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Introduction

Lung cancer is one of the main public health issues in developed countries.
The overall 5-year survival rate is only 10−16% [1–4], although the mortality
rate among men in the United States has started to decrease by about 1.5%
per year since 1991 and a similar trend for the male population has been
observed in most European countries.

By contrast, in the case of the female population, the survival rate is still
decreasing, despite a decline in the mortality of young women has been ob-
served over the last decade [5, 6].

Approximately 70% of lung cancers are diagnosed at too advanced stages for
the treatments to be effective [7]. The five-year survival rate for early-stage
lung cancers (stage I, see appendix A), which can reach 70% [8], is sensibly
higher than for cancers diagnosed at more advanced stages.

Lung cancer most commonly manifests itself as non-calcified pulmonary nod-
ules. The CT has been shown as the most sensitive imaging modality for the
detection of small pulmonary nodules, particularly since the introduction of
the multi-detector-row and helical CT technologies [9]. Screening programs
based on Low Dose Computed Tomography (LDCT) may be regarded as a
promising technique for detecting small, early-stage lung cancers [10,11]. The
efficacy of screening programs based on CT in reducing the mortality rate for
lung cancer has not been fully demonstrated yet, and different and opposing
opinions are being pointed out on this topic by many experts [12, 13].

However, the recent results obtained by the National Lung Screening Trial
(NLST), involving 53454 high risk patients, show a 20% reduction of mortal-
ity when the screening program was carried out with the helical CT, rather
than with a conventional chest X-ray [14].

LDCT settings are currently recommended by the screening trial protocols.
However, it is not trivial in this case to identify small pulmonary nodules,

13
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due to the noisier appearance of the images in low-dose CT with respect to
the standard-dose CT. Moreover, thin slices are generally used in screening
programs, thus originating datasets of about 300− 400 slices per study. De-
pending on the screening trial protocol they joined, radiologists can be asked
to identify even very small lung nodules, which is a very difficult and time-
consuming task. Lung nodules are rather spherical objects, characterized by
very low CT values and/or low contrast. Nodules may have CT values in
the same range of those of blood vessels, airway walls, pleura and may be
strongly connected to them. It has been demonstrated, that a large percent-
age of nodules (20− 35%) is actually missed in screening diagnoses [15].

To support radiologists in the identification of early-stage pathological ob-
jects, about one decade ago, researchers started to develop CAD methods to
be applied to CT examinations [16–23].

Within this framework, two CAD sub-systems are proposed: CAD for inter-
nal nodules (CADI), devoted to the identification of small nodules embedded
in the lung parenchyma, i.e. Internal Nodules (INs) and CADJP, devoted the
identification of nodules originating on the pleura surface, i.e. Juxta-Pleural
Nodules (JPNs) respectively.

As the training and validation sets may drastically influence the performance
of a CAD system, the presented approaches have been trained, developed and
tested on different datasets of CT scans (Lung Image Database Consortium
(LIDC), ITALUNG − CT) and finally blindly validated on the ANODE09
dataset.

The two CAD sub-systems are implemented in the ITK framework [24], an
open source C++ framework for segmentation and registration of medical im-
ages, and the rendering of the obtained results are achieved using VTK [25], a
freely available software system for 3D computer graphics, image processing
and visualization. The Support Vector Machines (SVMs) are implemented in
SVMLight [26]. The two proposed approaches have been developed to detect
solid nodules, since the number of Ground Glass Opacity (GGO) contained
in the available datasets has been considered too low.

This thesis is structured as follows: in the first chapter the basic concepts
about CT and lung anatomy are explained. The second chapter deals with
CAD systems and their evaluation methods. In the third chapter the datasets
used for this work are described. In chapter 4 the lung segmentation algo-
rithm is explained in details, and in chapter 5 and 6 the algorithms to detect
internal and juxta-pleural candidates are discussed. In chapter 7 the reduc-
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tion of false positives findings is explained. In chapter 8 results of the train
and validation sessions are shown. Finally in the last chapter the conclusions
are drawn.

The original contributions in this work are the following:

• The efficient implementation of the algorithm described in 5.5.2.

• The implementation of the CADJP, since it differs from [27, 28] in the
way the normals to the pleura surface are computed and the nodule
candidates are classified.

• New features are added to the classification procedure with respect to
the implementation described in [17,19,22], and a new classifiers SVM
is used.

• The lung segmentation described in chap.4 may be regarded as par-
tially original, since it puts together different pre-existing procedures
described in [29–31].

• Finally, the training and validation results are original parts.
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Chapter 1

Computed tomography

1.1 Computed Tomography

Computed tomography is a technique that allows to reconstruct a volume
starting from a finite number of projections, each obtained using X-ray in-
teraction with the target [32]. Modern Computed Tomography (CT) scanners
typically employ a helical technology to scan the patient body, i.e. the table
is translating while the X-ray source is rotating rapidly around the patient.
The effect of this operation is that, in the frame of the table, the X-ray tube
describes an helical path (see fig. 1.1.2).

Once reconstructed, a computed tomography chest exam is typically com-
posed of 300−400 two dimensional images (according to the patient’s height
and to the exam slice thickness). Each image is a slice of the reconstructed
chest volume (see fig. 1.1.2).

The two dimensional images are gray level images containing, for each volume
element, the reconstructed attenuation coefficient in Hounsfield Unit (HU).

The value in HU of a material X, is defined as

HUX =
µX − µH2O

µH2O
× 1000,

where µX is the X-ray linear attenuation coefficient of the tissue contained
in the voxel and µH2O is the attenuation coefficient of water.

The attenuation coefficients depend on the energy of the X-ray passing
through the material. Since the spectra of a X-ray tube (see fig. 1.1.1) is
not monochromatic, the HU value of each tissue is weighted at each energy

19



20 CHAPTER 1. COMPUTED TOMOGRAPHY

of the spectrum. Table (1.1) shows the HUs of some typical constituents of
human body tissue.

The CT images are typically anisotropic, i.e. the voxels have different physi-
cal dimensions vx, vy, vz with vx = vy ∼ 0.6mm (referred as 2D pixel spacing)
and vz > vx, vy (referred to as slice thickness) and vz varied, in the analyzed
cases, between 0.6 and 5mm.

The images are commonly stored in Digital Imaging and Communications in
Medicine format (DICOM), a standard for handling, storing, printing, and
transmitting information in medical imaging [33]. The DICOM files include
a full dictionary of metadata (i.e. slice thickness, patient ’s orientation etc.)
available together with the images.

Once the volume is reconstructed, it is possible to slice it in arbitrary planes.
The most common planes for the visualization are those associated with the
principal axes of the patient (see fig. 1.1.3).

In the X-ray tube (see fig. 1.1.1), a beam of electrons is first accelerated
through a potential gap and then decelerated by hitting a solid piece of
metal with a high atomic number. The electron beam is generated using
a filament heated by Joule effect, which then emits electrons through ther-
moionic emission.

The electrons are then accelerated across a potential gap, spanning between
40 kV to 150 kV, then strike the metallic target and produce X-ray radiation
by bremsstrahlung and characteristic radiation.

The lower energy X-rays are absorbed within the X-ray tube, thus reducing
the number of lower energy particles in the resultant spectrum. The theo-
retical and “real like” spectra of an X-ray source for a thick target are shown
in fig. 1.1.1.

The main advantages of CT over the ordinary radiography consists in the
resolution obtained in the exam and in a fully 3D reconstruction of the volume
of interest. However, a higher resolution has to be paid in terms of a higher
radiation dose delivered to the patient.

