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Magnetic resonance fingerprinting
Dan Ma1, Vikas Gulani1,2, Nicole Seiberlich1, Kecheng Liu3, Jeffrey L. Sunshine2, Jeffrey L. Duerk1,2 & Mark A. Griswold1,2

Magnetic resonance is an exceptionally powerful and versatile measurement technique. The basic structure of a
magnetic resonance experiment has remained largely unchanged for almost 50 years, being mainly restricted to the
qualitative probing of only a limited set of the properties that can in principle be accessed by this technique. Here we
introduce an approach to data acquisition, post-processing and visualization—which we term ‘magnetic resonance
fingerprinting’ (MRF)—that permits the simultaneous non-invasive quantification of multiple important properties of
a material or tissue. MRF thus provides an alternative way to quantitatively detect and analyse complex changes that can
represent physical alterations of a substance or early indicators of disease. MRF can also be used to identify the presence
of a specific target material or tissue, which will increase the sensitivity, specificity and speed of a magnetic resonance
study, and potentially lead to new diagnostic testing methodologies. When paired with an appropriate pattern-recognition
algorithm, MRF inherently suppresses measurement errors and can thus improve measurement accuracy.

Magnetic resonance techniques such as NMR spectroscopy and
magnetic resonance imaging (MRI) are widely used throughout phy-
sics, biology and medicine because of their ability to generate detailed
information about numerous important material or tissue pro-
perties, including those reflective of many common disease states1–4.
However, in practice magnetic resonance acquisitions are often
restricted to a qualitative or ‘weighted’ measurement of a limited set
of these properties; the magnetic resonance signal intensity is almost
never quantitative by itself. The same material can have different
intensities in different data sets depending on many factors, including
the type and set-up of the scanner, the detectors used, and so on.
Because of this, the quantitative analysis of magnetic resonance results
typically focuses on differences between spectral peaks, spatial loca-
tions or different points in time. Even in clinical MRI today, a tissue or
material is typically referred to as being ‘hyperintense’ or ‘hypo-
intense’ compared to another area, which may not provide a quan-
titative indication of the severity of the differences, and may have
reduced sensitivity to global changes. Thus robust, fully quantitative
multiparametric acquisition has long been the goal of research in
magnetic resonance5–8. However, the quantitative methods developed
to date typically provide information on a single parameter at a time,
require significant scan time, and are often highly sensitive to system
imperfections. Simultaneous, multiparametric measurements are
almost always impractical owing to scan time limits and a high sens-
itivity to the measurement set-up and experimental conditions. Thus
purely qualitative magnetic resonance measurements remain the
standard today, particularly in clinical MRI.

Here we introduce a novel approach, namely MRF, that may over-
come these constraints by taking a completely different approach to
data acquisition, post-processing and visualization. Instead of using a
repeated, serial acquisition of data for the characterization of indi-
vidual parameters of interest, MRF uses a pseudorandomized acquisi-
tion that causes the signals from different materials or tissues to have a
unique signal evolution or ‘fingerprint’ that is simultaneously a func-
tion of the multiple material properties under investigation. The pro-
cessing after acquisition involves a pattern recognition algorithm to
match the fingerprints to a predefined dictionary of predicted signal
evolutions. These can then be translated into quantitative maps of the
magnetic parameters of interest.

MRF is related to the concept of compressed sensing9–12, and shares
many of its predicted benefits. For example, preliminary results show
that MRF could acquire fully quantitative results in a time comparable
to a traditional qualitative magnetic resonance scan, without the high
sensitivity to measurement errors found in many other fast methods.
Most importantly, MRF has the potential to quantitatively examine
many magnetic resonance parameters simultaneously given enough
scan time, whereas current magnetic resonance techniques can only
examine a limited set of parameters at once. Thus MRF opens the door
to computer-aided multiparametric magnetic resonance analyses,
similar to genomic or proteomic analyses, that could detect important
but complex changes across a large number of magnetic resonance
parameters simultaneously. When an appropriate pattern recognition
algorithm is used, MRF also provides a new and more robust beha-
viour in the presence of noise or other acquisition errors that may lead
to the near complete suppression of deleterious effects stemming from
these factors. Although we focus on demonstrating the feasibility for
MRI in this study, it is rather straightforward to translate these results
to other magnetic resonance fields, such as multiparametric NMR
spectroscopy, dynamic contrast enhanced MRI and dynamic suscepti-
bility contrast MRI13.

