Status of CGEM-IT Offline Software at BESIII

Liang-Liang WANG On behalf of CGEM-IT software group

4th LNF Workshop on Cylindrical GEM Detectors

Outline

- Introduction
- Simulation of CGEM-IT
- CGEM-IT cluster reconstruction
- CGEM-IT track segment finding
- Track fitting with Kalman Filter
- Release of CgemBoss
- Summary

Introduction

CGEM offline software

- Simulation
 - ✓ Detector description
 - \checkmark Digitalization
- Reconstruction
 - ✓ Cluster reconstruction
 - ✓ CGEM track segment finding

□Global tracking combining CGEM and MDC (in progress)

✓ Track fitting with Kalman Filter for CGEM+DC

• Calibration (to be started next year)

CGEM detector construction with Geant4

All basic items constructed Except individual readout strips (just one piece)

CGEM Geometry Service (CgemGeomSvc)

- Basic information: nLayers, radii, thickness, readout (strips, pitch, stereo angle), etc.
- The only source of CGEM geometry parameters: used in both CGEM simulation and reconstruction
- If the basic structure of CGEM does not change, it is easy to update the CGEM parameters by changing the parameter file without touch the codes.CgemBossCvs/Cgem/CgemGeomSvc /CgemGeomSvc

•

File		Rev.	Age	Author	Last log entry
Attic/ [show contents]					
iii <u>CgemGeoFoil.h</u>	88	1.2	5 months	wulh	fix bugs
≣ <u>CgemGeoLayer.h</u>	88	1.2	5 months	wulh	fix bugs
■ <u>CgemGeoReadoutPlane.h</u>	88	1.2	5 months	wulh	fix bugs
<u>■ CgemGeomSvc.h</u>	85	1.3	5 months	wulh	fix bugs
■ <u>ICgemGeomSvc.h</u>	88	1.3	5 months	wulh	fix bugs

Show files using tag: - Non-branch tags -

Show

CGEM digitization

- A simplified model is used at this moment: projection of the track segment in the drift region onto the readout plane without any Lorentz angle, diffusion
- Sufficient at the stage of CGEM software development
- > To be improved according to the beam test results or Garfield simulation

Preliminary Garfield++ simulation of GEM detector

Dataflow of simulation

Track Reconstruction with CGEM-IT

CGEM cluster reconstruction

Track segment finding in CGEM

An explicit method:

find patterns for the 3 clusters from individual charged tracks

Steps:

- Introduce two kinds of variables: $\delta\phi$ and δZ
- Study the patterns of the distributions
- Parameterization of the distributions using mu track
- Define the selection criteria for track segments
- Segment selection with the predefined criteria

δZ pattern

Parameterization of δZ

Parameterization of δZ

$\delta \phi$ pattern

 $\delta \phi_{21} = \phi_1 - \phi_2, \ \delta \phi_{23} = \phi_3 - \phi_2$

Parameterization of $\delta\phi$

- d distributions at different δL are fitted to Gauss
- d is the distance between points and the fitted line
- δL means position on the fitted line

Track segment selection

Track segments: the cluster combinations within 3σ of the parameterized patterns found in δZ and $\delta \phi$

Black: selected track segments **Red**: inconsistent with δZ pattern,

Green: inconsistent with $\delta \phi$ pattern

Efficiency of segment finding for μ^-

- Muon can decay or circle around in CGEM/DC, in which case no good track segment is expected in CGEM.
- For the efficiency study, these tracks with decay or circling trajectory are excluded.
 - Good segments: the 3 clusters can match the MC truth from the muon.

Track fitting with Kalman Filter

- Track fitting gives the track parameters as precise as possible.
- Track parameters a are treated as a dynamic system in Kalman Filter method

 The Kalman-Filter-based track fitting package for MDC is extended to be able to process CGEM cluster and MDC hits

Track fitting with Kalman Filter (conti.)

- Extension of track fitting with Kalman Filter
 - ✓ Geometry and material description of CGEM
 - ✓ Calculation of the CGEM cluster predictions
 - ✓ Update of the track parameter with CGEM

Releases of CgemBoss

- CgemBossCVS: archive the developments of CGEM related packages, without any influence of current BossCVS
 Inside IHEP: <u>http://koala.ihep.ac.cn/cgi-bin/viewcvs.cgi/CgemBossCvs/</u> Outside IHEP:
 <u>http://docbes3.ihep.ac.cn/viewvc/cgi-bin/viewvc.cgi/BESIII/CgemBossCvs/</u>
- CgemBoss releases: offline software environment to test the codes of CGEM related packages but without touching the current Boss releases
 - ✓ Previous versions: 0.0.1, 0.0.2, 0.0.3, 0.0.4, 6.6.3
 - ✓ Test versions: 6.6.3.a, 6.6.3.b, 6.6.5.a
 - ✓ The latest release: 6.6.5

(Scientific Linux 6, Event model update)

 The updates in BOSS releases are traced and incorporated in CgemBOSS releases to keep the compatibility of CGEM packages.

Summary

- ✓ CGEM simulation and most reconstruction packages were developed
- ✓ The performance is reasonable
- ✓ CgemBoss are released regularly
- ♦Global tracking with CGEM and DC is in progress
- Digitization model for CGEM is to be improved
- Optimization and fine tuning of simulation and reconstruction is essential
- The development of calibration packages will start next year

BACKUP

Development of CGEM-IT software

- Monte Carlo study based on full simulation
 - Study the expected performance
 - Optimize CGEM-IT design

Motivation

- Aging of BESIII inner drift chamber
 - Gain is dropping year by year
- CGEM-IT (a candidate)
 - Good spatial resolution and radiation hardness
 - Applied in KLOE-2

(from M.Y. Dong's report)

Reconstruction with CGEM-IT

- CGEM inner detector VS MDC inner detector
 - dz resolution improved significantly
 - comparable dr resolution and momentum resolution

Geometry

Units (mm)	Layer1		Lay	ver2	Layer3	
	R _{in}	Thickness	R _{in}	Thickness	R _{in}	Thickness
Cathode	75.234	3.104	120.5	3.104	163.0	3.104
Gap_D	78.338	3.0	123.604	3.0	166.104	3.0
GEM 1	81.338	0.054	126.604	0.054	169.104	0.054
Gap_T1	81.392	2.0	126.658	2.0	169.158	2.0
GEM 2	83.392	0.054	128.658	0.054	171.158	0.054
Gap_T2	83.446	2.0	128.712	2.0	171.212	2.0
GEM 3	85.446	0.054	130.712	0.054	173.212	0.054
Gap_I	85.5	2.0	130.766	2.0	173.266	2.0
Anode	87.5	0.2512	132.766	0.2512	175.266	0.2512
CF-Shield	87.7512	3.1	133.0172	3.1	175.5172	3.1
Length/ Thickness	532 / 1	5.6172	690 / 15.6172		847 / 15.6172	

CGEM readout

	Layer1	Layer2	Layer3
Sheets number	1	2	2
Anode radius(mm)	87.50	132.766	175.266
Layer width(mm)	549.78	834.2	1101.22
Sheet width(mm)	549.78	417.10	550.61
Z length(mm)	532.00	690.00	847.00
Stereo angle(rad)	0.8018	0.5428	0.5758
Pitch(mm)	0.65	0.65	0.65
X channel N	846	1284	1696
V channel N	1177	2198	2844
Total channel N	2023	3482	4540

Dataflow

Distribution of number of fired strips in each cluster

single muon MC sample 1.0 GeV $|\cos \theta| < 0.93$

Process of Kalman Fitting