There are plenty of parameters to roughly estimate the dose delivered by
a CT exam, the most important are those related to the X-ray tube: the
kV and the mAs. The kV is the value of potential gap that accelerates the
electrons in the X-ray tube, corresponding also to the maximum energy of
the photon emitted by bremsstrahlung, while the mAs are an abbreviation
for milli-ampere per second and are the product between the filament current
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(a) (b)

Figure 1.1.1: a) Example of bremsstrahlung and characteristic
radiation spectra for different kV and mAs. b) Scheme of an X-ray
vacuum sealed tube, with a rotating anode.

Table 1.1: Hounsfield Units of some constituents of human body.

Substance HU

Air -1000
Fat -120

Water 0
Muscle +40
Bone +400 or more

Pure lung tissue 50
Lung Parenchyma -600

and exposure time. There is no direct relation between dose and image noise,
however the noise generally decreases while increasing the dose.

1.2 Equivalent and effective dose

Ionizing radiations cause an energy transfer to the target that is described
by the quantity dose. In the international System of Units (SI) the dose
is expressed in gray (Gy) where the gray is defined as the absorption of
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(a) (b)

Figure 1.1.2: a) Path described by the X-ray tube in helical CT b)
The slices generated by a computed tomography exam.

(a) Axial Slice (b) Coronal Slice (c) Sagittal Slice

Figure 1.1.3: Three orthogonal projections of a CT scan.
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Table 1.2: Table showing the value of wr for alpha, beta and gamma
radiations.

Radiation type wr

alpha 20
beta 1

gamma 1
protons (>2MeV) 5

one joule of ionizing radiations by one kilogram of matter. For a given dose
radiations of different quality will induce different biological effects, e.g. one
gray deposited by an alpha particle has a very different effect compared to
one gray deposited by X-rays. For this reason a physical quantity called
equivalent dose has been introduced:

H = wrD,

where D is the dose in gray and wr is a weighting factor that measures the
particles delivering the dose. The unit of H is the sievert (Sv). Table 1.2
shows wr for alpha, beta and gamma radiations.

Since biological damage depends on the targeted organ, it is possible to define
a physical quantity that accounts for different types of tissue

E =
N
∑

t=0

wtHt

where wt are the weighting coefficients for different tissues and Ht the equiv-
alent dose. E is referred to as effective dose and it is measured in sievert.
Table 1.3 shows wt values for different tissues and effective doses delivered
in different examinations.

1.3 Lung anatomy as seen in a CT chest exam

The lungs are a pair of spongy, air-filled organs located on either side of
the chest and are wrapped in a thin tissue layer called pleura. As shown in
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Table 1.3: a) Weighting factor wt for different tissue [32] b) Effec-
tive dose delivered by different examinations [14, 34].

(a)

Tissue wt

Lungs 0.12
Stomach 0.12

Skin 0.01
Gonads 0.2

(b)

Examination Effective dose (mSv)

Chest X-ray 0.1
Head CT 1.5
Chest CT 8

Low dose chest CT 1.5
Screening Mammography 3

fig. (1.3.1), the right lung is divided into three lobes whereas the left one is
divided into two. The physical boundaries between lobes are called fissures.

The trachea conducts inhaled air into the lungs through its tubular branches,
called airways. The trachea is clearly visible in a CT chest exam as a tubular
air-filled structure, near the head of the patient (see fig. 1.3.2).

Two branches of the airways, one for each lung, start from the trachea, and
divide into smaller branches, finally becoming microscopic.

As reported in [35,36], there are typically 23 generations of airways, and the
relation between the trachea diameter d0 and the diameter dn of nth branch
follows the scaling law:

dn = d02
−n

3 . (1.3.1)

The eq. 1.3.1 holds up to the 16th generation, after this generation the diame-
ter of the airways remains approximatively constant until the 23th generation.

According to the data reported in [36], the diameter of the trachea for adult
subjects is (18±2)mm, this number may slightly differ according to patient’s
sex, age and height. Using eq. (1.3.1) for the first generation of airways, a
diameter of (14± 1.6)mm is found.

In a CT scan, a lot of structures are clearly visible; the most important
are the lungs, ribs, trachea, esophagus, heart, fissures, blood vessels and the
airway walls. In the CT slice shown in fig. (1.3.2) some of the mentioned
organs are labeled.
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Figure 1.3.1: Figure representing the lung anatomy.
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Figure 1.3.2: Slice of a chest CT exam. The principal organs and
structures are labeled: 1) Air outside the patient’s body, 2) Right
lung, 3) Left lung, 4) Table of the scanner, 5) Trachea and large
airways, 6) Esophagus, 7) Rib, 8) Sternum, 9) Blood vessels, 10) Fat
tissue (patient’s body), 11) Spine, 12) Scapula.



Chapter 2

Computer Aided Detection
systems

2.1 What is a Computer Aided Detection (CAD)
system?

CAD is a procedure that assists radiologists in the interpretation of medical
images. Imaging techniques such as X-ray, MRI, and Ultrasound diagnostics
yield plenty of information, which the radiologist has to analyze and evaluate
comprehensively in a short time. CAD systems can help reading digital
images, e.g. highlighting zones of the images which are suspected to contain
a radiological sign of pathology (see fig. 2.6.1(b)).

CAD is a relatively young interdisciplinary technology combining elements
of artificial intelligence and digital image processing with radiological image
processing. A typical application is the detection of a tumor. Some hospitals
use CAD to support radiologists in screening programs, e.g. as in mammog-
raphy (for the diagnosis of breast cancer), and virtual colonoscopy (for the
detection of polyps in the colon).

2.2 The role of CAD in a screening program

Screening is a strategy used in a high risk and asymptomatic population to
detect a disease in individuals in absence of signs or symptoms of that disease.

27
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The purpose of a screening program is to identify a disease in early stage,
thus enabling earlier intervention and management in the hope to reduce
mortality and suffering from that disease. Although screening may lead to
an earlier diagnosis, not all screening tests have been shown to benefit the
population being screened; over-diagnosis, misdiagnosis, and creating a false
sense of security are some possible negative effects of screening. For these
reasons, a test used in a screening program, especially for a disease with low
incidence, must have good specificity in addition to good sensitivity [37].

In a lung cancer screening context, it might be possible to use a CAD system
in different modes to improve radiologists’s work, in particular the most
common modalities are known as “first reader“ and “second reader”.

In first reader mode, the radiologists are allowed only to modify CAD find-
ings. This mode is convenient when radiologists are asked to review a lot of
images, most of those non pathological. Used in first reader mode the CAD
is able to reduce reading time, and to prevent fatigue and inattentions. The
main limitation of the first reader mode is that the radiologists’ upper bound
on the sensitivity is given by the CAD performance. For this reason the use of
a CAD as first reader is advised against in general, and limited to the use as
an “image sorter”: the cases are selected by the CAD in order to be presented
to radiologists, at first, those which are more probably pathological.

The most common use of a CAD system is the second reader mode. In the
second reader mode, first radiologists read the exam “traditionally” and then
with the help of the CAD. In principle this mode is slower than the first
reader and the “traditional” modes, so this modality is acceptable only if it
implies an enhancing of sensitivity at an acceptable rate of false positives.

2.3 How to evaluate a CAD performance

During the development and the validation of a CAD system, it is necessary
to have a tool to compare its performance with those of other CADs or hu-
man readers. For this purpose, it is common to use two different figures of
merit: Receiver Operating Characteristic (ROC) and Free Receiver Operat-
ing Characteristic (FROC) curves (see fig. 2.3.1), according to the task to be
evaluated [38].