Generation and recognition of MRF signals
The key assumption underlying the MRF concept is that unique signal
evolutions, or fingerprints, can be generated for different materials or
tissues using an appropriate acquisition scheme. Here we demonstrate
that this is possible through the continuous variation of the acquisi-
tion parameters throughout the data collection. Variations in the pulse
sequence parameters during acquisition have been used previously in
MRI and magnetic resonance spectroscopy to reduce the signal oscilla-
tions14 and to improve the spectral response15–17. However, these varia-
tions were primarily used in a preparation phase or to make the signal
more constant. Randomized sampling patterns have also been used
previously to aid in the separation of spatiotemporal signals in moving
objects or substances with different resonance frequencies18–20. Here we
demonstrate that temporal and spatial incoherence required in MRF
can be achieved by varying acquisition parameters—such as the flip
angle and phase of radio frequency pulses, the repetition time, echo time
and sampling patterns—in a pseudorandom manner.
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After the data are acquired, the separation of the signal into differ-
ent material or tissue types can be achieved through pattern recog-
nition. In its simplest form, this process is analogous to matching a
person’s real fingerprint to a database: once a match is made, a host of
additional information about the person, such as name, address and
phone number, can be obtained simultaneously once the fingerprint
sample is identified. In MRF, this pattern recognition can take place
through many means. In the current implementation, we construct a
dictionary that contains signal evolutions from all foreseeable com-
binations of materials and system-related parameters—for example,
the longitudinal relaxation time, T1, the transverse relaxation time, T2

and off-resonance frequency are included in this study. Other pro-
perties could also be measured, such as diffusion and magnetization
transfer using the well-established Bloch equation formalism of mag-
netic resonance 21,22. Once this dictionary of possible signal evolutions
is generated, a matching or pattern recognition algorithm23,24 is then
used to select a signal vector or a weighted set of signal vectors from
the dictionary that best correspond to the observed signal evolution.
All the parameters that were used to build this signal vector in the
dictionary can then be retrieved simultaneously. At present, the cal-
culation of a complete dictionary containing the realistic range of T1,
T2 and off-resonance frequency requires only a few minutes on a
modern desktop computer.

It should be noted that there are near-infinite possibilities for MRF-
compatible pulse sequences. Other magnetic resonance parameters
of interest can be investigated by identifying pulse sequence compo-
nents that impart differential sensitivity to the parameters of interest.
Moreover, different components can be varied simultaneously, adding
the potential for a highly efficient experimental design that allows
almost any material characteristic visible using magnetic resonance
to be analysed in a quantitative way using MRF.

Validation of the concept
For a proof-of-principle implementation, an MRF acquisition based
on an inversion-recovery balanced steady state free-precession (IR-
bSSFP) sequence was used (Fig. 1a). This choice of this basic pulse
sequence was based on the extensive existing knowledge about IR-
bSSFP signal evolution, and its sensitivity to T1, T2 and off-resonance
frequency25. After each radio-frequency pulse, one interleaf of a vari-
able density spiral (VDS) read out26 was acquired, as shown in Fig. 1b.
Such a VDS trajectory has been used in fast imaging27 and for the
reduction of undersampling errors28. Two MRF acquisition patterns
with randomized flip angle and repetition time were used as shown in

Fig. 1c and d in separate scans to demonstrate the flexibility of the
choice of the acquisition parameters.

