

NEW RESULTS OF THE OPERA EXPERIMENT

Giovanni De Lellis

University "Federico II" and INFN Napoli

On behalf of the OPERA Collaboration

OUTLINE OF THE TALK

- The OPERA experiment and its detector
- The analysis chain
- Oscillation physics
- Background studies
- Significance of the results

PHYSICS: FROM NEUTRINO MIXING TO OSCILLATIONS

THE OPERA EXPERIMENT First direct detection of $v_{\mu} \rightarrow v_{\tau}$ oscillations in appearance mode

Following the Super-Kamiokande (MACRO and Soudan-2) discovery of oscillations with atmospheric neutrinos and the confirmation with solar neutrinos and accelerator beams

An important, missing tile in the oscillation picture

The PMNS 3-flavor oscillation formalism predicts:

$$P(\nu_{\mu} \to \nu_{\tau}) \sim \sin^2 2\theta_{23} \cos^4 \theta_{13} \sin^2(\Delta m_{23}^2 L/4E)$$

Requirements: 1) Long baseline 2) High energy neutrinos 2) High intensity beam

- 3) High intensity beam
- 4) Detect short lived τ leptons

THE PRINCIPLE:

Hybrid Detector With Modular Structure

τ DECAY CHANNEL	BR (%)		
$ au ightarrow \mu$	17.7		
$\tau \rightarrow e$	17.8		
$\tau \rightarrow h$	49.5		
$\tau \rightarrow 3h$	15.0		

- Small neutrino cross-section and beam divergence: massive active target (~ 1.2 kton)
- Detect τ -lepton production and decay: micrometric space resolution
- Underground location (10⁶ reduction of cosmic ray flux)
- Electronic detectors to provide the "time stamp", preselect the interaction brick and reconstruct μ charge/momentum

THE OPERA COLLABORATION

140 physicists, 26 institutions in 11 countries

http://operaweb.lngs.infn.it

CNGS BEAM AND LNGS SITE

CNGS BEAM Tuned for v_{τ} -appearance at LNGS

LNGS OF INFN

The world largest underground physics laboratory

- $\sim 180\ 000\ \text{m}^3$ caverns' volume
- \sim 3 100 m.w.e. overburden
- ~1 cosmic μ / (m² x hour)
- experimental infrastructure suitable to host detector and related facilities

CNGS

caverns oriented towards CERN

OPERA

CNGS PERFORMANCES Along five years (2008 ÷ 2012) of data taking

			p.o.t. (10 ¹⁸)		
Year	Beam days	p.o.t. (10 ¹⁹)			
2008	123	1.74			
2009	155	3.53	120 2011		
2010	187	4.09	80 2010		
2011	243	4.75			
2012	257	3.86			
Total	965	17.97	0 2008 09/12/31 10/12/31 11/12/31 12/12/31		
			date		

Record performances in 2011 Overall 20% less than the proposal value (22.5)

DETECTORS AND FACILITIES IN OPERATION:

A VERY COMPLEX EXPERIMENT...

Two target super-modules, each with an iron spectrometer for muon detection JINST 4 (2009) P04018

SCINTILLATOR STRIPS TARGET TRACKER AND BRICK TRAYS

mechanical structure: brick trays, only 0.5% of target mass

- > 5 p.e. for a m.i.p.
- ~ 99% detection efficiency \Rightarrow trigger
- position accuracy: ~ 8 mm
- angular accuracy: ~ 15 mrad

THE MAGNETIC SPECTROMETER

- **1.55 T** magnetic field bending particles in the horizontal plane
- 24 slabs of magnetized iron interleaved with RPC planes
- 6 drift tube stations for precision measurement of the angular deflection
- momentum resolution:
 20% below 30 GeV

NIM A602 (2009) 631-634

New Journal of Physics 13 (2011) 053051

THE ECC TARGET BRICKS

The heart of the experiment

BRICK MANIPULATOR SYSTEM (BMS)

Extraction of "hit" bricks in parallel with CNGS data taking (quasi-online):

