.

http://cta.irap.omp.eu/ctools/

How to use?

The spectral intensity I(E) (in units of photons/cm2/s/MeV) of the power law is given by

dN E\"
N, =
dE O(Eo)

where the parameters in the XML definition have the following mappings:

e Ny = Prefactor
® 7y = Index
e Ey = scale

Note that energies are given in MeV.

The instrumental background of CTA is modelled by a factorized data model that has a spectral and a radial
component (tags <spectrum> and <radialModel>, respectively). The spectral component describes the on-axis
background counting rate of CTA as function of energy in units of counts/s/sr/TeV. The radial component describes the
variation of the background rate with offset angle squared, (i.e. square of the offset angle with respect to the pointing
direction) which is modelled here by a Gaussian. The only parameter of the radial component is the width of the
Gaussian Sigma, which is here set to 3 degrees squared.

http://cta.irap.omp.eu/ctools/

Spectral Models

The GModelSpectralPlaw class implements the power law function
N _, (EY
dE B

where the parameters in the XML definition have the following mappings:

ey = prefactor
e = Index
o Ey=scale

The XML format for specifying a power law is:

<spectrum type="PowerLaw™>

<parameter name="Prefactor™ scale="1e-16" value="5.7" min="1e-87" max="1860.8" free="1"/>
<parameter name="Index" scale="-1" value="2.43" min="8.8" mex="+5.8" Tfree="1"/>
<parameter name="Scale” scale="1e6" value="@.3" min="8.81" mex="18ee.9" free="€"/>

</spectrum>

An alternative power law function is defined by the GModelSpectralPlaw? class that uses the integral flux as
parameter rather than the Prefactor:

dN N(y+1)E"
dE g - B

where the parameters in the XML definition have the following mappings:

e N = mtegral

* = Index

¢ FEmin = LowerLimit
o FErux = UpperLimit

The XML format for specifying a power law defined by the integral flux is:

<spectrum type="PowerLaw2™>
<parameter scale="1e-&7"
<parameter scale="1.8" 8" free="1"/>
<parameter scale="1.8" name="Loweriimit™ md " value="1808.0" free="e"/>
<parameter scale="1.8" name="Upperiimit™ min="18.0" max="1020€€0.8" value="5000ee.8" free="0"/>

</spectrum>

value="1.8" free="1"/>

NOTE: The UpperLimit and LowerLimit parameters are always treated as fixed and, as should be apparent from this
definition, the flux given by the Integral parameter is over the range (LowerLimit, UpperLimit). Use of this model
allows the errors on the integrated flux to be evaluated directly by likelihood, obviating the need to propagate the
errors if one is using the PowerLaw form.

http://gammalib.sourceforge.net/user_manual/modules/model.html#sec-model

Spectral Models

Exponentially cut-off power law

The GModelSpectralExpPlaw class implements the exponentially cut-off power law function

iz o(z) ()
diE \®m/) “P\Ew

where the parameters in the XML definition have the following mappings:

e Jp = Prefactor
7= Index

Ey = scale

o FEout = Cutoff

The XML format for specifying an exponentially cut-off power law is:

<spectrum type="ExpCutoff™>

<parameter name="Prefactor™ scale="1e-16" value="5.7" min="1e-87" mex="1860.8" free="1"/>

<parameter name="Index" scale="-1" value="2.43" min="8.8" mex="+5.8" free="1"/>

<parameter name="Cutoff” scale="1e6" value="1.8" min="8.e1" mex="18e8.8" free="1"/>

<parameter name="Scale” scale="1e6" value="8.3" min="6.e1"” mex="18e8.8" free="2"/>
</spectrum>

http://gammalib.sourceforge.net/user_manual/modules/model.html#sec-model

Spectral Models

Broken power law

The GModelSpectralBrokenPlaw class implements the broken power law function

(E)"‘ifgw,,

N _ E,
aE (£)" oherwise
E

where the parameters in the XML definition have the following mappings:

e Iy = prefactor
* 7 = Indexl

* 7Yy = Index2

o E; = preakvalue

The XML format for specifying a broken power law is:

<spectrum type="BrokenPowerLaw™>
<parameter name="Prefactor™ scale="1e-16" value="5.7" min="1e-87" max="1808.8" free="1"/>

<parameter name="Index1” scale="-1" value="2.43" min="9.8" max="+5.8" Tfree="1"/>

<parameter name="Breakvalue” scale="1e6" value="8.3" min="2.81" max="1868.8" free="1"/>

<parameter name="Index2" scale="-1" value="2.7¢" min="9.81" max="1888.8" free="1"/>
< /spectrum>

http://gammalib.sourceforge.net/user_manual/modules/model.html#sec-model

Spectral Models

Log parabola
The GModelSpectralLogParabola class implements the log parabola function

dN E *+n1n(E/Eo)
aE ’“’(E)

where the parameters in the XML definition have the following mappings:

e Jp = Prefactor
* = Index

® 7= Curvature
o FEp =scale

The XML format for specifying a log parabola spectrum is:

<spectrum type="LogParabola™>
<parameter name="Prefactor™ scale="1e-17" value="5.373" min="1e-87" max="1€0.0" free="1"/>

<parameter name="Index" scale="-1 value="2.32473" min="0.0 mi="+5.8" free="1"/>

<parameter name="Curvature” scale="-1" value="0.874" min="-5.8" max="+5.8" free="1"/>

<parameter name="Scale” scale="1e6" value="1.8" min="0.81" max="1ee8.8" free="0"/>
</spectrum>