Figure 2a and b show the simulated signal evolution curves that
would be expected from four commonly encountered tissues of the
brain (fat, white matter, grey matter and cerebrospinal fluid) using the
schematic implementation shown in Fig. 1c and d, respectively. Each
tissue type has characteristic T1 and T2 values and thus each signal
evolution has a different shape, which confirms that it is possible to
satisfy this fundamental assumption in MRF. Note also that the signal
levels in these evolutions represent a large fraction of the equili-
brium magnetization (which is normalized to one in these figures.)
Conventional spoiled steady-state sequences typically generate signal
levels corresponding to 1–10% of the equilibrium magnetization.
Figure 2c and d show an acquired signal evolution curve from fully
sampled experiments on manufactured agar ‘phantoms’ and its match
to the dictionary by using the acquisition pattern shown in Fig. 1c and
d, along with the recovered T1, T2, proton density (M0) and off-
resonance frequency values. MRF was able to match the signal to
the corresponding dictionary entry and obtain the same T1 and T2

values from both sequence patterns. A video of the signal evolution
from a fully sampled in vivo scan is available (Supplementary
Video 1), demonstrating the oscillating nature of the MRF signal ob-
served in vivo.

Accelerated MRF acquisitions
In addition to simultaneously quantifying multiple parameters, the
error tolerance of MRF can be significantly better than that of con-
ventional MRI. Because MRF is based on pattern recognition in a
setting where the form of all predicted signal evolutions is known,
MRF should be less sensitive to errors during the measurement. This
is similar to conventional fingerprint recognition techniques, which
often contend with smudges and partial fingerprint information. In
particular, the interaction of the temporal and spatial incoherence
possible in MRF provides new opportunities to accelerate image
acquisition through rejection of spatial undersampling errors. In
order to test the limits of this acceleration, the same MRF sequence
as shown in Fig. 1a–c was modified to use only one spiral readout in
each acquisition block. Therefore, the data collected are only 1/48th of
the normally required data at each time point, resulting in a total
acquisition time of 12.3 s, corresponding to 1,000 sampled time
points. (See Fig. 3a and Supplementary Video 2.) The signal evolu-
tions from all 1,000 undersampled time points were used directly to
match one entry from the dictionary to quantify T1, T2, M0 and
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Figure 1 | MRF sequence pattern. a, Acquisition
sequence diagram. In each subsequent acquisition
block, identified by a repetition time index
(TR index; TR(1)...TR(N)), various sequence
components are varied in a pseudorandom pattern.
FA, flip angle. b, Here, one variable density spiral
trajectory was used per repetition time. The Fourier
coefficients sampled by the variable density spiral
trajectory (given by the coordinates kx and ky)
are rotated from one repetition time to the next.
c, d, Examples of the first 500 points of flip angle
and repetition time patterns that were used in
this study.
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off-resonance simultaneously, as shown in Fig. 3b. Because these
errors are incoherent with the expected MRF signals, they are largely
ignored by the following processing steps. Figure 3c–f shows that high
quality estimates of the magnetic resonance parameters are generated
even with this significant level of undersampling. White-matter, grey-
matter and cerebrospinal-fluid regions were then selected from the
resultant maps. The mean T1 and T2 values obtained from each region
are listed in Table 1 and are within the range of previously reported
literature values29–32. The shortened T2 value in CSF is probably due to
out-of-plane flow in this two-dimensional experiment. A similar
effect can also be observed in conventional T2 mapping techniques33.
We also note that the roughly 2220 Hz chemical shift of fat protons is
clearly visualized in the off-resonance map.

Motion error tolerance in MRF
Because motion is one of the most common sources of error in an MRI
scan, a motion-corrupted scan was performed using the accelerated
MRF acquisition described in the previous section. The subject was
instructed to randomly move his head for the last 3 s of a total 15-s
scan. Supplementary Video 3 shows the random motion as well as
severe undersampling artefacts in the reconstructed images. Figure 4
compares the quantitative maps from the data with and without the
motion-corrupted data. The maps acquired during motion show
almost no sensitivity to the motion, and show nearly the same quality
and anatomy as the maps from the motion-free data, thus indicating
that the signal changes resulting from motion were uncorrelated with
the evolutions included in the dictionary, and were largely ignored by
the pattern recognition algorithm.

