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ü LHC and ATLAS Upgrade

ü Motivation for the New Small Wheel (NSW) Upgrade

ü Micromegas Technology

ü Performance of Micromegas detectors:
• Hit & Track reconstruction techniques
• Spatial resolution for perpendicular tracks - The Centroid method 
• Optimizing the μTPC method 
• Efficiency studies
• Studying the effect of the pillars
• Performance inside a magnetic field
• MM Timing Information
• Test of large surface MM
• Test of MM quadruplet prototype with stereo strips 
• Test of MM prototype with multiplexed readout strips 

ü Summary

Outline - Menu
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ATLAS Detector
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LS2 ~2019, LS3 ~2024
LS4 ~2030, LS5 ~2034
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ATLAS Future Upgrades
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► Phase 0 (installed):
► new Pixel Inner B-Layer

► Phase I (approved):
►Fast Track Trigger (electronics)
►LAr (trigger electronics)
►TDAQ
►NSW (New Small Wheel)

► Phase II (planning): Replace 
complete inner detector, …

2013-14

E =	7-8 TeV
L =	5x1033cm-2s-1

2019-20
PHASE	I

E =	13-14	TeV
L =	1034cm-2s-1

2024-25
PHASE	II

LHC	Upgrade	Schedule
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LHC: Large Hadron Collider
Nov	17,	2015 Theo	Alexopoulos,	NTU	Athens



Motivation  ATLAS Small Wheel Upgrade 2019-20 (Phase I)
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• The ATLAS upgrade is motivated primarily by the pile-up rate (<n>=55 interactions
per 25 ns bunch crossing) that are expected at L=2×1034 cm−2s−1. This will lead to
an increased particle flux (rate) which the present detectors (MDT + CSC) cannot
handle efficiently. Also, added trigger capability.
• Replacing the Small Wheels with a detector that can provide precise tracking and

trigger segments will eliminate fake triggers without loss on physics acceptance.

Today:
MDT chambers (drift tubes) +
TGCs for 2nd coordinate (not 
visible)

CSC chambers

Pseudorapidity coverage:
1.3 < |η| < 2.7

L1 trigger
chambers

The innermost station of the muon endcap

Located between endcap calo and toroid

2019-2020

2024-2025
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Detector Requirements for the New Small Wheel
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§ High rate capability: 10–15 kHz/cm2 (n, γ, p, µ) at small radii

§ Spatial resolution: ≤100 µm independent of track angle

§ Efficiency: ≥95% per plane

§ Trigger capability (25 ns bunch identification)

§ Radiation tolerance: (100 kRad/year) for ≥10 years

§ Affordable costs
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New Small Wheel (NSW) Layout 
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• Two technologies: Both Micromegas & sTGC
detectors will provide tracking and trigger data
• 16 Sectors per Wheel (8 large, 8 small)
• 2 Multilayers per Sector for Micromegas & 3

Multilayers per Sector for sTGC
• 8 Micromegas Layers & 8 sTGC Layers per

Multilayer

micromegassTGC sTGCmicromegas

sTGC (mainly for triggering) & Micromegas (mainly for tracking) detectors, both providing tracking and 
triggering information, combined into a fully redundant NSW system! 

8 MM + 8 sTGC layers per NSW sector 
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Full Development Time-Plan 

2008 2009 2010 2011 2012 2013
approved by ATLAS

non-resistive MM, SPS/CERN,
Demokritos-GR

resistive MM, SPS/CERN, Demokritos-GR, 
Garching-GE

resistive MM, DESY II/DESY, 
LNF-IT, CEA-FR

2014 2015 2016 2018 2019 2020

module-0 production 
& qualification

Full-production of
chambers and electronics 

Full commissioning 
on surface Full installation in cavern

1x1m2

Running...

developed new MM 
technology LoI TDR

2017
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Planar structure with two asymmetric E-field regions, separated by a metallic micromesh. 
• Drift Gap (5mm), Edrift ≃0.6kV/cm 
• Amplification Gap (128μm), Eamp ≃39 kV/cm 
• Gas mixture Ar+7% CO2, gain ∼ 104

e- drift towards the mesh (95% transparent) in ∼100ns.
Avalanche formation in the amplification region (1ns) with fast ion evacuation (∼200ns). 

5 mm

128 μm Pillar Pillar

Anode Strips

Mesh

Drift mesh 

Edrift

Eamp
avalance

Mesh support 
pillars

original	type	micromegas

Micromegas Detector Technology (MM) – original type



2008: Demonstrated Performance
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§ Standard micromegas (P1)

§ Safe operating point with efficiency ≥99%

§ Gas gain: 3–5 x 103

§ Very good spatial resolution
§ Sparks are a problem for the operation at the LHC

§ Sparks lead to a partial discharge of the
amplification mesh => HV drop & inefficiency
during HV ramping up

§ The good news: no damage, despite many sparks
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5 mm

128 μm Pillar Pillar

Anode Readout Cu Strips
0.15 mm x 100 mm

Mesh

Drift mesh - Cathode

Edrift

Eampl

PCB

Insulating layer

Resistive  Strips
10 – 20 MΩ/cm

avalance

2010: Making Micromegas Spark Resistant
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Tested several protection/suppression schemes 
§ A large variety of resistive coatings of anode strips