An alternative XML format is supported for compatibility with the Fermi/LAT XML format:

<spectrum type="LogParabola™>
<parameter name="Prefactor™ scale="1e-17" value="5.373" min="1e-87" max="1860.0" free="1"/>

<parameter name="alpha" scale="1 value="2.32473" min="0.8 max="+5.8" free="1"/>
<parameter name="beta™ scale="1" value="8.874" min="-5.8" max="+5.8" free="1"/>
<parameter name="Scale” scale="1e6" value="1.0" min="8.81" max="1e8.8" free="0"/>
</spectrum>
where

e alpha =-Index
e beta =-Curvature

http://gammalib.sourceforge.net/user_manual/modules/model.html#sec-model

Spectral Models

Log parabola
The GModelSpectralLogParabola class implements the log parabola function

dN E *+n1n(E/Eo)
aE ’“’(E)

where the parameters in the XML definition have the following mappings:

e Jp = Prefactor
* = Index

® 7= Curvature
o FEp =scale

The XML format for specifying a log parabola spectrum is:

<spectrum type="LogParabola™>
<parameter name="Prefactor™ scale="1e-17" value="5.373" min="1e-87" max="1€0.0" free="1"/>

<parameter name="Index" scale="-1 value="2.32473" min="0.0 mi="+5.8" free="1"/>

<parameter name="Curvature” scale="-1" value="0.874" min="-5.8" max="+5.8" free="1"/>

<parameter name="Scale” scale="1e6" value="1.8" min="0.81" max="1ee8.8" free="0"/>
</spectrum>

An alternative XML format is supported for compatibility with the Fermi/LAT XML format:

<spectrum type="LogParabola™>
<parameter name="Prefactor™ scale="1e-17" value="5.373" min="1e-87" max="1860.0" free="1"/>

<parameter name="alpha" scale="1 value="2.32473" min="0.8 max="+5.8" free="1"/>
<parameter name="beta™ scale="1" value="8.874" min="-5.8" max="+5.8" free="1"/>
<parameter name="Scale” scale="1e6" value="1.0" min="8.81" max="1e8.8" free="0"/>
</spectrum>
where

e alpha =-Index
e beta =-Curvature

http://gammalib.sourceforge.net/user_manual/modules/model.html#sec-model

Spectral Models

File function

A function defined using an input ASCII file with columns of energy and differential flux values. The energy units
are assumed to be MeV and the flux values are assumed to em™ s~ 'MeV ™! (the only exception being a model

for which the spatial component is a constant diffuse model GModelSpatialDiffuseConst; in this case, the units are

-2 1 . T .
em~ s~ 'MeV~'sr~1). The sole parameter is a multiplicative normalization:

AN dN
dE = NIE|

where the parameters in the XML definition have the following mappings:
e No = Normelization
The XML format for specifying a file function is:
<spectrum type="FileFunction™ file="data/filefunction.txt™>

<parameter scale="1.2" name="Normalization™ min="8.8" max="1860.8" value="1.8" free="1"/>
</spectrum>

If the file is given as relative path, the path is relative to the working directory of the executable. Alternatively, an
absolute path may be specified. Any environment variable present in the path name will be expanded.

http://gammalib.sourceforge.net/user_manual/modules/model.html#sec-model

How to use?

ctobssim will write 2 files in the working directory: events.fits and ctobssim.log. The first file contains the
simulated events in FITS format and can be inspected using fv or ds9. The FITS file will contain 3 extensions: an
empty primary image, a binary table named EVENTS that holds the events (one row per event), and a binary table
named GTI holding the Good Time Intervals (for the moment a single row with 2 columns providing the start and the
stop time of the simulated time interval).

The second file produced by ctobssim is a human readable log file that contains information about the job execution.
As example, the last lines from this file are shown here:

2014-10-30T22:35:06: +== +

2014-10-30T22:35:06: | Simulate observation |

2014-10-30T22:35:06: +== +

2014-10-30T22:35:06: === Observation ===

2014-10-30T22:35:06: Simulation area: 1.9635e+11 cm2
2014-10-30T22:35:06: Simulation cone: RA=83.63 deg, Dec=22.01 deg, r=5.5 deg
2014-10-30T722:35:06: Time interval: @ - 1800 s
2014-10-30T22:35:06: Photon energy range: 100 GeV - 100 TeV
2014-10-30T722:35:06: Event energy range: 180 GeV - 160 TeV
2014-10-30T722:35:06: MC source photons: 207547 [Crab]
2014-10-30722:35:06: MC source events: 995 [Crab]
2014-10-30T22:35:86: MC source events: 995 (all source models)
2014-10-30T722:35:06: MC background events: 5146
2014-10-30T22:35:86: MC events: 6141 (all models)
2014-10-30T722:35:06:

2014-10-30T722:35:06: t+==================+

2014-10-30T22:35:06: | Save observation |

2014-10-30T722:35:06: t+==================+

2014-10-30T22:35:06:
2014-10-30T22:35:06: Application “"ctobssim" terminated after 1@ wall clock seconds, consuming ©.36@4 seconds o

q | »

Each line starts with the UTC time at which the line has been written. In this run, 207547 Crab photons have been
thrown over an area of 19.6 square kilometres during a time interval of 1800 seconds. 995 of these photons have been
registered by CTA as events. In the same time interval, 5146 background events have been registred by CTA.

http://cta.irap.omp.eu/ctools/

Example

2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:

02:
02:
02:
02:
02:
03:
03:
03:
23:
03:
03:
03:
03:
03:
03:
03:
03:
03:
03:
03:
03:
03:
03:
23:
03:
03:
03:
03:
03:
03:
03:

41:
41:
41:
41:
41:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:

Sk ok 2k ok ok K KR Ok 3k kK 2k K K K K Kk ok kK kK kK K K Kk Ok 3k 3k 2k K K K K Bk 3k 3k kK K K K K Kk ok kK kK K K K K Kk o R K K Kk kKR Kk Kk koK

* ctobssim *
* *
x Version: 1.0.0 *

Sk oKk K K K K K K K Kk K K K K K K ok K Kk K K K Kk K K K K K K K K K K K K K K K K Kk K Kk K K Kk K Kk ok Kk ok K kK sk Kk kK

| Parameters |
o= mms=4

inobs vivvevvssnasnasnasnas: NONE

inmodel .vveewsenwsnnnsansst grb_130427A_10000.xml
outevents tvceivssnssnsnaat €vents_10000.fFits
prefiX svssssssssnsnsnssssat Sim_events_
caldb svvevvansnsnnsnnnnsas: prod2

irf wevevesenanasssssssssss: NOrth_5h
s€ed vievenrnnsnnnnrsnnnnnnns 1

@ ssssssnsnsnsnsnssssnsnsss 83.63

deC tvivnnnsnsnsnsnsnsnnnsas 22.01

rad soesenensnsnsnnsnsnsnsans 5.0

tmin vovivirnsnenananananaat 0.0

tMaX sevvesnasnnsnnsnnsnnss: 1800

eMiN vevusnsnsnsnsnsnsnnnnss 0.02

€MaX sessssnssnnsnnsnnsnnsss 0.1

€diSPp siesssssnssnsnsansnsst: NO

deadC svivnsnsnsnsnsnsnnsast 0.95

Mmaxrate seevssnnsnnsnnnnnnst 1.0e6
chatter .vivvnevnnnnnsnnnnat 2

clobber .vivevevenananannsst: Yye€S

debug vvevensnvssnsnsannnss: NO

MOde .uvewsnnnusnnnnsnnnnsns: QL

logfile svevranansnnsnsasnsa: Cctobssim. log

Example

2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:

03:
03:
03:
03:
03:
03:
03:
03:
03:
03:
03:
03:
03:
03:
03:
03:
03:
03:
03:
03:
03:
03:
03:
03:
03:
03:
03:
03:
03:
03:
03:

12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:

+ +
| Observation |
+ +
=== GObservations ===

Number of observations
Number of predicted events :
=== GCTAObservation
Name
Identifier
Instrument
Event file
Event type
Statistics
Ontime
Livetime .vivueusnasnannnnnst
Deadtime correctionu:
User energy range
GCTAPointing ===
Pointing direction .uveueus:
=== GCTAResponselrf ===
Caldb mission .vevusnsnnnsnnt
Caldb instrument ..:iuvueusest
Response name
Energy dispersion ..vseusast
Save energy rang€ .:ssssusns
=== GCTAEventList
Number of events ..vevevanst
Time interval
Energy interval
Region of interest .v.iviuuat

CTA

EventlList
Poisson
1800 s
1710 s
0.95
undefined

(RA,Dec)=(83.63,22.01)

cta
prod2

: North_5h

Not used
undefined

0
51544.5 - 51544.5 days

1 0.02 - 0.1 TeV

RA=83.63, DEC=22.01 [0,@] Radius=5 deg

Example

2015-06-21T16:03:12: + +
2015-06-21T16:03:12: | Simulate observation |
2015-06-21T16:03:12: + +
2015-06-21T16:03:12: === Observation ===

2015-06-21T16:03:12: Simulation area .esvsewssss: 1.9635e+11 cm2
2015-06-21T16:03:12: Simulation cone: RA=83.63 deg, Dec=22.01 deg, r=5.5 deg
2015-06-21T16:03:12: Time interval .uivcevuuseaas: 0 — 1800 s
2015-06-21T16:03:12: Photon energy range: 20 GeV - 100 GeV
2015-06-21T16:03:12: Event energy range: 20 GeV - 100 GeV
2015-06-21T716:03:14: MC source photons: 1047448 [grb_130427A_1000]
2015-06-21T16:03:14: MC source eventSuusaaat 586 [grb_130427A_1000]
2015-06-21T16:03:14: MC source eventsSsxus: 586 (all source models)
2015-06-21T16:03:17: MC background events: 37139

2015-06-21T716:03:17: MC eventS ..uiuvussssnsnasaast 37725 (all models)
2015-06-21T716:03:21:

2015-06-21T16:03:21: + +
2015-06-21T16:03:21: | Save observation |
2015-06-21T16:03:21: + +

2015-06-21T16:03:21:
2015-06-21T16:03:21: Application "ctobssim" terminated after 40 wall clock seconds, consuming 10.68 seconds of CPU time.

How to use?

CTA Instrument Response Functions

Note

Instrument response functions are formally not part of ctools as they should be provided by the instrument teams. The
GammaLib framework on which ctools are built comes with a set of basic response functions, but for getting the latest instrument
response functions you should contact the relevant instrument teams. CTA consortium members should download the latest
calibration database containing Prod1 and Prod2 instrument response functions from the consortium Sharepoint site (requires
password).

What are instrument response functions?