- initially used to fill the brick target (two twin devices at each detector side)
- fully automatic extraction of up to 50 bricks/day (neutrino interactions)

OPERA BRICK HANDLING

Each platform run for more than 200 km vertically and 125 km horizontally

TARGET MASS EVOLUTION DURING RUNS

FILM DEVELOPMENT FACILITY

- 6 automated lines running in parallel in a dark room
- additional facility underground for CS films

AND DESCRIPTION OF TAXABLE PARTY

${\sim}12500 \text{ bricks developed} \\ {\sim}9300 \text{ m}^2$

INTERFACE FILMS for the brick validation

SCANNING OF CHANGEABLE SHEETS Two large facilities

IMPROVEMENTS IN THE SCANNING SYSTEM

INTERFACE EMULSION FILMS

High signal/noise ratio for event trigger and scanning time reduction

 v_{μ}^{CC} interaction: muon track reconstruction in interface films

INTERFACE EMULSION FILMS

Validation of events without a μ in the final state

 $\nu_{\mu}^{\ NC}$ interaction: convergence pattern in interface films

INTERFACE EMULSION FILMS Electron shower pre-selection

TRACK FOLLOW-UP AND VERTEX FINDING

Track follow-up film by film:

- Brick exposure at the surface laboratory to cosmic-rays for alignment
- Definition of the stopping point

Volume scan:

LOCATED NEUTRINO INTERACTION Volume (~2 cm³) around the stopping point

LOCATED NEUTRINO INTERACTION Film to film connection

LOCATED NEUTRINO INTERACTION

DECAY SEARCH

DECAY SEARCH

Primary vertex definition

- inspection of segments on the vertex plate
- impact parameter <10 (5+0.01 Δz) μ m,

if $\Delta z \leq \geq 500 \ \mu m$

Extra-track search

- selection of tracks reconstructed in the volume but not attached to primary vertex
- identification of e⁺e⁻ pairs by visual inspection

A close-up of an electron pair

DECAY SEARCH

Primary vertex definition

- inspection of segments on the vertex plate
- impact parameter $<10 (5+0.01 \Delta z) \mu m$,

if $\Delta z \leq \geq 500 \ \mu m$

•Extra-track search

- selection of tracks reconstructed in the volume but not attached to primary vertex
- identification of e^+e^- pairs by visual inspection

•In-track search

- search for small kinks along the tracks attached to the primary vertex

Parent search

- search for a track connecting the selected extra-track and the primary vertex

CHARMED HADRON PRODUCTION

control sample for the τ search to check the efficiency \rightarrow signal expectation

CHARMED HADRON PRODUCTION

- Charm and τ decays have the same topology
- Similar lifetime and masses
- Charmed hadrons from v_{μ} CC interactions
- Muon at the primary vertex
- Used as "control sample"

Decay topology	Events				
	Expected charm	Expected background	Expected total	Observed	
1-prong	21 ± 2	9 ± 3	30 ± 4	19	
2-prong	14 ± 1	4 ± 1	18 ± 1	22	
3-prong	4 ± 1	1.0 ± 0.3	5 ± 1	5	
4-prong	0.9 ± 0.2	_	0.9 ± 0.2	4	
Total	40 ± 3	14 ± 3	54 ± 4	50	

Eur. Phys. J. C74 (2014) 2986

Background from hadronic interactions (87%) and strange particle decays (13%)

Good agreement between data and expectations ~10%

KINEMATICAL VARIABLES

STATUS OF DATA ANALYSIS

COSMIC-RAY PHYSICS

OSCILLATION PHYSICS

$\nu_{\mu} \rightarrow \nu_{e}$ ANALYSIS WITH 2008/2009 DATA one of the ν_{e} events with a π^{0} as seen in the brick

Analysis based on 19 observed candidates (4 with E < 20 GeV)

SEARCH FOR NON-STANDARD OSCILLATIONS AT LARGE Δm^2 VALUES

Giovanni De Lellis, LNGS Seminar

$\nu_{\mu} \rightarrow \nu_{\tau}$ Analysis Strategy

- 2008-2009 runs
 - No kinematical selection: get confidence on the detector performances before applying any kinematical cut
 - Slower analysis speed (signal/noise not optimal)
 - Kinematical selection applied for the candidate selection, coherently for all runs
 - Good data/MC agreement shown
- 2010-2012 runs
 - $P\mu < 15$ GeV/c, to suppress charm background
 - Prioritise the analysis of the most probable brick in the probability map: optimal ratio between efficiency and analysis time
 - Analyse the other bricks in the probability map

The First ν_τ Candidate

As seen by the electronic detectors ...