In this section, the word “observer”, may refer both to CADs and to human
readers, since the same considerations apply to both cases.
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(a) ROC (b) FROC

Figure 2.3.1: Examples of ROC and FROC curves.

The ROC curve is used when binary classification is required, e.g. when an
observer is asked to separate highly suspicious images for cancer from non
pathological images. For such a kind of task, the observer is not asked to
give only a binary answer, but to provide also a degree of suspicion p, e.g. a
number in the [0, 1] range, representing the confidence of its choice.

Once a set of images is processed by the observer, it is possible to evaluate its
performance, varying a threshold t between 0 and 1, and evaluating for each
t the number of True Positive (TP), False Positive (FP), True Negative (TN)
and False Negative (FN) findings, with p ≥ t (see tab. (2.1)).

The ROC curve is obtained, evaluating the sensitivity = TP/(TP+FN) and
the specificity = TN/(TN + FP) for each t, and plotting the sensitivity vs
(1− specificity).

The Area Under the ROC curve (AUC) is a good estimate of the observer
performances, since its value is equal to the probability that a randomly
chosen positive example is ranked higher than a randomly chosen negative
example [39].

However, the ROC curve is not an optimal tool to evaluate tasks where the
spatial identification of lesions is not trivial. For example, identifying all the
lung nodules in a CT scan is not trivial, since there are lots of structures
that mimic nodules and real nodules may be very subtle to detect.

To evaluate such a kind of task, it is necessary to include the identification
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Table 2.1: Table showing all the possible outcomes of a test.

Test result Gold standard

Positive Negative

Positive True Positive False Positive
Negative False Negative True Negative

in the evaluation of the observer performances. This operation is typically
carried out with the FROC analysis. In FROC the observer is asked to
provide both a location and a degree of suspicion for each identified lesion.

If an annotated mark is not close enough to “real lesions”, the mark is regarded
as a FP. The main difference between the FROC and the ROC analysis, is
that in the FROC the reader is free to annotate, in principle, an unlimited
number of lesions. For this reason, it is not straightforward to compare two
FROC curves as in the case of ROC curves. The FROC curve is obtained
plotting the sensitivity versus the number of FP, similarly as for the ROC
curve.

In this thesis, the FROC curves are compared using the criterion proposed
in [17]: the values of sensitivity at seven predefined FP/CT rate (1/8, 1/4,
1/2, 1, 2, 4, 8) are averaged. The FROC analysis requires a localization
criterion to be defined. In this thesis, a mark is considered corresponding to
a nodule if its Euclidean distance from the annotated center is less than 1.5
times the radius of the annotated nodule.

2.4 The problem of the “gold standard”

In order to carry out FROC and ROC analysis, it is necessary to have a
quality reference standard to compare with the method to be tested. In par-
ticular, to assess the performance of CAD systems for lung nodule detection,
the list of nodule locations annotated by radiologists is needed.

The creation of the reference standard is carried out using the so called
“gold standard”, i.e. the most accurate exam that is able to detect a certain
pathology.
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Opposite to other cases, e.g. breast cancer, the “gold standard” for detection
of lung cancer cannot be based on histological exams, since lung biopsy is
a dangerous procedure for the patient, and it is carried out only for big
nodules and nodules strongly suspected to be cancer. Therefore, in principle,
the biopsy would not be applicable to detect early cancers in asymptomatic
population.

For this reason, the most accurate and less invasive exam for early lung
cancer detection is a chest CT red by expert radiologists. However, since
the inter-reader variability is very high for this kind of task, the problem of
finding a “gold standard” for a certain number of cases is not as easy as it
might seem in principle. this problem many solutions were proposed, but the
discussion on this topic is nowadays still open.

The most common choice to create a reference standard is to form a panel
of experts to review each scan, first independently and then, in case of dis-
agreement, to jointly come together to arrive at a consensus decision. This
solution is very difficult to apply in many cases and consensus panels are
frequently believed to reflect the opinion of the “strongest” member of the
panel [40]. Moreover, in forced consensus studies the inter-reader variability
is completely lost.

To overcome these problems, the Lung Image Database Consortium (LIDC)
[41] adopted a new reading modality. The LIDC designed a two-phase data
collection process that allows multiple expert readers to review each CT scan,
first independently (reading phase) and then, with their own and all the
blinded annotations of the other readers (unblinded reading phase). Using
this method, readers are free to adjust their own annotations without being
forced to change them. At the end of this procedure there is no forced
consensus, and the final reports contain, separately, for each case, all the
unblinded marks of all the readers.

2.5 CAD system architecture

It is convenient, for detection purpose, to divide lung nodules in two differ-
ent categories, according to their location and morphology: internal nodules
and juxta-pleural nodules. Internal nodules (see fig. 2.5.1) originate in the
lung parenchyma and can be regarded as spherical objects fully embedded
into it, whereas juxta-pleural nodules (see fig. 2.5.2) originate on the pleural
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(a) Rendering of the internal part
of lung, in red is shown an internal
nodule

(b) A CT image containing an in-
ternal nodule

Figure 2.5.1: Pictures representing an internal nodule.

surface and can be modeled as hemispherical objects. Since these two main
categories are very different, the proposed approach implements two different
procedures, each devoted to the identification of one typology of nodules:

• CADI for the identification of internal nodules;

• CADJP for the identification of juxta-pleural nodules.

The two CADs share the lung segmentation procedure described in chap.4.
After the lung segmentation two procedures devoted to the identification of
internal and juxta-pleural nodule candidates are implemented. The proce-
dure to detect internal nodules candidates is described in chap.5, and it is
based on a Hessian eigenvalues algorithm. The procedure to detect juxta-
pleural candidates is described in chap.6 and it is based on the detection
of candidates trough pleura surface normals. After the candidate detection,
the classification procedures described in chap.7 are implemented. Finally
the two CADs system are combined using the procedure described in 8.4. In
fig. 2.5.3 a flowchart of the two CAD system procedures is shown.
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(a) Rendering of the pleura surface,
in green is shown a juxta-pleural
nodule

(b) A CT image containing a juxta-
pleural nodule

Figure 2.5.2: Pictures representing a juxta-pleural nodule.

2.6 OsiriX plugin

In order to allow the annotation of the images and the visualization of the
CAD findings, a dedicated plugin for the OsiriX DICOM viewer [42] has
been implemented within the Cocoa environment of MacOSX. OsiriX is an
open source DICOM image processing and visualization software for different
imaging types, e.g. Magnetic Resonance Imaging (MRI), CT, Positron Emis-
sion Tomography (PET), PET-CT, Single Photon Emission Tomography
(SPECT)-CT, Ultrasounds, etc., which allows a simple mechanism for writ-
ing plugins that expand its functionalities. The plugin allows annotating
nodules and visualizing in different colors the separate CAD sub-system re-
sults, their combination and the radiologists’ annotations. A screenshot of
the plugin is shown in fig. 2.6.1.