_)
The instrument response functions provide a mathematical description that links the measured quantities d of an

._)
event to the physical quantities p of the incident photon. The following figure illustrates this relationship:

.

e(

~—

— —
I(p) is the gamma-ray intensity arriving at Earth as a function of photon properties p (which usually are true
_)

photon energy, true photon incident direction, and true photon arrival time), while e(d) is the expected event rate
_)
as function of event properties d (which usually are the measured photon energy, measured or reconstructued

photon incident direction, and measured photon arrival time). The expected event rate is obtained by integrating the
) i 7= = o —

product of the instrumental response function R(d | p , @) and the emitted intensity I(p) over the photon

properties ? The argument ? in the response function comprises any auxiliary parameter on which the response

function may depend on (e.g. pointing direction, triggered telescopes, optical efficiencies, atmospheric conditions,

etc.). All these quantities and hence the instrument response function may depend on time.

http://cta.irap.omp.eu/ctools/user_manual/getting_started/response.html

How to use?

ARF, RMF and PSF files

Instrument response information for the first CTA Data Challenge (1DC) has been provided in a format that was heavily
inspired by the RMF and ARF file formats that have been introduced by HEASARC for spectral analysis of X-ray data.

The Redistribution Matrix File (RMF) describes how an incoming photon with a given true energy is redistributed in
measured energy. In other words, it describes the energy dispersion of the instrument. The RMF is organised as a two-
dimensional matrix, with the first axis being in true energies while the second axis represents the measured energies.

The Ancillary Response File (ARF) describes the sensitivity of the instrument to photons of a given true energy. The ARF
gives the effective area of the detector system after applying an event selection cut (theta cut). For computing the ARF,
some knowledge of the Point Spread Function (PSF) is needed, so that the fraction of photons that falls into the event
selection region for a given source can be properly estimated. Once this is done, no further PSF information is needed
for the analysis.

ctools however relies on the full modelling of the instrument, including the Point Spread Function, and hence, PSF
information has also been provided for 1DC. Two data formats have been used for this: a first that is based on a
simple one-dimensional vector, providing the width of a 2-dimensional Gaussian as function of energy; and a second
that is based on a three-component 2D Gaussian as function of energy and offset angle in the camera system. While
the former was implement by a simply FITS table with two columns, the latter was implemented by Response tables.

Response tables

The CTA response table class GCTAResponseTable provides a generic handle for multi-dimensional response
information. It is based on the response format used for storing response information for the Fermi/LAT telescope. In
this format, all information is stored in a single row of a FITS binary table. Each element of the row contains a vector
column, that describes the axes of the multi-dimensional response cube and the response information. Note that this
class may in the future be promoted to the Gammalib core, as a similar class has been implemented in the Fermi/LAT
interface.

http://cta.irap.omp.eu/ctools/user_manual/getting_started/response.html

How to use?

Performance tables

In the early days, the instrument performances derived from Monte-Carlo simulations have been summarised in what
we call here Performance Tables, which are ASCII files that contain as function of energy the on-axis performance
parameters of CTA, such as effective area, point spread function containment radius, energy resolution, background
count rate and differential sensitivity.

Below an example of a CTA performance table:

log(E) Area re6s r8@ ERes. BG Rate Diff Sens
-1.7 261.6 ©.3621 ©.4903 0.5134 ©.0189924 6.38237e-11
-1.5 5458.2 ©.2712 ©.3685 ©.4129 ©.1009715 1.72717e-11

-1.3 15590.0 ©.1662 ©.2103 ©.2721 0.8575623 6.16963e-12
26554.1 ©.1253 ©.1567 ©.2611 0.0213603 2.89932e-12
52100.5 ©.1043 ©.1305 ©.1937 0.0088729 1.39764e-12
66132.1 ©.8827 ©.1024 0.1693 0.0010976 6.03531e-13
108656.3 ©.0703 ©.0367 ©.1506 ©0.0004343 3.98147e-13
129833.@0 ©.0585 ©.0722 0.1338 ©.0001575 3.23090e-13
234604.3 ©.0531 0.0656 ©.1003 ©.0001367 2.20173e-13
263175.3 ©.0410 0.0506 0.0331 ©.0000210 1.37452e-13
778048.6 ©.0470 0.0591 ©0.0342 0.0000692 1.53976e-13
929818.83 ©.0391 ©.0492 0.0650 ©.0000146 1.18947e-13
1078450.0 ©.0335 ©.0415 0.0541 0.0000116 1.51927e-13
1448579.1 ©.8317 ©.8397 ©0.0516 ©0.0000047 1.42439e-13
1899905.0 ©.0290 ©.0372 0.0501 0.0000081 1.96670e-13
2476403.8 ©.0235 ©.0367 0.0533 ©.0000059 2.20695e-13
2832570.6 ©.0234 ©.0372 0.0636 ©.0000073 3.22523e-13
3534065.3 ©.0290 ©.0336 ©.0731 0.0000135 4.384153e-13
3250103.4 ©.0233 ©.0303 0.0729 0.0000044 6.26265e-13
3916071.6 ©.0260 ©.0354 0.0903 0.0000023 7.69921e-13
1) log(E) = logl@(E/TeV) - bin centre
2) Eff Area - in square metres after background cut (no theta cut)
3) Ang. Res - 68% containment radius of gamma-ray PSF post cuts - in degrees
4) Ang. Res - 80% containment radius of gamma-ray PSF post cuts - in degrees
5) Fractional Energy Resolution (rms)
6) BG Rate - inside point-source selection region - post call cuts - in Hz
7) Diff Sens - differential sensitivity for this bin expressed as E~2 dN/dE
- in erg cm*-2 s~-1 - for a 5@ hours exposure - 5 sigma significance including
systematics and statistics and at least 10 photons.