18/06/15

Physics Letters B691 (2010) 138

The First ν_{τ} Candidate

The First ν_τ Candidate

... and in the brick

Physics Letters B691 (2010) 138

Physics Letters B691 (2010) 138

The Second ν_τ Candidate

As seen by the electronic detectors ...

Journal of High Energy Physics 11 (2013) 036

The Second ν_τ Candidate

and in the brick . . . CNGS transverse-plane view p_y (GeV/c) parent view 1 mm 300 µm 300 µm 0.5 1ry trk 0.3-0.2-0.1 0 0.10.2 0.3 167.8° -0.5 -0.5 0.5 0 1 -1 p (GeV/c) τcandidate daughter 2 113 µm daughter 1 146 µm daughter 3

Journal of High Energy Physics 11 (2013) 036

THE SECOND v_{τ} CANDIDATE ... and in the brick

Journal of High Energy Physics 11 (2013) 036

18/06/15

Journal of High Energy Physics 11 (2013) 036

The Third ν_{τ} Candidate

As seen by the electronic detectors ...

Phys. Rev. D 89 (2014) 051102(R)

THE THIRD v_{τ} CANDIDATE ... and in the brick

THE THIRD v_{τ} CANDIDATE ... and in the brick

MUON CHARGE AND MOMENTUM

- MCS in the brick consistent

- Parabolic fit with p_2 as quadratic term coefficient in the magnetized region Linear fit in the non-magnetized region

0.004 0.002

 $p_2 < 0 \rightarrow$ negative charge 5.6σ significance $R \sim 85 \text{ cm}$

Cells

The Fourth $\nu^{}_{\tau}$ Candidate

As seen by the electronic detectors ...