Using the plugin, radiologists can visualize and process the CT data using all
the tools included in the OsiriX software (zooming, changing the intensity
windowing, browsing slices, Maximum Intensity Projection (MIP) projec-
tions, etc.), identify nodules and annotate them. The annotations consist of
simple circular Region of Interests (ROIs), identified by their center and ra-
dius. Using the sliders it is also possible to select a working point, to visualize
only findings above the selected thresholds.
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Figure 2.5.3: Flowchart of the CAD sub-systems for internal nodule
and juxta-pleural nodule detection.
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(a) (b)

Figure 2.6.1: a) Screenshot of an image as seen in the OsiriX
software. b) A nodule annotated by the CAD system. The plugin
window is visible in the right part of the image.
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Chapter 3

Datasets

3.1 Introduction

As discussed in sec.2.4, to obtain a reliable annotated dataset of CT may re-
quire a lot of effort. Therefore, it is natural to consider the data acquisition
and annotation procedure a very important part of a CAD system develop-
ment. Data coming from clinical environment are often not suitable to train
or validate a CAD, since annotations provide qualitative explanation of the
lesion position and type. For this reason, and many others, the typical choice
to develop a CAD system is to rely on public datasets.

Results obtained on public datasets have the advantage to be directly com-
parable with those present in literature, therefore, for scientific works, public
datasets should be preferred. In this thesis three datasets, two of which are
public, are used to train and to validate the proposed CAD scheme: the
ITALUNG − CT, the LIDC and the ANODE09 database.

3.2 The ITALUNG− CT database

The presented CAD system has been originally developed and trained on a
subset of the ITALUNG − CT database, collected by the Pisa center of the
ITALUNG−CT trial, which is the first Italian randomized controlled trial for
the screening of lung cancer [43]. The CT scans were acquired with a 4-slice
spiral CT scanner (Siemens Volume Zoom) according to a low-dose protocol
(tube voltage: 140 kV, tube current: 20 mA, mean equivalent dose 0.6 mSv),
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(a) Histogram of diameters of the inter-
nal nodules.

(b) Histogram of the diameters of the
juxta-pleural nodules.

Figure 3.2.1: Diameter of the nodules annotated in the 20
ITALUNG− CT CT scans.

with 1.25 mm slice collimation. Each scan is stored in DICOM format. Slices
were reconstructed at 1 mm thickness, using a medium sharp reconstruction
kernel (Siemens B50f). The number of slices per scan is approximately 300,
each slice being a 512 by 512 pixel matrix, with pixel sizes ranging from 0.53
to 0.74 mm and 12 bit gray levels in Hounsfield Units. The annotations were
marked by experienced radiologists participating to the Italian MAGIC-5
research project [44]. In this thesis, a dataset of 20 CT scans, containing
23 internal nodules and 15 juxta-pleural nodules with the size distribution
shown in fig. 3.2.1, is used.

3.3 LIDC database

The LIDC database is the largest collection of annotated and publicly avail-
able CTs. LIDC is a multi center and multi manufacturer database, with
cases of different collimation, kV and tube current and reconstructed with
different slice thickness.

On the contrary to the previous release of the LIDC database, where the
annotations were obtained by a forced consensus among different readers,
in the current release, to capture the inter-reader variability, four different
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annotations made by four expert radiologists for each case in a two phase
reading modality are provided, as explained in sec.2.4.

The LIDC annotations contain three kinds of objects [45]: nodules with di-
ameters ≥ 3 mm, nodules with diameters < 3 mm and “non nodules” with
diameters > 3 mm. The contours of the objects marked as nodules with
diameters ≥ 3 mm are provided for every reader together with eight subjec-
tive characteristics in a 1− 5 scale: subtlety, internal structure, calcification,
sphericity, margin, spiculation, texture, malignancy. For nodules with diam-
eters < 3 mm and non nodules with diameters > 3 mm only a centroid is
provided and no information on the size is available.

However, for a detection purpose LIDC data are redundant, since only a
centroid and an estimate of the lesion size are needed.

Starting from the annotated contours, it is possible to obtain the information
needed with many different algorithms. However, in order for the results to
be directly comparable with those of literature, the annotations provided
by the Cornell University [46] are used. These annotations are built with
the purpose to be a reference standard to compare results of different data
groups, and are generated according to the prescriptions given in [47].

First, the correspondence among contours drawn by different readers are eval-
uated: a mask containing all the lesion voxels is generated starting from each
contour, then the masks with at least one voxel in common are considered
referring to the same object.

To evaluate the center and the dimension of a lesion, first each contour re-
ferring to a lesion is assigned a center of mass, then the median value of the
center in each direction provides the center of the lesion.

To estimate the size of the lesion, the volume of voxels contained in each
contour is evaluated, and the median volume is considered the volume of the
lesion. To obtain an estimation of the nodule size, the diameter of the sphere
having the same volume as the nodule estimated volume is evaluated, i.e.

diameter = 2 ·
(

3 · V
4π

)
1
3

where V is the estimated volume of the lesion.

It is common to report the results on this database using four Agreement
Level (AL) among the single reader annotations, i.e. considering the nodules
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Table 3.1: Number of nodules in the datasets LIDC1 and LIDC2

divided by category.

Dataset Internal Nodule (IN) (relevant/irrelevant) Juxta-Pleural Nodule (JPN) (relevant/irrelevant)

LIDC1 137 (96/41) 72 (42/30)
LIDC2 137 (95/42) 36 (19/17)

Table 3.2: Number of nodules in the datasets LIDC1 and LIDC2

divided by AL.

Dataset AL 1 AL2 AL3 AL4 number of CTs

LIDC1 209 138 98 67 69
LIDC2 173 114 86 42 69

annotated by at least one (AL1), two (AL2), three (AL3) and four radiologists
(AL4).

At present, the LIDC database contains 1000 CTs. However, in this thesis,
only 138 CT scans are used. The 138 CTs result from selecting cases with
slice thickness ! 2 mm, without contrast media and annotation included
in the Cornell University report. The 138 CTs were divided in two subsets
named LIDC1 and LIDC2, consisting of 69 CTs each.

Nodules with AL1 are referred to as irrelevant in this thesis, since all the
training procedure is carried out using nodules with at least AL2.

Table 3.1 shows the number of nodules contained in the two subsets, divided
into two categories. Table 3.2 shows the agreement level for the datasets
LIDC1 and LIDC2. In fig. 3.3.1 the slice thickness of the two subsets are
shown.

Figures 3.3.2 and 3.3.3 show the nodule diameter distributions for relevant
and irrelevant nodules. Since the LIDC annotations provide no information
on the nodule typology, the nodules are divided in two categories, namely
internal or juxta-pleural, on the basis of visual assessment.
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(a) Slice thickness distribution of the LIDC1

dataset.
(b) Slice thickness distribution of the LIDC2

dataset.

Figure 3.3.1: Slice thickness of the CT scans of LIDC1 and LIDC2

datasets.

3.4 ANODE09 database

The ANODE09 [48] is an international initiative devoted to compare objec-
tively different CAD systems, able to perform automatic detection of pul-
monary nodules in chest CT scans on a single common database, with a
single evaluation protocol. Data is provided by the Nelson study, the largest
CT lung cancer screening trial in Europe. The images, acquired according
to a low dose protocol, have slice thickness between 0.7 and 1 mm and an
average number of slices equal to 430. Any team, whether from academia
or industry, can join this study. The database of this study consists in five
example CTs with publicly available annotations and 50 low dose thin-slice
CT scans without public availability of the annotations. The 50 CTs are
intended as a validation dataset, so it is forbidden to use these data to train
any CAD system. The only information known about the 50 CTs, is the
distribution of the nodule diameters: 40% of the nodules are below 4 mm in
diameter, 40% have a diameter between 4 and 6 mm and 20% are larger.

Since annotations for the 50 CT scans are not publicly available, all the
findings must be inserted in a file together with their coordinates and degree
of suspicion, and uploaded to the ANODE09 website [48], to receive in return
the FROC curves.