|
(=Y
[y

NFEFRFRFRFPRFFIDDIIDIDIDIDO O

O NV WO WRE WO O

http://cta.irap.omp.eu/ctools/user_manual/getting_started/response.html

Response Functions

CTA response functions

The instrument response functions for CTA are factorised into the effective area A¢s¢(d, p, E, £) (units cm?), the point
spread function PSF(p'ld, p, E, t), and the energy dispersion Egis,(E’ld, p, E, f) following:

RQ',E',1'ld, p,E, 1) = Aust(d, p, E, 1) X PSF(p/\d, p, E, 1) X Egisp(E'\d, p, E, 1)

ctools are shipped with response functions for the northern and southern arrays, and variants are available that have
been optimised for exposure times of 0.5 hours, 5 hours and 50 hours. In total, the following six instrument response
functions are available: North_8.5h, North_5h, North _50h, South_0.5h, South_5h, and South_5eh.

Each response is stored in a single FITS file, and each component of the response factorisation is stored in a binary table of
that FITS file. In addition, the response files contain an additional table that describes the background rate as function of
energy and position in the field of view. An example of a CTA response file is shown below:

Index Extension Type Dimension View

10 Primary Image 0 Header | | |

1 EFFECTIVE AREA Binary 6 cols X1 rows T I Hist I Plot | Al | Select |

4 POINT SPREAD FUNCTION Binary 10 cols X1 rows Header I Hist I Plot | Al | Select |

13 ENERGY DISPERSION Binary 7 cols X1 rows R | Hist | Plot | Al | Select |

14 BACKGROUND Binary 7 cols X1 rows R | Hist | Plot | Al | Select |/
7

Each table in the response file is in a standardised format that is the one that is also used for the Fermi/LAT telescope. As
an example, the effective area component of the response file is shown below. Response information is stored in a n-
dimensional cube, and each axis of this cube is described by the lower and upper edges of the axis bins. In this example
the effective area is stored as a 2D matrix with the first axis being energy and the second axis being offaxis angle. Effective
area information is stored for true (EFFAREA) and reconstructed (EFFAREA_RECO) energy. Vector columns are used to store
all information.

—

S
—_
o

—

|
—_
N

E2 x Flux Sensitivity [erg cm? s7]
o

10713

Response Function

I IIIIII|

Differential sensitivity (5 bins per decade in energy)

T rrri I | L | I L I | |||L~I|| I
o
—_
\§

—
<
\V]

10~ 1 10 102
energy ER [TeV]

www.cta-observatory.org (2015-05-05)

How to use?

Binning CTA data

As next analysis step you will bin the data in a counts cube using the executable ctbin. A counts cube isa 3
dimensional data cube, spanned by Right Ascension (or Galactic longitude), Declination (or Galactic latitude), and the
logarithm (base 10) of energy.

ctbin is executed by typing:

$ ctbin

Input event list or observation definition file [events.fits]

First coordinate of image center in degrees (RA or galactic 1) [83.63]
Second coordinate of image center in degrees (DEC or galactic b) [22.01]
Projection method e.g. AIT|AZP|CAR|MER|STG|TAN (AIT|AZP|CAR|MER|STG|TAN) [CAR]
Coordinate system (CEL - celestial, GAL - galactic) (CEL|GAL) [CEL]
Image scale (in degrees/pixel) [0.02]

Size of the X axis in pixels [200]

Size of the Y axis in pixels [200]

Algorithm for defining energy bins (FILE|LIN|LOG) [LOG]

Start value for first energy bin in TeV [0.1]

Stop value for last energy bin in TeV [100.0]

Number of energy bins [20]

Output counts cube [cntmap.fits]

In this example we adjust the event data file name and accept all the remaining parameter defaults as they perfectly
satisfy our needs. The counts cube will be centred on the location of the Crab (Right Ascension 83.63 degrees,
Declination 22.01 degrees) and will be aligned in celestial coordinates. A cartesian projection has been selected. The
counts cube has 200 x 200 spatial pixels of 0.02 x 0.02 degrees in size, hence it covers a total area of 4 x 4 degrees.

The counts cube will contain 20 maps, which are logarithmically spaced in energy, and which cover the energy range
from 0.1 TeV to 100 TeV. In this example, the counts cube will be saved as cntmap.fits in the working directory. In
addition to the counts cube, that is stored as the primary image extension, the FITS file also contains an extension
named EBOUNDS that defines the energy boundaries that were used, and an extension GTI that defines the Good Time
Intervals that have been used. The following image shows the resulting FITS file. The EBOUNDS table has 20 rows, one
for each energy bin, while the GTI table has just a single row, indicating the start and stop time of the simulated data.

File Edit Tools Help
Index Extension Type Dimension View
0 Primary Image 200 X 200 X 20 Header | Image | Tabe |
a1 EBOUNDS Binary 2 cols X 20 rows oador | Histl ""”' Al | Select |

7 72 GTI Binary Zcols X1rows peader | Hist | Pot | an | setect |
YA

ctbin

How to use?