PTEP 10 (2014) 101C01 Giovanni De Lellis, LNGS Seminar

THE FOURTH v_{τ} CANDIDATE ... and in the brick

THE FORTH v_{τ} CANDIDATE ... and in the brick

PARTICLE ID: TRACK FOLLOW-DOWN

A powerful tool to assess the muon-less nature of the event

The Fourth ν_{τ} Candidate

Kinematical variables

BY PRODUCT ANALYSIS

STERILE **N**EUTRINOS

3+1 model: bounds from v_{τ} appearance with profile Likelihood method

$$\begin{array}{c} \textbf{-standard oscillation} \\ P_{\nu_{\mu} \rightarrow \nu_{\tau}} = C^{2} \sin^{2} \Delta_{31} + \sin^{2} 2\theta_{\mu\tau} \sin^{2} \Delta_{41} \\ + 0.5C \sin 2\theta_{\mu\tau} \cos \phi_{\mu\tau} \sin 2\Delta_{31} \sin 2\Delta_{41} \\ + 0.5C \sin 2\theta_{\mu\tau} \cos \phi_{\mu\tau} \sin^{2} \Delta_{31} \sin 2\Delta_{41} \\ + C \sin 2\theta_{\mu\tau} \cos \phi_{\mu\tau} \sin^{2} \Delta_{31} \sin^{2} \Delta_{41} \\ + C \sin 2\theta_{\mu\tau} \sin \phi_{\mu\tau} \sin 2\Delta_{31} \sin^{2} \Delta_{41} \\ + C \sin 2\theta_{\mu\tau} \sin \phi_{\mu\tau} \sin 2\Delta_{31} \sin^{2} \Delta_{41} \\ + C \sin 2\theta_{\mu\tau} \sin \phi_{\mu\tau} \sin 2\Delta_{31} \sin^{2} \Delta_{41} \\ + C \sin 2\theta_{\mu\tau} \sin \phi_{\mu\tau} \sin 2\Delta_{31} \sin^{2} \Delta_{41} \\ + C \sin 2\theta_{\mu\tau} \sin \phi_{\mu\tau} \sin 2\Delta_{31} \sin^{2} \Delta_{41} \\ + C \sin 2\theta_{\mu\tau} \sin \phi_{\mu\tau} \sin 2\Delta_{31} \sin^{2} \Delta_{41} \\ + C \sin 2\theta_{\mu\tau} \sin \phi_{\mu\tau} \sin 2\Delta_{31} \sin^{2} \Delta_{41} \\ + C \sin 2\theta_{\mu\tau} \sin \phi_{\mu\tau} \sin 2\Delta_{31} \sin^{2} \Delta_{41} \\ + C \sin 2\theta_{\mu\tau} \sin \phi_{\mu\tau} \sin 2\Delta_{31} \sin^{2} \Delta_{41} \\ + C \sin 2\theta_{\mu\tau} \sin \phi_{\mu\tau} \sin 2\Delta_{31} \sin^{2} \Delta_{41} \\ + C \sin 2\theta_{\mu\tau} \sin \phi_{\mu\tau} \sin 2\Delta_{31} \sin^{2} \Delta_{41} \\ + C \sin 2\theta_{\mu\tau} \sin \phi_{\mu\tau} \sin 2\Delta_{31} \sin^{2} \Delta_{41} \\ + C \sin 2\theta_{\mu\tau} \sin \phi_{\mu\tau} \sin 2\Delta_{31} \sin^{2} \Delta_{41} \\ + C \sin 2\theta_{\mu\tau} \sin \phi_{\mu\tau} \sin 2\Delta_{31} \sin^{2} \Delta_{41} \\ + C \sin 2\theta_{\mu\tau} \sin \phi_{\mu\tau} \sin 2\Delta_{31} \sin^{2} \Delta_{41} \\ + C \sin 2\theta_{\mu\tau} \sin \phi_{\mu\tau} \sin 2\Delta_{31} \sin^{2} \Delta_{41} \\ + C \sin 2\theta_{\mu\tau} \sin \phi_{\mu\tau} \sin 2\Delta_{31} \sin^{2} \Delta_{41} \\ + C \sin 2\theta_{\mu\tau} \sin \phi_{\mu\tau} \sin 2\Delta_{31} \sin^{2} \Delta_{41} \\ + C \sin 2\theta_{\mu\tau} \sin \phi_{\mu\tau} \sin 2\Delta_{31} \sin^{2} \Delta_{41} \\ + C \sin 2\theta_{\mu\tau} \sin \phi_{\mu\tau} \sin^{2} \Delta_{31} \sin^{2} \Delta_{41} \\ + C \sin 2\theta_{\mu\tau} \sin^{2} \Delta_{31} \sin^{2} \Delta_{41} \\ + C \sin 2\theta_{\mu\tau} \sin^{2} \Delta_{31} \sin^{2} \Delta_{41} \\ + C \sin 2\theta_{\mu\tau} \sin^{2} \Delta_{31} \sin^{2} \Delta_{41} \\ + C \sin 2\theta_{\mu\tau} \sin^{2} \Delta_{31} \sin^{2} \Delta_{41} \\ + C \sin 2\theta_{\mu\tau} \sin^{2} \Delta_{41} \\ + C \sin^{2} \theta_{\mu\tau} \sin^{2} \Phi_{41} \\ + C$$

STERILE NEUTRINOS

COMPLETING THE ANALYSIS OF THE TWO MOST PROBABLE BRICKS

THE FIFTH v_{τ} CANDIDATE As seen by the electronic detectors ...