The FROC is evaluated using the same criterion used in this thesis, which
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(a) LIDC1 relevant nodule distribution. (b) LIDC1 irrelevant nodule distribu-
tion.

(c) LIDC2 relevant nodule distribution. (d) LIDC2 irrelevant nodule distribu-
tion.

Figure 3.3.2: LIDC1 and LIDC2 internal nodule size distributions.
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(a) LIDC1 relevant nodule distribution. (b) LIDC1 irrelevant nodule distribu-
tion.

(c) LIDC2 relevant nodule distribution. (d) LIDC2 irrelevant nodule distribu-
tion.

Figure 3.3.3: LIDC1 and LIDC2 juxta-pleural nodule size distribu-
tions.
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(a) Relevant nodule distribution. (b) Irrelevant nodule distribution.

Figure 3.4.1: Diameters of the nodules contained in the five exam-
ple CTs of the ANODE09 dataset.

allows for a direct comparison.

As discussed in sec. 2.3, to extract a single score value from the FROC curve,
the average sensitivity at seven predefined false positive rates is computed:
1/8, 1/4, 1/2, 1, 2, 4, and 8 FP/CT. This value is referred to as Free Receiver
Operating Characteristic Score Value (FROCSV) in the following sections.

The nodules of the ANODE09 dataset are divided into six categories ac-
cording to their location and shape, thus allowing a more accurate scoring
of each category independently: nodules bigger than 5 mm, nodules smaller
than 5 mm, isolated nodules, juxta-pleural nodules, juxta-vascular nodules
and peri-fissural nodules.

The dataset contains also irrelevant findings, i.e. findings that are counted
neither as FP nor as TP in the evaluation of the FROC curve. There are three
types of irrelevant findings: findings that mimic a nodule but that an expert
observer believes not to be a nodule, nodules with benign characteristics and
nodules that are too small to be relevant.

The nodules contained in the five example CTs were divided, according to
visual assessment, into internal nodules and juxta-pleural nodules, thus re-
sulting in 36 relevant internal nodules and only three relevant juxta-pleural
nodules.



Part II

Image analysis algorithms

45





Chapter 4

Lung segmentation

4.1 Introduction

In computer vision, segmentation refers to the process of partitioning a digi-
tal image into multiple segments, i.e. sets of pixels. The goal of segmentation
is to simplify and/or change the representation of an image into more mean-
ingful and easier information to analyze. In this case, the lung segmentation
module of the CAD is essential to avoid marking findings outside lungs,
and to provide an accurate representation of the pleura surface, necessary
to detect juxta-pleural nodules. Since segmentation methods always rely on
anatomical models, the information provided in sec. 1.3 is often used in this
chapter.

The chapter is organized as follows: first, the image preprocessing and the
algorithm to find low intensity voxels inside the patient body are shown, then
the algorithm for the trachea and large airways segmentation and then the
algorithm to separate the lungs and to fill vessels and airways are described,
finally, the results obtained on a subset of the LIDC dataset are shown.

4.2 Image preprocessing

Shape identifier and morphological algorithms are designed to work better
with isotropic images, i.e. images with cubic voxels. However, as it is dis-
cussed in sec. 1.1, CT images are typically anisotropic. To improve the
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performances of morphological and shape identifier filters, an isotropization
procedure is implemented.

Among many possible and arbitrary choices to resample the CT volume, it
was chosen to resample the image in order to obtain a spacing of 1 mm and to
smooth the image with a Gaussian kernel proportional to the original spacing
of the images, as suggested in [24, 49].

4.3 Identification of low intensity voxels inside
the patient’s body

To identify the low intensity voxels inside the patient body, a procedure
similar to [29] is implemented. This procedure consists in a simple thresh-
olding [50] between Sup = −600HU and Slow = −1000HU followed by a
tridimensional connected component labeling. Then, searching the biggest
connected component not lying on the boundary of the volume (see fig. 4.3.1)
provides the lungs together with air voxels contained in the trachea and the
large airways. If two connected components, with a volume ratio of at least
0.5 are found, the algorithm goes to the “vessel and airway walls removal”
and the lungs are considered to be separated.

The output of this procedure is a mask M where the low intensity voxels are
labeled as foreground, i.e. are set to 1, while the rest of the image is labeled
as background, i.e. is set to 0.

As shown in fig. 4.3.2, the air voxels inside the trachea act as a bridge between
the two lungs. To obtain the segmentation for each lung separately, it is
necessary to segment out from M the trachea and the large airways.

4.4 Trachea segmentation

Trachea segmentation is a relatively common task in lung CT segmentation.
There are plenty of algorithms available in literature to segment trachea, the
presented approach is a mixture of different elements, with the purpose of
roughly identifying the trachea and the large airways connected to it.
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(a) (b) (c)

Figure 4.3.1: Steps of the identification of the low intensity voxels
inside the patient’s body a) Thresholding between Sup and Slow: the
low intensity voxels are labeled as foreground b) Connect component
and labeling operation. The labels are shown in different gray levels
c) Selection operation: the biggest connected component not lying
on the boundary of the image is selected, whereas the others are
discarded.

The algorithm is divided into four steps:

• optimal threshold identification;

• threshold and connect component analysis;

• search of connected component representing the trachea;

• trachea removal.

Optimal threshold identification

To segment out from M the trachea and the large airways, a two materials
decomposition approach is implemented [30]. This approach relies on the
hypothesis that the voxels contained in the mask M can be divided into two
categories: lung voxels and air voxels. Since trachea and large airways are
mostly filled with air, the first step to identify them is to find all the voxels
of air contained in M.

In particular, assuming that the lungs are composed by air and lung tissue,
it is possible to write the two material decomposition formula
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Figure 4.3.2: Rendering of the low intensity voxels obtained in first
step of the segmentation procedure.
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nMH̄M = nAirH̄Air + nLungH̄Lung (4.4.1)

where H̄M, H̄Air, H̄Lung are respectively the average density of the voxels on
the mask M, the average intensity of the air and the average intensity of the
lung tissue, and nAir, nLung, nM are respectively the number of air voxels, the
number lung tissue voxels and the total number of voxels in M, with

nM = nAir + nLung. (4.4.2)

Given H̄Air, H̄Lung, and using eq. 4.4.2, it is possible to obtain nAir inverting
eq. 4.4.1

nAir = nM
H̄M − H̄Lung

H̄Air − H̄Lung
.

By evaluating the histogram of HU values included in the mask M, it is
possible to find the threshold TAir so that

TAir = max
T∈[Tmin,Tmax]

{nT ≤ nAir}

where nT is the number of voxels, inside the mask M with intensity values
≤ T and Tmin and Tmax are the maximum and minimum values of the voxels
inside M. The values of H̄Air = −999 HU and H̄Lung = +48 HU are selected
according to the prescription given in [30].

Threshold and connected component analysis

Once TAir is found, to identify all the air voxels inside the mask M, a thresh-
olding operation between Tmin and TAir is applied. Then a connect compo-
nent analysis is able to discard all the isolated air voxels. The results of this
operation is shown in fig. 4.4.1, where a connected component representing
the trachea is clearly visible.

Search of connected component representing the trachea

To identify the trachea among all the connected components shown in fig. 4.4.1,
a circular 2D shape, corresponding to the trachea axial section, is searched
near the head of the patient, i.e. in the upper central region of the CT. The
identification of the circular section is carried out using the Hough transform
for circle [50].
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(a) Axial view (b) Coronal view

Figure 4.4.1: Air segmentation: the connected component found
selecting those voxels with intensity ≤ TAir. a) In axial view con-
nected components are shown in different gray levels b) the same
connected components of a) viewed in coronal view.