Fitting CTA data

Now we are ready to fit the simulated data with a model. For simplicity we use in this example the same model that we
used to simulate the data with ctobssim. Model fitting is done using the executable ctlike, and we do the fit by typing:

% ctlike

Event list, counts cube or observation definition file [events.fits] cntmap.fits
Calibration database [dummy]

Instrument response function [cta_dummy_irf]

Source model [$CTOOLS/share/models/crab.xml]

Source model output file [crab_results.xml]

Fitting of the data is done in binned mode, which means that the events have been binned into a counts cube and the
fit computes the log-likelihood function by summing over all 200 x 200 x 20 bins of the counts cube. There is an
alternative method, the so called unbinned mode, where the events are not binned into a counts cube and the log-
likelihood is computed directly by summing over all events. We will explore the unbinned mode later.

One of the parameters given to ctlike is a source model output file (we specified crab_results.xml in the example),
and this file will be a copy of the model XML file where the parameter values have been replaced by the fit results. In
addition, the statistical uncertainties are added for each fitted parameter using the attribute error. Below we show the
XML result file that has been produced by the run:

<?xml version="1.8" encoding="UTF-8" standalone="no"?>
<source_library title="source library">
<source name="Crab" type="PointSource">
<spectrum type="PowerLaw">
<parameter name="Prefactor"” value="6.07928" error="0.204582" scale="1e-16" min="1e-07" max="1000" free="
<parameter name="Index" value="2.5009" error="0.0252057" scale="-1" min="0" max="5" free="1" />
<parameter name="Scale" value="0.3" scale="1e+06" min="0.01" max="1000" free="0" />
</spectrum>
<spatialModel type="SkyDirFunction”>
<parameter name="RA" value="83.6331" scale="1" min="-360" max="360" free="0" />
<parameter name="DEC" value="22.0145" scale="1" min="-90" max="90" free="0" />
</spatialModel>
</source>

Likelihood

Doing an unbinned analysis

As gamma-ray events are rare, the counts cubes generated by ctbin will in general be sparse, having many empty
pixels, in particular at high energies. An alternative analysis technique consists of working directly on the event list
without binning the events in a counts cube. We will see the benefit of such an analysis later once you re-run ctlike in
unbinned mode.

For unbinned analysis you first have to define the data space region over which the analysis is done. This is similiar to
the ctbin step in binned analysis where you defined the size of the counts cube, the energy range, and the time
interval. For unbinned analysis you have no such thing as a counts cube, but you have to define over which region of
the data space the selected events are spread (because the ctools have to integrate over this region to compute the
total number of predicted events in the data space that you analyse). Furthermore, you have to define what energy
range is covered, and what time interval is spanned by the data. All this is done by the executable ctselect, which
replaces the ctbin step in an unbinned analysis.

ctselect performs an event selection by choosing only events within a given region-of-interest (ROI), within a given
energy band, and within a given time interval from the input event list. The ROI is a circular region on the sky, for
which you define the centre (in celestial coordinates) and the radius. Such a circular ROI is sometimes also called an
acceptance cone. The following example shows how to run ctselect:

$ ctselect

Input event list or observation definition file [events.fits]

RA for ROI centre (degrees) (8-360) [83.63]

Dec for ROI centre (degrees) (-90-90) [22.01]

Radius of ROI (degrees) (©0-180) [3.0]

Start time (CTA MET in seconds) (@) [0.0]

End time (CTA MET in seconds) (@) [0.0]

Lower energy limit (TeV) (@) [0.1]

Upper energy limit (TeV) (©) [100.0]

Output event list or observation definition file [selected_events.fits]

ctlike

% ctlike

Event list, counts cube or observation definition file [cntmap.fits] selected_events.fits
Calibration database [dummy]

Instrument response function [cta_dummy_irf]

Source model [$CTOOLS/share/models/crab.xml]

Source model output file [crab_results.xml]

You will recognise that ctlike runs much faster in unbinned mode compared to binned mode. This is understandable
as the selected event list contains only 6127 events, while the binned counts cube we used before had 200 x 200 x 20 =
800000 pixels. As unbinned maximum likelihood fitting loops over the events (while binned maximum likelihood loops
over the pixels), there are much less operations to perform in unbinned than in binned mode (there is some additional
overhead in unbinned mode that comes from integrating the models over the region of interest, yet this is negligible
compared to the operations needed when looping over the pixels). So as long as you work with short event lists,
unbinned mode is faster. Unbinned ctlike should also be more precise as no binning is performed, hence there is no
loss of information due to histogramming.

example

2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:
2015-06-21T16:

DIAIE _NAE DI1TI1E .

06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:

.Y~

17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:
17:

17

+ +
| Maximum likelihood optimization results |
+ +
=== GOptimizerlLM ===

Optimized function value ..: 121106.914
Absolute precision .v:uaus..: 0.005

Acceptable value decrease .: 2

Optimization status: converged

Number of parameters: 10

Number of free parameters .: 4

Number of iterations: 6

Lambda .evvsennsennssnnnsaa: 1le=07

Maximum log likelihood: -121106.914

Observed events (Nobs) ...: 37725.000

Predicted events (Npred) ..: 37724.997 (Nobs — Npred = 0.00259882)

=== GModels ===

Number of models ..iveveuwauat 2

Number of parameters: 10
=== GModelSky ===

Name ...vivvennnnsnnsnnnnsa: grb_130427A_1000
Instruments .vevevannnanaaat all

Test Statistic ‘vvvvenwwseas: 410.209

Instrument scale factors ..: unity

Observation identifiers ...: all
Model type .evvsesuwsssswssas: PointSource
Model components ..:.uus..s: "SKkyDirFunction" * "PowerLaw" * "Constant"
Number of parameters: 6
Number of spatial par's ...: 2