ANALYSIS OF INTERFACE EMULSION FILMS

THE FIFTH v_{τ} CANDIDATE ... and in the brick

THE FIFTH v_{τ} CANDIDATE ... and in the brick

SEARCH FOR NUCLEAR FRAGMENTS Search for nuclear fragments in an extended angular range $|tan\theta| \le 3$ Primary vertex Secondary vertex 6 nuclear fragments None found V_1 daughter \mathbf{V}_0 primary particle film 13 film 14 film 15 18/06/15

PARTICLE IDENTIFICATION

MOMENTUM MEASUREMENT

MCS method in the first brick

PRIMARY PARTICLE IDENTIFICATION

Grain counting method

- Count all grains along the track
- Grain density (GD) proportional to the energy deposition dE/dx

MCS method in the first brick $\beta P_{1ry} = 0.8 [0.6, 1.1] \text{ GeV/c}$

 $GD_{1ry}/GD_{\pi} = 1.45 \pm 0.06$ $(dE/dx)_{proton}/(dE/dx)_{\pi} = 1.38 \pm 0.14$

Consistent with proton hypothesis

 $p = (1.0\pm0.2) \text{ GeV/c}_{\text{Giovanni De Lellis, LNGS Seminar}}$

The Fifth ν_τ Candidate

Measurements performed in two different laboratories for independent cross-check

		LAB 1		LAB 2		Mean	
	ID	Slopes	p (GeV/c)	Slopes	p (GeV/c)	Slopes	p (GeV/c)
1ry	τ	0.067, 0.056	-	0.075, 0.059	-	0.071, 0.058	-
	p1	-0.268,-0.086	pβ 0.74 [0.67, 0.82]	-0.270, -0.081	pβ 0.8 [0.6, 1.1]	-0.269, -0.084	1.0 [0.8, 1.2]
2ry	daughter	-0.018, 0.057	10.3 [6.1, 33.5]	-0.016, 0.062	11.0 [7.1, 24.9]	-0.017, 0.060	10.7 [6.9, 24.4]
Interaction of the daughter track	d1	-0.096,-0.331		-0.079,-0.337			
	d2	-0.140, 0.177		-0.125, 0.163			
	d3	0.273, 0.300		0.278, 0.285			
	fragment	-0.600, 0.200		-0.651, 0.225			
	γ	-0.119,-0.024		-0.106,-0.034			

Compatible results

The Fifth ν_{τ} Candidate

Kinematical variables

Parameter	Measured value	Selection Criteria	
$\Delta \phi_{\tau H} (^{o})$	151 ± 1	> 90	
$p_T^{miss}~({ m GeV/c})$	0.3 ± 0.1	<1	
$\theta_{kink} \pmod{mrad}$	90 ± 2	>20	
$z_{dec}~(\mu m)$	634 ± 30	[44, 2600]	
$p^{2ry}~({ m GeV/c})$	11^{+14}_{-4}	>2	
$p_T^{2ry}~({ m GeV/c})$	$1.0^{+1.2}_{-0.4}$	>0.6 (no γ attached)	
F1 90		flight length 960±30 μm	$\begin{array}{c} 0.6 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0 \\ 0.2 \\ 0 \\ 0.2 \\ 0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $

VISIBLE ENERGY OF ALL THE CANDIDATES

Sum of the momenta of charged particles and γ 's measured in emulsion

BACKGROUND STUDIES

IMPROVEMENTS ON THE BACKGROUND REJECTION large angle track detection

Undetected soft and large angle muons are the source of charm background Detection of particles and nuclear fragments in hadronic interactions

JINST 9 (2014) P12017

CHARMED PARTICLES PRODUCTION

- Lifetimes and masses similar to the τ
- Background when the primary muon is not identified

 ν_{μ}^{CC} interactions with charm quark production derived from CHORUS measurements New J. Phys. 13 (2011) 093002

New J. Phys. 13 (2011) 053051

$$\frac{\sigma(\nu_{\mu}N \to \mu^{-}CX)}{\sigma(\nu_{\mu}N \to \mu^{-}X)} = (4.38 \pm 0.26)\%$$

Eur. Phys. J. C74 (2014) 2986

Good agreement in normalization and shape for the relevant kinematical variables in the charm detection and muon identification Constrain the background within 20%