The Hough transform is an operation that allows the identification of different
shape classes (e.g. line, circles, ellipses, etc etc...) in binary images, using
a voting procedure. The voting procedure is carried out in a parameter
space, and the object candidates are obtained as local maxima in a so-called
accumulator space, constructed by the algorithm for computing the Hough
transform. A simple explanation of the Hough transform follows.

Hough transform for circles of known radius

Suppose that a circle C of known radius r has to be found in a bidimensional
image.

The parametric form of the C is written

x = r · cos(θ) + a
y = r · sin(θ) + b

(4.4.3)

where θ ∈ [0, 2π] is a polar angle and a,b are the coordinates of the circle
center.

Inverting the eq. 4.4.3 with respect to a and b, yields to

a = x− r · cos(θ)
b = y − r · sin(θ) (4.4.4)

which is a circle of radius r centered in x, y.
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x1, y1

x2, y2

x3, y3
r

r

r

r

Figure 4.4.2: Sketch representing the idea of the Hough transform
for circles: the black circle C is the one to be detected, while the
three dotted circles of radius r and centers (x1, y1), (x2, y2), (x3, y3)
are circles drawn in the parameter space. As shown in the figure, the
point where the three red circles intersect is the center of C.

Since the radius of the circle to be found is known, the parameter space is two
dimensional, i.e. the two dimensions are the coordinated (a, b). According
to the transform eq. 4.4.4, each point (x, y), lying on C, becomes a circle of
radius r itself in the parameter space.

Each pixel in the parameter space accumulates a score proportional to the
number of circles passing through it (see fig. 4.4.2). Once this procedure is
applied, the center of C is given by the pixel that accumulates the higher
score.

Hough transform for circles of unknown radius

If the radius of the circle to be found is not known, the procedure is similar,
except that the range [rmin, rmax] of allowed radii is spanned. Then for each
r ∈ [rmin, rmax], the Hough procedure with a known radius is repeated.

To apply the Hough algorithm to the trachea identification, first a morpho-
logical operation to evaluate the border of the mask is implemented, and then
the Hough transform is applied on the upper central region of the CT image.
The pixel with highest score in the accumulator is then used as the seed to
identify the trachea, while the other connected components are discarded.
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Figure 4.4.3: Rendering of the mask T, representing the trachea
and the large airways.

Following the prescriptions given in sec. 1.3, values of rmin = 7 mm and
rmax = 11 mm for the trachea radius are selected, and it is chosen, on the
basis of experiments, to search the trachea only in the upper 10% of the
slices and in a band of 20 mm around the image center. The output of this
procedure is the mask T shown in fig. 4.4.3.

Trachea removal

Once the trachea and the large airways are correctly identified, a dilation
operation with a spherical kernel of radius 2mm is applied to the mask T to
include the high intensity walls of trachea and the airways. Then each voxel
belonging to the dilated T mask is deleted from the mask M, thus generating
a new mask M1.

At the end of this procedure lungs may be still fused, due to the low inten-
sity of the anterior and posterior junction. In case of failure, a dedicated
procedure is implemented to identify lung junctions.
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(a) (b)

Figure 4.5.1: a) The anterior lung junction b) The anterior lung
junction where the maximum cost path, found in the lung separation
step, is superimposed.

4.5 Lung separation

If the lungs are still fused, a dedicated procedure similar to that reported
in [31,51] is implemented. The procedure search, for each slice, the maximum
path weighted on HU between the anterior and posterior part of the patient.

This method relies on the assumption that the junction tissue has a larger
HU value compared to the tissue generally contained in the mask M1. The
junction lines are searched only in band of size s = 30 mm near the center
of mass of the segmented region contained in M1. Before starting the path
search, the voxel values outside the mask M1 are set to +2000, in order to
prevent the path to enter in the lungs when it’s not necessary.

The maximum cost of the path is evaluated using a dynamic programming
approach [52]. The results of this procedure are shown in fig. 4.5.1. Once the
optimal path is found, the voxels belonging to it are subtracted from the M1

mask and the connected components are searched with a 6-pixel connectivity
rule.
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(a) (b)

Figure 4.6.1: a) The segmented lung before vessels and airway
walls removal b) The segmented lung after vessels and airway walls
removal

4.6 Vessels and airway walls removal

As shown in fig. 4.6.1, vessels and airways walls are not included in the seg-
mented lung at this stage. To include them without modifying the pleura
surface morphology, i.e. without modifying the shape of the juxta-pleural
nodules, a combination of morphological operators is applied [50]. In par-
ticular, a sequence of the dilation and the erosion operators with spherical
kernels rd and re, with re > rd is applied. Finally, the logical OR operation be-
tween the obtained mask and the original lung mask provides the final mask,
where the vessels and the airway walls are filled in, while maintaining the
original shape of the lung mask border [22]. The shape of the juxta-pleural
nodules is not modified by this procedure (see fig. 4.6.1). Once removed
vessels and airways, the pleura surface is defined as the surface separating
parenchyma from the rest of the image (see fig. 4.7.1).

The optimal parameter rd = 8 mm is chosen to fill holes whose dimension is
approximatively equal to that of the first generation of airways (see sec.1.3).
Whereas the parameter rd = 16 mm is chosen to erode the pleura surface
of 16 mm more than the dilation operation, thus avoiding to undersegment
juxta-pleural nodules with a radius up to 16 mm.
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4.7 Automatic error check

The segmentation of anatomical structures in CT scans is a challenging task
in medical imaging. Therefore, it is reasonable to expect any algorithm to
fail in some cases, due to small anatomical differences among patients and
different parameters in image acquisition and reconstruction.

For this reason, it is important to implement a tool able to automatically
check the organ segmentations and to assess, on the basis of observables, if
the segmentations are likely to be correct or not.

The procedures to be checked against failures are the trachea segmentation
and the lung separation.

The trachea segmentation is considered successful, when a connected com-
ponent with a volume in the range of Vmin = 10000 mm3 to the Vmax =
70000mm3 is found, otherwise the segmented region is discarded. The values
Vmin and Vmax are chosen on the basis of the range of values found on the
LIDC1 set described in sec. 3.3.

The trachea segmentation failure is mainly due to the selection of a threshold
TAir unable to separate the trachea air from the lungs. The lung separation
is checked against failure and the identified connected component are filtered
according to their dimensions. The lungs are finally considered to be sepa-
rated when two connected components with at least a volume ratio of 0.5 are
found.

Failures in separation are mainly due to the fact that, separating lungs slice
by slice, doesn’t imply a tridimensional separation. In case of failures, the de-
fault behavior of the procedure consists in applying the fill vessels procedure
explained in sec. 4.6 to the whole block including the two lungs.

4.8 Results

The segmentation algorithm is tested and optimized on a subset of LIDC
consisting in 138 CTs from different centers and acquired with scanners from
different manufacturers. The LIDC1 is used to set segmentation parameters,
while LIDC2 is used to validate the results. In tab. 4.1, the results of the
segmentation procedure are shown, the failure of the algorithm is assessed
on the basis of the automatic error check and visual assessment.
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Figure 4.7.1: Rendering of the lung segmentation mask.

Table 4.1: Table showing the results of the segmentation procedure
obtained on the LIDC subsets.