RA tiiinnaernnnnnssnnsassat 83.6331 [-360,360] deg (fixed,scale=1)

DEC vvvvvnnnnnnnnnnnnnnnsst 22.0145 [-90,90] deg (fixed,scale=1)

P)

AMismhar Anf cnanctral narle

example

2015-06-21T16:06:17: === GModelSky ===

2015-06-21T16:06:17: NamMe .uueessssnunnnnsssssss: grbo_130427A_1000

2015-06-21T16:06:17: Instrumentsvuuuwsssaa: all

2015-06-21T716:06:17: Test Statistic svuvuwwueesss: 410.209

2015-06-21T16:06:17: Instrument scale factors ..: unity

2015-06-21T16:06:17: Observation identifiers ...: all

2015-06-21T16:06:17: Model type ..isvvuswssssssss: PointSource

2015-06-21T16:06:17: Model componentS ..:eaussss: "SkyDirFunction" * "PowerLaw" * "Constant"
2015-06-21T16:06:17: Number of parameters: 6

2015-06-21T16:06:17: Number of spatial par's ...: 2

2015-06-21T716:06:17: RA viveeerssnnnnnnnsssssnst 83.6331 [-360,360] deg (fixed,scale=1)
2015-06-21T16:06:17: DEC vuuvnnnnnnssnnnnnnnnnsst 22,0145 [-90,90] deg (fixed,scale=1)
2015-06-21T16:06:17: Number of spectral par's ..: 3

2015-06-21T16:06:17: Prefactor ...vveevunesnnas: 2.98596€-10 +/- 2.41992e-10 [le-17,1le-07] ph/cm2/s/MeV (free,scale=1le-10,gradient)
2015-06-21T16:06:17: INdeX sevunessnnssnnnsnnnst —2.28532 +/- 0.185673 [-0,-5] (free,scale=-1,gradient)
2015-06-21T716:06:17: PivotEnergy .sueesusessss.: 826 [10,1e+06] MeV (fixed,scale=1000,gradient)
2015-06-21T16:06:17: Number of temporal par's ..: 1

2015-06-21T16:06:17: Normalization ..eeavsssasst 1 (relative value) (fixed,scale=1,gradient)
2015-06-21T16:06:17: === GCTAModelIrfBackground ===

2015-06-21T16:06:17: Namessss:ssssssssssx::: CTABackgroundModel

2015-06-21T16:06:17: Instrumentsvvuuuaaa: CTA

2015-06-21T16:06:17: Instrument scale factors ..: unity

2015-06-21T16:06:17: Observation identifiers ...: all

2015-06-21T16:06:17: Model type .vvieavssassssas: "PowerLaw" x "Constant"

2015-06-21T16:06:17: Number of parameters: 4

2015-06-21T16:06:17: Number of spectral par's ..: 3

2015-06-21T16:06:17: Prefactor svvvvvnnnnnassas: 0.995015 +/- 0.0443823 [0.001,1000] ph/cm2/s/MeV (free,scale=1,gradient)
2015-06-21T16:06:17: INdEX seerssnnnnnnnnsnsses: —0.00286326 +/—- 0.0135258 [-5,5] (free,scale=1,gradient)
2015-06-21T16:06:17: PivotEnergy «vusssssssssas: le+06 [10000,1e+09] MeV (fixed,scale=1le+06,gradient)
2015-06-21T16:06:17: Number of temporal par's ..: 1

2015-06-21T16:06:17: Normalization ...eeeessssst 1 (relative value) (fixed,scale=1,gradient)

2015-06-21T716:06:17:

TS calculation

Note

The ctlike tool has the ability to estimate the detection significance for sources in the XML model. This is done by computing the
Test Statistic value which is defined as twice the log-likelihood difference between fitting a source at a given position on top of a
(background) model or fitting no source. Roughly speaken, the square root of the Test Statistic value gives the source detection
significance in Gaussian sigmas, although the exact relation depends somewhat on the formulation of the statistical problem.

To instruct ctlike to compute the Test Statistic value for a given source you need to add the attribute tscalc="1" to the XML
file:

<source name="Crab" type="PointSource" tscalc="1">

ctlike will then compute the Test Statistic value for that source and dump the result in the log file:

2015-05-22T19:58:43: === GModelSky ===
2015-05-22T19:58:43: Namecccceeeeesee...: Crab
2015-05-22T719:58:43: Instruments: all
2015-05-22T719:58:43: Test Statistic: 18662.6

The Test Statistic value will also be added as new attribute ts to the XML result file:

<source name="Crab" type="PointSource" ts="18662.576" tscalc="1">

example

<?xml version="1.0" encoding="UTF-8" standalone="no"7?>
<source_library title="source library">
<source name="grb_130427A_1000" type="PointSource" ts="410.209" tscalc="1">
<spectrum type="PowerLaw">
<parameter name="Prefactor" value="2.,98596" error="2.41992" scale="1le-10" min="1e-07" max="1000" free="1" />
<parameter name="Index" value="2.28532" error="0.185673" scale="-1" min="0" max="5" free="1" />
<parameter name="Scale" value="0.826" scale="1000" min="0.01" max="1000" free="0" />
</spectrum>
<spatialModel type="SkyDirFunction">
<parameter name="RA" value="83.6331" scale="1" min="-360" max="360" free="0" />
<parameter name="DEC" value="22.0145" scale="1" min="-90" max="90" free="0" />
</spatialModel>
</source>
<source name="CTABackgroundModel" type="CTAIrfBackground" instrument="CTA">
<spectrum type="PowerLaw">
<parameter name="Prefactor" value="0.995015" error="0.0443823" scale="1" min="0.001" max="1000" free="1" />
<parameter name="Index" value="-0.00286326" error="0.0135258" scale="1" min="-5" max="5" free="1" />
<parameter name="Scale" value="1" scale="1le+06" min="0.01" max="1000" free="0" />
</spectrum>
</source>
</source_library>

- = - . e e o o PP S M

Butterfly

Calculate and visualise butterfly

To visualise the analysis results retrieved above, one can calculate the confidence band of the spectral fit. The tool ctbutterfly
takes the optimised source model as input. It takes the covariance matrix from the fit to conduct a Gaussian error propagation
for each energy value. It will write the butterfly information into an ASCII file. The following example shows how to compute
such a butterfly from the command line.