§ Did not manage to find a safe solution; damage after few 
hours or days (sometimes minutes) of operation

§ Problems cured by adding an insulating layer: R11 ++
§ Double/triple amplification stages to disperse charge, as used in 

GEMs (MM+MM, GEM+MM)

Settled finally on a protection scheme with resistive strips

Tested the concept successfully in the lab (55Fe source, Cu X-ray gun, 
cosmics), H6 pion & muon beam, and with 2.3 MeV and 5.5 MeV neutrons

5 mm

128 μm Pillar Pillar

Anode Strips

Mesh

Drift mesh - Cathode

Edrift

Eampl
avalance

Mesh support 
pillars

original	type resistive	type

resistive	type	MM

original	type	MM
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Performance Studies in Testbeams
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Several test beam periods (since 2008)
studying different Micromegas prototypes
((non)resistive, small, large, multi-readout,
multi-layer etc.) in various beam and magnetic
field conditions

2014 CERN SPS/H6

2014 CERN SPS/H4- B-fieldMAMMA neutron test in “Demokritos”micromegassTGC

Tandem-DemokritosNov	17,	2015 Theo	Alexopoulos,	NTU	Athens
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Extracting hit Information • Use APV25 and Scalable Readout System (SRS)  
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Performance Studies of the Micromegas Prototypes
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Single Plane Spatial Resolution

• Micromegas	will	be	the	main	precision	tracker	of	the	NSW	
(required	spatial	resolution	100m).

Hit	&	Track reconstruction
• Using	charge	amplitude	(Centroid	hit)
Accuracy	rapidly	decreasing	for	larger	track	angles.
• Using	time	information	(TPC	segment).
Performance	improving	with	increasing	cluster	size.

Tracks	expected	@	NSW	8◦ to	30◦.	So	we	are	relying	mostly	on	TPC.

Refinement of TPC recipe (Significant improvement)
• Correct for capacitive coupling between strips.
• Fine tuning of the primary e- position assignment along 

the strip width.
• Implement pattern recognition techniques for track 

identification (Hough transform)

Combination of centroid & TPC provides spatial resolution < 100m independently of track incident angle!
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Spatial resolution for perpendicular tracks - The Centroid method 
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Optimizing the μTPC method 
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Optimizing the μTPC method 
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Efficiency Studies
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Study of the pillar effects – Pillars are not so innocent!



Lorentz angle from 
perpendicular tracks;  
Edrift = 600V/cm

Micromegas Performance in B-field
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• ATLAS New Small Wheels will be operated in a mixed directional B field
up to 0.4 T.
• Micromegas chambers tested successfully in a magnetic field up to 1 T

showing no performance degradation.
• Lorentz angle & drift velocity measurements are in agreement with

simulation.
Micromegas
inside Magnet

ATLAS End-
Cap Toroid 

field

Nov	17,	2015 Theo	Alexopoulos,	NTU	Athens



Nov	17,	2015 Theo	Alexopoulos,	NTU	Athens 22

Micromegas Performance in B-field: Spatial Resolution
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Micromegas timing studies
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MMSW Performance Studies in Testbeams – Large scale MM (1/2)
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MMSW Performance Studies in Testbeams – Large scale MM (2/2)
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Micromegas Performance in ATLAS
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Micromegas on CSC

Micromegas on electromagnetic end-
cap calorimeter

Minimum bias trigger scintillators

Micromegas Current Measured versus Luminosity

Hit Rate 100 kHz/cm2 for 
L=7x1033 cm-2s-1

CEST Time

13-05h 13-08h 13-11h 13-14h 13-17h 13-20h 13-23h 14-02h

)
-1

 s
-2

 c
m

3
3

L
u
m

in
o
si

ty
 (

1
0

0

1

2

3

4

5

6

A
)

µ
m

ic
ro

m
e

g
a

s
 C

u
rr

e
n

t 
(

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Day 13/06/2012

ATLAS Luminosity

micromegas MBT0_3S Current

)-1s-2 cm34ATLAS Luminosity (10
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A
)

µ
m

ic
ro

m
e
g
a
s 

C
u
rr

e
n
t 
(

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

MBT0_3S
)-3410×A) = 0.006 + 0.56*L, (L=LuminosityµI(

Nov	17,	2015 Theo	Alexopoulos,	NTU	Athens



 / ndf 2χ  257.2 / 214

 
core

p  6.1± 488.8 

 
core

µ  0.000848± 0.001049 

 coreσ  0.0010± 0.0804 

 
tails

p  3.3±  34.8 

 
tails

µ  0.0054± -0.0146 

 
tails

σ  0.0090± 0.2426 

[mm]
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

m
]