Procedure Dataset

LIDC1 LIDC2

Trachea segmentation failure 1/69 1/69
Lung separation failure 6/69 7/69

The results of this procedure show that the trachea segmentation fails once
on the LIDC1 dataset, once on the LIDC2; whereas the lung separation pro-
cedure fails on 6 cases of the LIDC1 and 7 of the LIDC2. In all the other
cases, a good segmentation was achieved. The workflow of the segmentation
algorithm is resumed in fig. 4.8.1.

These tests show that the segmentation is stable even though it can fail in
some cases.
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Figure 4.8.1: Flow Chart representing the lung segmentation pro-
cess.
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Chapter 5

Detection of internal nodules

5.1 Introduction

Hessian algorithms are very common image analysis, since they provide a
robust tool to find shapes like cylinders or dots in bidimensional and tridi-
mensional images. In this chapter the algorithm used to identify solid inter-
nal nodules is shown. The chapter is organized as follows: first the Single
Scale Dot Enhancer (SSDE) and Multi Scale Dot Enhancer (MSDE) algo-
rithms [20] are explained, then an efficient implementation of the algorithm
is described and the numerical results of the implemented MSDE together
with the theoretical algorithm are shown.

5.2 Single Scale Dot Enhancer (SSDE) filter

As discussed in [20], Gaussian blobs are an effective model to represent in-
ternal nodules. To enhance such a kind of objects inside the lung volume, a
SSDE filter is implemented.

For example, in a tridimensional space the expression of a Gaussian is

I(x, y, z) = H0 · exp(−
x2

2σ2
x

−
y2

2σ2
y

−
z2

2σ2
z

). (5.2.1)

where H0 is a constant, σ2
x, σ

2
y, σ

2
z are the variances along the three axis of

the Gaussian, i.e. the dimensions of the object.
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According to the values assumed by σx, σy, σz, the function I(x, y, z) repre-
sents different structures.

It is possible to distinguish three main cases:

1. Blob shape: The variances have the same order of magnitude, e.g.
σx ≈ σy ≈ σz ≈ σ, Iblob(x, y, z) = H0 · exp(−x2+y2+z2

2σ2 ).

2. Cylinder shape: One of the variances much bigger than the others, e.g.
σx → ∞ represents a tubular structure with the axis parallel to the x
axis Icylinder(x, y, z) ≈ H0 · exp(− y2

2σ2y
− z2

2σ2z
).

3. Plane shape: two variances have σx → ∞ and σy → ∞, Iplane ≈
H0 · exp(− z2

2σ2z
).

By evaluating the Hessian matrix of eq. 5.2.1, the eq. 5.2.2 is obtained

H(x, y, z) =









( x
2

σ4x
− 1
σ2x
) xy

σ2xσ2y

xz
σ2xσ2z

xy
σ2xσ2y

( y
2

σ4y
− 1
σ2y
) yz

σ2yσ2z
xz
σ2xσ

2
z

yz
σ2yσ

2
z

( z2

σ4z
− 1
σ2z
)









I(x, y, z) (5.2.2)

where H(x, y, z) is the matrix form of the eq. 5.2.3

Hi,j(x, y, z) = ∂i∂jI(x, y, z) (5.2.3)

for i, j = 1, .., 3.

By computing H(0, 0, 0), i.e. evaluating H(x, y, z) in the Gaussian center, a
diagonal matrix is obtained

H(0, 0, 0) = H0







− 1
σ2x

0 0

0 − 1
σ2y

0

0 0 − 1
σ2z






. (5.2.4)

This means that the eigenvalues of the Hessian matrix, in the center of the
Gaussian, are function of the sizes of the object to be enhanced. Thus, using
the Hessian eigenvalues, it is possible to evaluate a score proportional to the
probability to have a Gaussian shape centered in that point.

In practice, since the analytic form of H(x, y, z) is not known, the Hessian
needs to be evaluated numerically, for example using a finite difference ap-
proach or a recursive approach [53]. Computing Hessian involves comput-
ing derivatives. However, since derivatives without any prior smoothing are
known to enhance noise [54], it’s necessary to define a scale of interest.



5.3. Multi Scale Dot Enhancer (MSDE) FILTER 63

The definition of a scale of interest in computer vision is a fundamental
concept, in order to give the algorithms an idea of the dimension of the
objects to be searched. Once the eigenvalues λ1, λ2, λ3 of the Hessian matrix
are evaluated for each voxel, it is possible to calculate the score

zdot(λ1, λ2, λ3) =

{

|λ3|2

|λ1|
if λ1, λ2, λ3 < 0

0 otherwise
; (5.2.5)

where | λ1 |≥| λ2 |≥| λ3 |.
Evaluating the zdot value, for a blob, a cylinder and plane shapes, it is possible
to show that the zdot vanishes in the center of the planar and cylindrical
structures, while for blobs of variance σ2, zdot(Iblob) ∼ 1

σ2 . This means that
the SSDE is able to discriminate blobs from planar and cylindrical structures
and that its score is inversely proportional to the magnitude of the blob.
However since, in general, it is preferable to assign a comparable score to all
the nodules in a certain range (e.g. from 3 mm to 10 mm in diameter), a
multiscale approach has to be followed.

5.3 Multi Scale Dot Enhancer (MSDE) filter

The MSDE algorithm consists in combining, according to the prescription
given in [20], the zdot functions evaluated at several scales. This procedure
is based on an a priori knowledge of the sizes of the objects to be enhanced.

For what concerns nodules, assuming that a nodule can be approximated by
a 3D Gaussian with scale parameter σ, the nodule diameter can be denoted
with 4σ, thus taking into account for more than 95% of the nodule volume. If
the nodule diameters to be enhanced are in the range [dmin, dmax], the scales
to be considered for the Gaussian filter are in the range [σmin, σmax], where
σ = d/4. Within that range, the N intermediate scales are computed as
σi = ri−1σmin where i = 1, ..,N and r = (dmax

dmin
)1/(N−1).

The resulting filter value is then:

znorm(σi) = σ2
i zdot(σi) (5.3.1)

zmax = max(znorm(σi)) (5.3.2)

with i = 1, ..,N. The final output of the MSDE is a matrix, referred in
the following section as Z(x, y, z), where each voxel contains the value of the
obtained zmax. The range of diameters for the objects to be enhanced, and
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Figure 5.3.1: Analytic and numeric response curve of the MSDE
filter. The filter settings are d0 = 4, d1 = 7 with N = 5 (number of
multiscale steps). The filter is run on Gaussian blobs with diameter
in the range [0, 10mm]. From the picture is visible that the filter
response is almost flat in the interval [5, 9mm].

the number of intermediate smoothing scales have to be determined on the
basis of the target dataset of nodules.

Moreover, using the MSDE, it is possible to have an estimation of the candi-
date size, using the scale σi corresponding to the best response of the filter.
This information is collected in an image, storing, for each voxel, the value
σi of the best scale.

A peak detection algorithm is then applied to Z(x, y, z) result to detect local
maxima in the filter output matrix. The final output is a list of locations of
nodule candidates ordered by decreasing value of the corresponding zmax. Of
course, in addition to the true nodules, this list is expected to contain also
a quite large number of false positive findings, that needs to be reduced in
further steps.
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5.4 Analytic evaluation of the N-dimensional
MSDE

It is possible to evaluate theoretically the response of the MSDE on n-
dimensional Gaussian objects of scale A

GA = H0 exp(−
|&x|2

2A2
),

where x̃ = (x1, .., xn) and H0 is a positive constant.