BACKGROUND STUDIES: HADRONIC INTERACTIONS

Comparison of large data sample (π ⁻ beam test at CERN) with Fluka simulation —— check the agreement and estimate the systematic uncertainty

SECONDARY TRACK EMISSION

Good agreement within the statistical error: systematic error $\sim 30\%$

NUCLEAR FRAGMENTS EMISSION PROBABILITY

Black : experimental data Red : simulated data ($\beta = p/E = 0.7$)

PTEP 9 (2014) 093C01

NUCLEAR FRAGMENTS IN 1 AND 3 PRONG INTERACTIONS

Agreement within the statistical error: systematic error is 10%

LARGE ANGLE µ SCATTERING

New estimate based on GEANT4 - Simulation modified by introducing form factors (FF) for Lead

(Saxon-Woods parameterization)

$$\rho_{SW}(r) = \rho_0 \left(1 + e^{\frac{r-b}{a}} \right)^{-1}$$

IEEE Transactions on Nuclear Science

G4 S.W. FF

G4 dipole FF

G4 FF = 1

Masek et al.

0.14

<u>04</u>16 Φ (rad)

MC predictions compared to available data

7.3 GeV/c muons on Copper

LARGE ANGLE μ SCATTERING

CNGS v_{μ} CC muons on Lead 1< p_{μ} <15 GeV/c

Main background in the $\tau \rightarrow \mu$ decay channel when using upper limits in the past

18/06/15

FINAL RESULTS

Δm^2_{23} estimation

90% C.L. intervals on Δm_{23}^2 by Feldman & Cousins method [2.0 - 4.7] x 10⁻³ eV² (assuming full mixing)

STATISTICAL CONSIDERATIONS

Channel		Expected b	Expected signal	Observed		
	Charm	Had. re-interac.	Large μ -scat.	Total		
$\tau \to 1h$	0.017 ± 0.003	0.022 ± 0.006	—	0.04 ± 0.01	0.52 ± 0.10	3
$\tau \to 3h$	0.17 ± 0.03	0.003 ± 0.001	—	0.17 ± 0.03	0.73 ± 0.14	1
$\tau \to \mu$	0.004 ± 0.001	—	0.0002 ± 0.0001	0.004 ± 0.001	0.61 ± 0.12	1
$\tau \to e$	0.03 ± 0.01	—	—	0.03 ± 0.01	0.78 ± 0.16	0
Total	0.22 ± 0.04	0.02 ± 0.01	0.0002 ± 0.0001	0.25 ± 0.05	2.64 ± 0.53	5

Two statistical methods:

- Fisher combination of single channel p-values
- Profile likelihood ratio

5 observed events with 0.25 background events expected

Probability to be explained by background $\begin{cases}
Fisher = 1.10 \times 10^{-7} \\
Profile likelihood = 1.07 \times 10^{-7}
\end{cases}$

This corresponds to 5.1σ significance of non-null observation

$$\begin{array}{l} P(n \geq 5 \mid \mu = 2.9) = 16.6 \ \% \\ P^{\dagger} = 6.4\% \end{array}$$

 P^{\dagger} = probability to obtain a configuration less likely than (3, 1, 1, 0)

 $\Delta m^2 = 2.44 \cdot 10^{-3} \text{ eV}^2$

DISCOVERY OF ν_{τ} Appearance In The CNGS Neutrino BEAM

- Detector successfully measuring v_e , v_{μ} and v_{τ}
- Analysis of an extended data sample
- Improved background evaluation
- Five v_{τ} candidates observed
- 5.1 σ significance

OUTLOOK

- Multi-brick analysis under completion
- Re-analysis of the full data sample with a likelihood approach and less tight (kinematical) selection criteria
- More to come!

ACKNOWLEDGEMENTS

The OPERA Collaboration is very much indebted to:

- The LNGS/INFN hosting laboratory
- CERN and the CNGS beam team
- Funding agencies
- All industrial partners and suppliers
- Our technical collaborators, engineers and undergraduate students

THANK YOU FOR YOUR ATTENTION