µ
[#

 o
f e

vt
s/

8

0

100

200

300

400

500

 / ndf 2χ  257.2 / 214

 
core

p  6.1± 488.8 

 
core

µ  0.000848± 0.001049 

 coreσ  0.0010± 0.0804 

 
tails

p  3.3±  34.8 

 
tails

µ  0.0054± -0.0146 

 
tails

σ  0.0090± 0.2426 

mµ= 80 coreσ
mµ=125 weightσ

MM_Multiplexed_X_Excluded
 / ndf 2χ  317.5 / 217

 
core

p  7.2± 570.7 

 
core

µ  0.000721± 0.001425 

 coreσ  0.00090± 0.06751 

 
tails

p  3.67± 41.02 

 
tails

µ  0.004483± -0.004205 

 
tails

σ  0.0079± 0.2193 

[mm]
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

m
]

µ
[#

 o
f e

vt
s/

8

0

100

200

300

400

500

600

 / ndf 2χ  317.5 / 217

 
core

p  7.2± 570.7 

 
core

µ  0.000721± 0.001425 

 coreσ  0.00090± 0.06751 

 
tails

p  3.67± 41.02 

 
tails

µ  0.004483± -0.004205 

 
tails

σ  0.0079± 0.2193 
mµ= 68 coreσ

mµ=113 weightσ

MM_Multiplexed_Y_Excluded

 / ndf 2χ  286.9 / 204

 corep  8.6± 678.9 

 
core

µ  0.00062± 0.01161 

 coreσ  0.00078± 0.05828 

 
tails

p  5.30± 48.93 

 
tails

µ  0.00376± 0.01243 

 tailsσ  0.0068± 0.1697 

[mm]
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

m
]

µ
[#

 o
f e

vt
s/

8

0

100

200

300

400

500

600

700

800  / ndf 2χ  286.9 / 204

 corep  8.6± 678.9 

 
core

µ  0.00062± 0.01161 

 coreσ  0.00078± 0.05828 

 
tails

p  5.30± 48.93 

 
tails

µ  0.00376± 0.01243 

 tailsσ  0.0068± 0.1697 

mµ= 58 coreσ
mµ= 88 weightσ

MM_Multiplexed_X_Included
 / ndf 2χ  346.9 / 207

 
tails

p  4.56± 59.16 

 
tails

µ  0.003006± -0.001368 

 
tails

σ  0.0047± 0.1512 

 
core

p  11.0± 858.2 

 
core

µ  0.0004775± 0.0008762 

 coreσ  0.00056± 0.04514 

[mm]
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

m
]

µ
[#

 o
f e

vt
s/

8

0

200

400

600

800

1000  / ndf 2χ  346.9 / 207

 
tails

p  4.56± 59.16 

 
tails

µ  0.003006± -0.001368 

 
tails

σ  0.0047± 0.1512 

 
core

p  11.0± 858.2 

 
core

µ  0.0004775± 0.0008762 

 coreσ  0.00056± 0.04514 

mµ= 45 coreσ

mµ= 77 weightσ

MM_Multiplexed_Y_Included

Nov	17,	2015 Theo	Alexopoulos,	NTU	Athens 27

Test of MM prototype with multiplexed readout strips 
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• Novel	idea	for	reducing	the	number	of	
elx channels	in	large	scale	experiments

• First	test	of	2-D	MM-MUX	by	a	factor	5
• Real	cluster	identification	requiring	

consecutive	strips	shows	very	good	
efficiency

• Spatial	reolutionmeasured	at	the	level	
of	63		μm
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• The ATLAS NSW Upgrade will enable the Muon Spectrometer to retain its excellent performance also
beyond design luminosity and for the HL-LHC phase

ü Deployment of a new Micropattern Gaseous Detector (MPGD) technology, Micromegas, for the first time in a
very large scale experiment.

ü Production of Micromegas planes to cover a total active area of 1200 m2!

• Extensive performance studies show that Micromegas fulfill the ATLAS requirements

ü Excellent spatial resolution (< 100μm) independent of the track incident angle.
ü Studies inside magnetic field do not show any sign of degraded performance. Chambers perform flawlessly

with magnetic field intensities up to 1T.

• First test of the ATLAS-like prototype (MMSW 4plet) was very successful

ü Reconstruction of the precision coordinate with an uncertainty of ~75 μm.
ü 2nd coordinate reconstruction using stereo readout strip configuration performs as expected, spatial resolution

2.2 mm.

Next years are expected to be even busier, series production, development of new electronics & testing,
following the NSW project schedule…

Summary
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Some History within ATLAS Experiment 
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§ The ATLAS micromegas project started in 2007 after a brain-storming meeting
organized at CERN by the ATLAS Muon System. In this meeting Ioannis
Giomataris presented the micromegas concept as a potential detector technology
for a future upgrade of the ATLAS muon system.

§ It is fair to say: Not too many people believed in it at this time … and it took a lot of
work to convince our colleagues in ATLAS of the contrary
§ “Too many sparks …”
§ “How to scale a detector of the size of a hand to several square meters?”

§ However, a few of us saw a number of promising features of this technology, in
addition to their excellent (not only high-rate) performance that had, by this time,
already been proven, e.g., in COMPASS.

§ As particularly strong points we saw:
§ Potential for industrial production
§ Relatively simple construction
§ Relatively low costs

§ So we started the MAMMA R&D activity to develop micromegas detectors for the
New Small Wheels of the ATLAS detector.
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