Accuracy and efficiency of MRF
The accuracy and efficiency of the MRF acquisitions were compared
with alternative mapping strategies, namely, standard spin-echo
sequences34 as well as modern rapid combined T1 and T2 mapping
methods DESPOT1 and DESPOT2 (driven equilibrium single pulse
observation of T1 and T2, respectively)30 using manufactured agar
phantoms. Figure 5a compares the phantom T1 and T2 values from
these methods. The concordance coefficient correlations for T1 and T2

between MRF and spin-echo sequence were 0.988 and 0.974, respect-
ively. The concordance coefficient correlations for T1 and T2 between
DESPOT and spin-echo sequence were 0.956 and 0.914, respectively.

The high concordance correlation coefficients indicate that both
methods are in good agreement with standard spin-echo measurements,
and that MRF shows a better accuracy than DESPOT1 and DESPOT2.

The theoretical comparison of the efficiency from various mapping
methods has been presented35,36 and is based on a measure of precision
per square root of scan time. In those publications, DESPOT1 and
DESPOT2 were shown to have greater efficiency than all previously
known conventional and accelerated mapping strategies36. As can be
seen in Fig. 5b, MRF outperforms both DESPOT1 and DESPOT2 by an
average factor of 1.87 and 1.85, respectively. For example, at a T1 of
,1,280 ms, MRF shows an average efficiency for estimation of T1 of
24.2, whereas DESPOT1 has an average efficiency of 10.89. This means
that for this T1 value, MRF achieves a precision of 615.2 ms (or 1.2%)
in 12 s of scan time, whereas the precision in DESPOT1 would be
633.9 ms (or 2.6%) for the same scan time. The DESPOT methods
apparently display higher efficiency from the single phantom, with
T1 of 360 ms and T2 of 53 ms. However, in this one particular
phantom, DESPOT overestimated the values of T1 and T2 by 23%
and 42%, respectively, compared to the standard values, as can be seen
in Fig. 5a, thus causing an erroneous increase in the apparent effi-
ciency. Note that these efficiency estimates do not include the waiting
times between the acquisition of the different sub-sequences in
DESPOT, nor do they include the time required to reach steady state
during each acquisition, and thus should be viewed as conservative
estimates of the performance of MRF when compared to DESPOT1 or
DESPOT2.

Because there is no steady state in the signal evolution from MRF,
new information will be continuously added by longer acquisitions.
Figure 5c and d illustrates the changes of mean and standard deviation
as different acquisition times were used to quantify T1 and T2, with a
clear trend towards lower error at longer acquisition times. Thus one
can select a trade-off between precision and scan time.

Discussion and conclusions
The MRF concept presented here is a new approach to magnetic
resonance and provides many opportunities to extend such measure-
ments beyond their current limits. This originates from the unique
pulse sequence design concept in MRF, where the goal is to generate
unique signal evolutions that can be matched to theoretical signal evo-
lutions and subsequently yield underlying quantitative information
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Figure 2 | Signal properties and
matching results from phantom
study. a, b, Simulated signal
evolution curves corresponding to
four normal brain tissues using the
sequence patterns in Fig. 1c and d,
respectively, as a fraction of the
equilibrium magnetization. The curve
from white matter with off-resonance
is also plotted. c, d, Measured signal
evolutions from one of eight
phantoms using different sequence
patterns and their dictionary match.
The estimated T1, T2 and off-
resonance frequencies are 340 ms,
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about the material, tissue or pathology of interest. Because there is no
a priori requirement on the shape of the signal evolution curves, there
are more degrees of freedom in designing an MRF acquisition, where
parameters such as repetition time, echo time, radio frequency pulses
and sampling trajectories (among others) can be varied together to
produce the simultaneous sensitivity to numerous tissue properties.
The ability to analyse oscillating signals in MRF also provides the
opportunity to use larger fractions of the available magnetization than
methods that rely on a steady-state signal, which is a significant factor
contributing to the higher efficiency in MRF. In addition, the oscil-
latory signal in MRF allows one to sample more informative points
along a longer signal evolution as compared to conventional methods
which always reach a steady state level after some finite amount of

time. Specifically, our initial results here demonstrate that the effi-
ciency of MRF is approximately 1.8 times higher than the DESPOT
methods, which were previously the most efficient methods for the
measurement of relaxation parameters. Thus the direct prediction of
the oscillating, incoherent signal evolutions through the Bloch simu-
lation provides us the potential to obtain new quantitative informa-
tion that is impractical today because of the prohibitively long scan
times required, especially in biological samples and patients.

