KLOE-2 CGEM-IT detector operation & performance E. De Lucia LNF- INFN for the KLOE-2 Inner Tracker Group

KLOE-2 at DAFNE

- Calorimeter System
 - EMC Lead / Scintillating
 Fibers w PMT

- Tracking System
 DC He-Iso 90-10
 3.7m x 4m Drift Chamber
- Superconductive Magnet
 0.52 T solenoidal field
- DAFNE φ-factory

 - \oplus 1 fb⁻¹ by Sep 2015

KLOE-2 at DAFNE

Calorimeter System \bigcirc

- ← EMC Lead / Scintillating Fibers w
 PMT Barrel and Endcaps
- LET / LYSO+SiPMs
- HET / Scint+PMTs
- QCAL Tungsten / Scintillating Tiles w SiPM Quadrupole Instrumentation
- CCAL LYSO Crystal w SiPM Lowbeta
- **Tracking System** \bigcirc
 - DC He-Iso 90-10
 - 3.7m x 4m Drift Chamber Inner Tracker - 4 Cylindrical GEM detectors
- Superconductive Magnet
 - 0.52 T solenoidal field
- DAFNE *q*-factory \bigcirc

 - ✤ RunI ended in July 2015 with 1 fb⁻¹

Erika De Lucia - 4th LNF Workshop on Cylindrical GEM Detectors -

- Physics program [EPJC 68 (2010)] \bigcirc Ks, η , η_s rare decays Quantum Interferometry
 - Dark photon search

November 17th 2015 Frascati

KLOE-2 CGEM Inner Tracker

- First batch ever of GEM foils produced with a single-mask etching technique developed by CERN-TE-MPE-EM and RD51 to produce large area foils
- 70 cm active length
- **25k** chan GASTONE FEE [NIM A 732 (2013)]
- ◎ 1600 HV channels
- © FEE DAQ system [JINST 08 T04004 (2013)]
- ◎ <mark>3/2/2/2 mm</mark> triple-GEM layout
- Ar/Iso:90/10 gas mixture
- 12000 gas gain
- ⁸ X₀ material budget
 ⁸

Kapton/copper multilayer flexible circuit built at CERN TE-MPE-EM (Tot thickness 300 µm)

X-view: longitudinal strips
V-view: connection of pads through conductive vias and a common backplane

IT Operation point optimization (I)

Cosmic-ray muon data:

- Monitor detector noisy/dead channels situation and mask them in DAQ
- © Extrapolate DC tracks to IT with straight-line approximation
- Look for reconstructed IT clusters close to expected positions from DC track

IT Operation point optimization (II)

Dips in the occupancy distribution show
 the micro-sector structure of GEM foils

Induction field increased from
kV/cm to 6 kV/cm

 $\rightarrow \varepsilon_{(6 \text{ kV/cm})} = 94\%$ **Cosmic-ray Muon Data** Losn Layer #1 χ^2 / ndf 3.855 / 2 0.8 p0 0.9771 ± 0.007135 p1 -0.5051 ± 0.04709 0.7 p2 0.07 ± 0 p0 = (97.7±0.7 0.0004 ± 0.6 -10 ± 0 $E_{IND} = 6 \text{ kV/cm}$ 0_5 5000 20000 Gain 10000 15000

Alignment & Calibration strategy (I)

1. NON-RADIAL TRACKS

The angle formed by a track and the orthogonal to the cathode influences the reconstruction at two levels: **shift & spread**

Alignment & Calibration strategy

1. NON-RADIAL TRACKS

The angle formed by a track and the orthogonal to the cathode influences the reconstruction at two levels: shift & spread

2. MAGNETIC FIELD

KLOE-2 0.52 T magnetic field is orthogonal to the electric fields of the triple-GEMs, introducing two effects: a **shift** $\Delta x(a_{T})$ and consequently a larger spread of the electron cloud.

1.4

B field (T)

1.2

Alignment & Calibration strategy (II)

- Osmic-ray muon data acquired with B-field OFF
 - Calibration of Non-radial track effect
 - Dedicated algorithm for DC straight track reconstruction
 - Select tracks crossing IT at 2 points
 - Corrections as a function of track parameters
 - Shifts and rotations to align the IT

Alignment & Calibration strategy (II)

- Cosmic-ray muon data acquired with B-field OFF
 - Calibration of Non-radial track effect
 - Dedicated algorithm for DC straight track reconstruction
 - Select tracks crossing IT at 2 points
 - Corrections as a function of track parameters
 - Shifts and rotations to align the IT

Cosmic-ray muon data acquired with B-field ON
 Calibration of Non-radial track & B-field effects
 Official KLOE-2 DC track reconstruction
 Select tracks crossing IT at 2 points

Apply corrections and Shifts and rotations from B-field OFF sample

Study and apply B-field effects corrections

Alignment & Calibration strategy (II)

- Osmic-ray muon data acquired with B-field OFF
 - Calibration of Non-radial track effect
 - Dedicated algorithm for DC straight track reconstruction
 - Select tracks crossing IT at 2 points
 - Corrections as a function of track parameters
 - Shifts and rotations to align the IT

Cosmic-ray muon data acquired with B-field ON
 Calibration of Non-radial track & B-field effects
 Official KLOE-2 DC track reconstruction
 Select tracks crossing IT at 2 points

Apply corrections and Shifts and rotations from B-field OFF sample

Study and apply B-field effects corrections

Bhabha scattering events

- Calibration of Non-radial track & B-field effects
- Apply corrections and Shifts and rotations from cosmicray muons with B-field ON sample

BOFF studies with cosmic-ray muons

Layer #4 residuals: starting point

BON studies with cosmic-ray muons

Layer #4 with corrections from B OFF

Layer4 cosmic-rays muons w B ON Before BOFF corrections After BOFF corrections

TOP/BOTTOM residual B-field effect in the transverse plane after BOFF corrections

Tracking with the IT

IT tracking with Kalman & DC (I)

- Starting with DC tracks
- ◎ IT Clusters reconstructed are added
- ◎ IT+DC Kalman filter
- Reconstruction procedure developed and tested with MC samples

Validation with cosmic-ray muon data & Bhabha scattering events
 Alignment and calibration parameters from B OFF/ON control samples

IT tracking with Kalman & DC (II)

OPPERIMINATE POINT OF CLOSEST APPROACH (PCA) of the track to beam-line
 without alignment and calibration for B-field & non-radial tracks

Bhabha scattering events

Conclusions

First CGEM detector used in high-energy physics experiment

Operation working point set.

Compromise between good efficiency and stable detector operation

Operation Detector Alignment and calibration.

Challenging. Never done before.

Control sample defined and clear path to final target set.

Resx $\approx 400 \ \mu m$ and Resy $\approx 250 \ \mu m$ preliminary results obtained with cosmic-ray muons with B-field Off

IT+DC tracking with Kalman filter

Reconstruction procedure developed and tested with MC samples. Validation with cosmic-ray muons and Bbhabha scattering events

SPARE SLIDES

IT Operation with collisions

2. Strip Multiplicity: Cosmic-ray muon vs Collisions data