$ ctbutterfly

Input event list, cube or observation definition file [events.fits]
Calibration database [dummy]

Instrument response function [cta_dummy_irf]

Source model [$CTOOLS/share/models/crab.xml] crab_results.xml
Source of interest [Crab]

Start value for first energy bin in TeV [0.1]

Stop value for last energy bin in TeV [100.0]

Output ascii file [butterfly.txt]

Below some lines of the ctbutterfly.log:

2014-106-30eT17:
2014-106-30T17:
2014-106-30T17:
2014-106-30eT17:
2014-106-30eT717:
2014-106-30eT717:
2014-106-30eT17:
2014-16-30eT17:
2014-10-30eT17:
2014-106-30T17:
2014-106-30T17:
2014-106-30T17:
2014-106-3eT717:

4

51:
51:
51:
51:
51:
51:
51:
51:
ilg
51:
51:
51:
51:

39:
39:
39:
39:
39:
39:
39:
39:
39:
39:
39:
39:
39:

4===========================+4
| Compute covariance matrix |
4===========================4
4====================4

| Generate butterfly |
4====================+4
4========================+4

| Save Butterfly to file |
4========================+4

Application "ctbutterfly" terminated after 15 wall clock seconds, consuming ©.051253

»

Butterfly

python %CTOOLS/share/examples/python/show_butterfly.py butterfly.txt

This will result in a canvas which should look like the following:

10 14

10}

10 16

|

10‘17 &

1018 :

10-19

dN/dE [MeV ' s ' cm

1020 ;

10'“ :

22
10

10

10° 10 10°

Energy [MeV]

Confidence band of the fit

cscripts

cscripts
e cscaldb — Lists available instrument response functions
e csobsdef — Generates observation definition file
e cslightcrv — Computes lightcurve
e cspull — Generates pull distribution
e cssens — Computes CTA sensitivity
e csspec — Computes spectral points
e csresmap — Generates residual map
e cstsdist — Generates TS distribution

Overview
Activity
Roadmap
Issues
News
Documents
Wiki

Code status
Links
Forums
Files

Repository

Next ...

Wiki » Coding sprints »

Fourth coding sprint

The fourth coding sprint will take place at IRAP, Toulouse in the week 29 June - 3 July. We will start around noon
on the first day and stop around noon on the last day so that you can travel on the same day to Toulouse (we may
adapt the exact time of start on stop to your travel schedule).

Participants

Michael Mayer (HU Berlin)
Rolf Buehler (DESY)

Christoph Deil (MPIK)

Jurgen Knodlseder (IRAP)
Tarek Hassan (IFAE)

Nathan Kelley-Hoskins (DESY)
Johan Bregeon (LUPM)

Lili Yang (UNG)

Practical information

The meeting will take place at IRAP-Roche, information of how to reach the location can be found at

(7 http://cta.irap.omp.eu/toulouse2011/practical.html. A suggestion of possible hotels is on

7 http://cta.irap.omp.eu/toulouse2011/accomodation.html. Note that since recently we have a tramway
connection to the airport. You may take the tram to go to the terminus (Palais de Justice) and from there take the
metro to Faculté de Pharmacie (direction Ramonville) to go to the lab.

Collection of issues to be addressed during the sprint

| propose that the main goal of the 4th coding sprint would be to get the gammalib and ctools release 1.0 out.
There are all couple of outstanding issues (see ' Gammalib and 7 ctools roadmaps), probably non of these issues
should be blocking. We can then focus on fixing remaining issues, doing science verification and writing pending
documentation. We should also start to work on the paper.

Besides this, here a list of issues that can be addressed:

Improve binned analysis at the energy threshold (#1362)

Implement containment_radius method for GCTAPsf classes (#1459)
Optimise and test usage of energy resolution

IRFs: status, limitations, roadmap

SEXTEN CENTER
FOR
ASTROPHYSICS

Towards the Cherenkov Telescope
Array and Future Gamma-ray
Experiments

Summer School
July, 27 - 31, 2015
Sexten — Dolomites Italy

SEXTEN CENTER
FOR
ASTROPHYSICS

.

LY IRy

SEXTEN CENTER
FOR
ASTROPHYSICS

* A nice program!

1. The legacy of current cosmic-ray and
gamma-ray space telescopes

2. The legacy of the current VHE telescopes

3. The development of CTA and telescope
prototypes

4. Science with CTA
5. Future Gamma-ray experiments

SEXTEN CENTER
FOR
ASTROPHYSICS

e For more information follow the link

http://www.sexten-cfa.eu/en/conferences/2015/details/
60-Towards-the-Cherenkov-Telescope-Array.html

SEXTEN CENTER
FOR
ASTROPHYSICS

* See you soon!!