As demonstrated by the results shown here, MRF has the potential
to significantly reduce the effects of errors during acquisition through
its basis in pattern recognition. Acquisition errors may globally
reduce the probability of a match of an observed signal to any given
fingerprint, but as long as the errors do not cause another fingerprint
to become the most likely match, the correct quantitative identifica-
tion will still be made. Ideally, the sequence pattern will be designed so
that the various fingerprints from different tissues and materials are as
independent as possible, thus ensuring this robustness against motion
and other practical errors.

Commercial magnetic resonance scanners include methods to
minimize the effects of unavoidable system imperfections. However,
these inaccuracies are becoming increasingly important as mag-
netic resonance technology is pushed to its limits, such as the use
of very high magnetic fields or physically larger systems. MRF pro-
vides a route to model and account for system imperfections, such
as inhomogeneities in both the static magnetic field (B0) and the

Table 1 | In vivo data
T1 (ms) T2 (ms)

White matter (this work) 685 6 33 65 6 4
White matter (previously reported) 608–756 54–81
Grey matter (this work) 1,180 6 104 97 6 5.9
Grey matter (previously reported) 998–1,304 78–98
Cerebrospinal fluid (this work) 4,880 6 379 550 6 251
Cerebrospinal fluid (previously reported) 4,103–5,400 1,800–2.460

Shown are comparisons of MRF results and reference values29–32 in different brain regions.
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Figure 3 | MRF results from highly undersampled data. a, An image at the
5th repetition time out of 1,000 was reconstructed from only one spiral readout,
demonstrating the significant errors from undersampling. b, One example of
acquired single evolution and its match to the dictionary. Note the significant
interference resulting from the undersampling. a.u., arbitrary units. c–f, The
reconstructed parameter maps show a near complete rejection of these errors
based solely on the incoherence between the underlying MRF signals and the
undersampling errors; c, T1 (colour scale, milliseconds); d, off-resonance
frequency (colour scale, hertz); e, T2 (colour scale, milliseconds); and f, proton
density (M0) (normalized colour scale). These data required 12.3 s to acquire.
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applied radio frequency field (B1), by adding these parameters into the
dictionary simulation. Because both MRF and DESPOT2 are based on
a bSSFP sequence, which is known to be sensitive to field inhomo-
geneities30,37, Supplementary Fig. 2 compares the T2 maps acquired
from MRF and DESPOT2 from an in vivo scan. Because off-resonance
is not taken into account in the DESPOT2 model, the T2 map from
DESPOT2 shows areas of signal voids resulting from susceptibility
effects at the air–tissue interfaces. MRF naturally incorporates these
effects into the fingerprints, and thus the maps generated by MRF do
not show these errors. Thus MRF could, for example, provide higher
quality results using the current generation of magnetic resonance
scanners. Alternatively, MRF could also allow the design of lower cost
magnetic resonance scanners that can provide the same quality as
today’s high end systems through application of MRF models.

Because of its ability to provide quantitative results across many
parameters simultaneously, MRF could lead to the direct identi-
fication of a material, tissue or pathology solely on the basis of its
fingerprint. For example, many cancer cells show changes in multiple
magnetic resonance parameters (for example, T1, T2 and self-diffusion
tensor), a combination (though no single parameter) of which could
potentially characterize them as different from all surrounding normal
tissue types, and thus potentially separable. In an ideal situation, each
given material, tissue or pathology would have its own signal evolution
which would be orthogonal to all other signal evolutions. The MRF
concept also implies that completely different acquisition schemes
are possible in cases where one is only interested in the presence or
absence of a particular material or disease state. For example, one
could do a very rapid MRF scan of a bulk area of material or tissue

and compare the measured signal evolutions against the set of known
states of interest. This measurement could either indicate the presence
of the material or disease of interest, or indicate its absence within a
margin of error. This feature could result in very rapid and accurate
screening procedures. In particular, this feature may help to relax
the required spatial resolution of an MRI examination, thus increasing
the speed, and potentially reducing the cost, of such an examination.
A preliminary example of this kind of visualization is shown in
Supplementary Information Section 3. Using the MRF concept, the
operation of the magnetic resonance unit will also be greatly simpli-
fied, because the ‘all in one’ scan concept of MRF has the potential to
reduce the dozens of parameters currently presented to the magnetic
resonance operator to a simple ‘scan’ button.

It is important to note that the proof-of-principle implementation
of MRF shown here is but one of the many possibilities that could be
used for this technique, and both the sequence design/implementa-
tion and post-processing methods will continue to be a significant
open area of research, just as sequence design has advanced over the
decades since the conventional methods have been introduced. Other,
more advanced pattern recognition algorithms38–42 will probably
improve the performance of MRF. For spatially encoded MRI appli-
cations, the parameters retrieved from MRF are far fewer than the
number of pixels in the images, and because the signals generated
are largely incoherent, MRF has the additional potential to be highly
accelerated through combination with other compressed sensing
methods for accelerated spatial encoding, in addition to the now stan-
dard parallel imaging methods43–45, neither of which were included
here. Any of these methods would reduce the undersampling errors
seeing in Fig. 3a even before the pattern recognition step, which
should result in higher quality results. We have recently published
data indicating that we can achieve a reduction in imaging time of
about ten times for a two-dimensional slice using parallel imaging
alone43,45,46. Also, it should be noted that the proof-of-principle results
shown here only take advantage of two spatial dimensions for under-
sampling, whereas it is well known that taking full advantage of
undersampling in all three spatial dimensions gives higher perform-
ance than a two-dimensional acquisition owing to the reduced power
of the resulting errors at any given undersampling factor47. Thus a
combination of an optimized three-dimensional MRF pulse sequence
with parallel imaging and more advanced pattern matching algo-
rithms will allow realization MRF in very short scan times.

METHODS SUMMARY
Sequence design. After an initial inversion pulse, the sequence pattern shown in
Fig. 1c used a pseudorandomized series (Perlin noise48) of flip angle and a random
repetition time from 10.5 to 14 ms. The flip angle pattern in Fig. 1d contained
repeating sinusoidal curves with a period of 250 acquisitions and alternating
maximum flip angles. The repetition time was a Perlin noise pattern. The radio
frequency phase for both of the patterns alternated between 0 and 180u on
successive radio frequency pulses. The variable density spiral-out trajectory was
designed using minimum-time gradient design49.
Dictionary design. A total of 563,784 signal time courses, each with 1,000 time
points, with different sets of characteristic parameters (T1, T2 and off-resonance)
were simulated for the dictionary. One dictionary entry was selected for each
measured pixel location using template matching. In this case, the vector dot-
product was calculated between the measured time course and all dictionary
entries using complex data for both. The dictionary entry with the highest dot-
product was then selected as most likely to represent the true signal evolution. The
M0 value is then the multiplicative constant derived by fitting the acquired data to
this dictionary entry.
Data acquisition. All data were acquired on a 1.5-T whole body scanner (Espree,
Siemens Healthcare) with a standard 32-channel head receiver coil. Images from
each acquisition block were reconstructed separately using non-uniform Fourier
transform50. The resultant time series of images was used to determine the value
for the parameters (T1, T2, M0 and off-resonance) as described above.
Statistical analysis. Quantitative estimates of the errors and efficiencies of MRF,
DESPOT1 and DESPOT2 were calculated pixel-wise using a bootstrapped Monte
Carlo method51. The means and standard deviations of T1 and T2 along the 50
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DESPOT1 (c) and DESPOT2 (d) at different T1 and T2 values; efficiency is
assessed as precision per (acquisition time)1/2. MRF has an average of 1.87 and
1.85 times higher efficiency than DESPOT1 and DESPOT2, respectively.
e, f, Obtained values of T1 (e) and T2 (f) as a function of acquisition time. Data in
a–d show mean 6 s.d. of the results over a 25-pixel region in the centre of each
phantom, and are smaller than the symbols for most MRF results.
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repetitions were calculated, and averaged within a square (5 pixel 3 5 pixel)
region of interest for each phantom. The concordance correlation coefficients
and efficiency were calculated as in refs 30 and 52.

Full Methods and any associated references are available in the online version of
the paper.
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METHODS
Sequence design. After an initial inversion pulse, the first sequence pattern
shown in Fig. 1c used a pseudorandomized series (Perlin noise48) of flip angle
and a random repetition time between 10.5 ms and 14 ms based on a uniform
random number generator. A linear ramp was added to the flip angle train since
we have seen that this can increase differential sensitivity to both T1 and T2.

The second flip angle pattern in Fig. 1d used a series of repeating sinusoidal
curves with a period of 250 repetition times and alternating maximum flip

angles. In the odd periods, the flip angle (FA) is calculated as FAt~10z

sin (
2p
500

t)|50zrandom(5), where t is from 1 to 250, and random(5) is a func-

tion to generate uniformly distributed values with a standard deviation of 5. In the
even periods, we divide the previous period’s flip angle by 2. A 600 ms delay was
added between each of the periods to allow for both differential magnetization
recovery according to T1 and differential signal decay according to T2. In this case,
the repetition time was a Perlin noise pattern. The radio frequency phase for both
of the patterns in Fig. 1 alternated between 0 and 180u on successive pulses.

The variable density spiral-out trajectory was designed to have 5.8 ms readout
time in each repetition time and to have zero and first moment gradient com-
pensation using minimum-time gradient design49. (The code used for this design
is available at http://www-mrsrl.stanford.edu/,brian/mintgrad/). This trajectory
required one interleaf to sample the inner 10 3 10 region, while 48 interleaves
were required to fully sample the outer portions of k-space. During acquisition,
the spiral trajectory rotated 7.5u from one time point to the next, so that each time
point had a slightly different spatial encoding.
Dictionary design. The dictionary used in the matching algorithm was simulated
using MATLAB (The MathWorks). Signal time courses with different sets of
characteristic parameters (T1, T2 and off-resonance) were simulated. The ranges
of T1 and T2 for the in vivo study were chosen according to the typical physio-
logical limits of tissues in the brain: T1 values were taken to be between 100 and
5,000 ms (in increments of 20 ms below a T1 of 2,000 ms and in an increment of
300 ms above). The T2 values included the range between 20 and 3,000 ms (with
an increment of 5 ms below a T2 of 100 ms, an increment of 10 ms between 100 ms
and 200 ms, and an increment of 200 ms above a T2 of 200 ms). Since magnetic
resonance is sensitive to parts per million (p.p.m.) level deviations in the B0 field,
different off-resonance frequencies (1 Hz increment between 640 Hz, 2 Hz
between 640 to 680 Hz, 10 Hz between 690 to 6250 Hz, and 20 Hz between
6270 to 6400 Hz) were simulated for each combination of T1 and T2 parameters
to incorporate the effects of signal evolutions in different B0 fields. A total of
563,784 dictionary entries, each with 1,000 time points, were generated in 399 s on
a standard desktop computer. One dictionary entry was selected for each mea-
sured pixel location using template matching. In this case, the vector dot-product
was calculated between the measured time course and all dictionary entries
(appropriately normalized to each having the same sum squared magnitude)
using the complex data for both. The dictionary entry with the highest dot-
product was then selected as most likely to represent the true signal evolution.
The proton density (M0) of each pixel was calculated as the scaling factor between
the measured signal and the simulated time course from the dictionary. For this
experiment, four parameters were retrieved simultaneously from each of the
128 3 128 pixels using MRF. This calculation required about 3 min on a standard
desktop computer.
Data acquisition. All MRI and MRF data were acquired on a 1.5 T whole body
scanner (Siemens Espree, Siemens Healthcare) with a 32 channel head receiver
coil (Siemens Healthcare). A square field of view of 300 mm 3 300 mm was
covered with a matrix of 128 3 128 pixels. The slice thickness was 5 mm.
Images from each acquisition block were reconstructed separately using non-
uniform Fourier transform (NUFFT)50. The resultant time series of images was

used to determine the value for the parameters (T1, T2, M0 and off-resonance) as
described above.

In vivo experiments were performed with IRB guidelines, including written
informed consent. For the fully sampled spiral acquisition shown in Supplemen-
tary Video 1, 48 repetitions were acquired, each with a different interleaf of the
total acquisition. A recovery time of 5 s was used in between various acquisitions
and this was taken into account in the simulated dictionary.

For the phantom study shown in Figs 2 and 4, eight cylindrical phantoms were
constructed with varying concentrations of GdCl3 (Aldrich) and agarose (Sigma)
to yield different T1 and T2 values ranging from 67 to 1,700 ms and 30 to 200 ms,
respectively. Standard spin echo sequences were used to quantify T1 and T2

separately (T1 quantification: 13 repetition times (TRs) ranging from 50 to
5,000 ms, echo time TE 5 8.5 ms, total acquisition time 5 33.4 min; T2 quan-
tification: spin echo sequences with TEs 5 [15, 30, 45, 60, 90, 150, 200, 300,
400] ms, TR 5 10,000 ms, total acquisition time 5 3.2 h). T1 values were calcu-
lated pixel-wise using a standard three-parameter nonlinear least squares fitting
routine to solve the equation: S(TR) 5 a 1 beTR/T1. T2 values were determined in
a pixel-wise fashion using a two-parameter nonlinear least squares fitting routine
to solve the equation S(TE) 5 ae2TE/T2, DESPOT1 and DESPOT2 sequences
using a fully sampled spiral readout were implemented based on the acquisition
values from ref. 30: DESPOT1: FA: 4u and 15u, TR: 13.6 ms, DESPOT2: FA: 15u
and 55u, TR 5 10.8 ms. The T1 and T2 values were calculated from the equations
provided in ref. 30. A 20 s waiting period was used in between the different
acquisitions. The initial 10 s of data acquisition was not used in order to ensure
that the signal was in steady-state for each of the DESPOT acquisitions. In the
following analysis of efficiency, only the pure time of data acquisition for the
steady-state DESPOT images is used. For DESPOT1 this was 1.27 s and for
DESPOT2 it was 2.29 s (which includes the time for the required DESPOT1
acquisition.)
Statistical analysis. Quantitative estimates of the errors and efficiencies of MRF,
DESPOT1 and DESPOT2 were calculated pixel-wise using a bootstrapped Monte
Carlo method51. Two sets of raw data were acquired for each sequence: the
encoded signal and a separate acquisition that only contained noise. Fifty recon-
structions were then calculated by randomly resampling the acquired noise and
adding it to the raw data before reconstruction and quantification. The means and
standard deviations of T1 and T2 along the 50 repetitions were calculated, and
both were averaged within a 5 pixel 3 5 pixel square region of interest for each
phantom. The concordance correlation coefficients (rc) were calculated using the
equation52:

rc~
2S12

S2
1zS2

2z(Y2{Y1)2

where Y1 and Y2 denotes the T1 or T2 values from two different methods, n is

the number of phantoms, Yj~
1
n

Xn

i~1

Yij, S2
j ~

1
n

Xn

i~1

(Yij{Yj)
2, j~1,2 and S12~

1
n

Xn

i~1

(Yi1{Y1)(Yi2{Y2) .

The efficiency of the methods was calculated using:

Efficiency~
TnNRffiffiffiffiffiffiffiffi

Tseq
p , n~1,2

where TnNR is the T1 or T2 to noise ratio (defined as the T1 or T2 value divided by
the estimated error). Tseq is the total acquisition time for MRF, and the relevant
acquisition times for DESPOT1 and DESPOT2 (where the waiting times required
for the approach to steady state and the time between each of the DESPOT1 and
DESPOT2 scans to allow for complete recovery of magnetization were ignored).
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