To apply the MSDE filter, the object GA has first to be convolved with a
Gaussian of standard deviation σ representing the scale of interest

Gσ =

(

1√
2πσ

)n

exp(−
|&x|2

2σ2
).

This operation becomes a simple product if evaluated using the Fourier trans-
form. Once returned to ordinary space the result of the convolution product
is

GA ∗Gσ = H0

( √
2πA

√

2π(σ2 + A2)

)n

exp(−
|&x|2

2(σ2 + A2)
), (5.4.1)

that is a Gaussian of scale
√
σ2 +A2.

In an N-dimensional context the zdot define in eq. 5.2.5 becomes

zdot(λ1, .., λn) =

{

|λn|2

|λ1|
if λ1, .., λn < 0

0 otherwise
(5.4.2)

with | λ1 |≥ .. ≥| λn |.
Using the N-dimensional version of the eq. (5.2.4) and eq. (5.4.1), is obtained

zdot = H0
An

(σ2 + A2)
n
2+1

. (5.4.3)

Studying the eq. (5.4.3) it is possible to show that it has a maximum for
A = σ

√

n/2. This means that the SSDE filter has the maximum value for
A = σ only for n = 2 and that for n ,= 2 the scales of the filter have to
be calibrated. For example, for n = 3 the upper and lower bound of the
multiscale filter should be multiplied by

√

3/2. As shown in fig. 5.3.1, this
behavior is found also in the numeric implementation of the MSDE algorithm.

Investigating the behavior of the MSDE, it is possible to show that
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Figure 5.4.1: Result of the SSDE filter run with a fixed scale d =
7 mm on Gaussian blobs with diameters in the range [0, 40] mm.
The zdot function from eq. (5.4.3) and the zdot obtained from tests
on artificial objects are shown.

zmax = max(znorm) = max(σ2zdot) = max(σ2H0
An

(σ2 + A2)
n
2+1

). (5.4.4)

and that the eq. 5.4.4 has a maximum for σbest = A
√

2/n.

Substituting σbest in eq.(5.4.4) yields to

zmax = znorm(σbest) = H0

2
n

(1 + 2
n)

n
2+1

,

which doesn’t depend on A.

In particular if the Gaussian blob diameter is in the range of enhancing
[σmin, σmax], the score is zmax = znorm(σbest); otherwise its score is znorm(σmax)
if σmax < σbest, or znorm(σmin) if σmin > σbest.
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Figure 5.4.2: Result of SSDE filter applied to a blob of diameter
5 mm. The filter is run with scale parameter varying in the range
[0, 40] mm. The znorm function from eq. (5.3.1) and the znorm ob-
tained from tests on artificial objects are shown.

5.5 Efficient numerical implementation of the
MSDE

The algorithm consists of two main building blocks: the Hessian evaluation
and the eigenvalues computation. The Hessian computation is carried out
using a recursive algorithm [53]. The recursive algorithm is able to perform in
a single step both the Gaussian convolution and the second derivatives. For
the eigenvalues computation, the Lienard Chipart criterion is implemented
to enhance the computational efficiency.

5.5.1 Evaluation of the Hessian

Evaluating the Hessian of an image is one of the most common task in com-
puter vision. The computation of the Hessian can be very intensive since
it requires first to smooth the image with a low pass filter, i.e. a Gaussian,
to attenuate the noise that may be enhanced by the derivatives and then to
apply the derivative operator.

The direct implementation of a convolution is straightforward but inefficient.
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In particular, if a signal of dimension N has to be convolved with a kernel of
dimension K, the number of operations needed to compute the convolution,
are O(K · N).
For a tridimensional matrix N×N×N this leads to an algorithm that scales
as O(3 ·K ·N3) for a separable kernel of dimension K×K×K, i.e. a kernel
that can be evaluated separately in the three directions, or O(K3 · N3) for a
non separable kernel.

For Gaussian kernels, K is typically proportional to the Gaussian’s variance,
thus for large variance the value of K can make the convolution algorithm
very inefficient. To compute the Hessian, after the convolution operation is
computed, the derivatives have to be applied and this adds another algorithm
with complexity O(3·D·N3), where D is the dimension of the derivative kernel.

To improve the computational efficiency of the algorithm, it is possible to
implement a recursive solution that scales as O(Z ·N3), where Z is a constant
that doesn’t depend on the dimension of the Gaussian [53].

Moreover, since the recursive filter is built to commute with the smoothing
operation, it is possible to convolve directly the second derivative of the
Gaussian with image. The recursive algorithm provides a fast and accurate
tool to evaluate Gaussian convolutions and their derivatives, that is faster
than the naive approach for big variance.

5.5.2 Eigenvalues computation

There are many standard algorithms to find the eigenvalues of matrices as
the Jacobi algorithm, the QR and QL algorithms [55], however most of the
algorithms are suitable for matrices of arbitrary size. Since the MSDE algo-
rithm is typically used for images of low dimensionality, i.e. tridimensional or
bidimensional, good results, in terms of computational cost, can be obtained
using a dedicate algorithm to solve low dimensionality problems.

The eigenvalues of a n×n matrix H can be computed directly evaluating the
roots of the matrix characteristic polynomial, which are found solving with
respect to λ

det(H − λ · I) = 0 (5.5.1)

where I is the identity matrix, det is the determinant operator.
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Therefore the direct implementation formula, is suitable up to n = 4, since,
in general, no solution is available for polynomial of the degree > 4.

For n = 3, the characteristic polynomial can be written as

P (H) = −λ3 + trace(H)λ2 − Z(H)λ+ det(H)

where

Z(H) =
∑

i

∑

j

1

2
(HijHji −HiiHjj)

and trace(H) =
∑n

i=1Hii.

Finding the roots of a polynomial up to the fourth order can be implemented
using a direct formula [56]. However, as pointed out in [55], the direct formula
is known to be prone to numerical instabilities. The precision of eigenvalues
computation is not a key factor for this approach and an accuracy of 1% is
enough to obtain satisfactory results. The accuracy of the direct algorithm
has been shown [55] to be at least 10−3, for this reason this approach, leading
to a fast computation, is implemented.

However since, for MSDE the eigenvalues need to be computed only if the
λ1, λ2, λ3 < 0, it is possible to reduce the computational cost of the algorithm
by computing only those eigenvalues that have negative real parts.

Finding the signs of the eigenvalues, without actually evaluating them is
possible using the Lienard Chipart criterion [57].

Theorem 1. Lienard Chipart Criterion

Given a polynomial P with real coefficients

λn + a1λ
n−1 + ...+ an

then a necessary and sufficient condition for all the roots of P to have negative
real parts is that

an > 0 , a1 > 0 , a3 > 0, a5 > 0

and the Hurwitz determinants ∆i

∆n−1 > 0, ∆n−3 > 0 ,∆n−5 > 0
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where

∆i =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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1 a2 a4 . . a2i−2
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. . . . . .

. . . . . .
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Using the theorem 1 for a third order equation results in three relations:

trace(H) < 0
det(H) < 0

det(H)− trace(H) · Z(H) > 0
(5.5.2)

if one of this check fails the eigenvalues are not computed and the zdot function
is set to 0. If all the three checks in eq. 5.5.2 are satisfied, the eigenvalues
are evaluated using the direct formula.

The eigenvalues of a symmetric matrix are real, so since the direct formula
may lead to complex solutions, the imaginary parts of the eigenvalues are
considered as numerical errors and are neglected.

5.6 Results

The analytic MSDE and SSDE, shown in sec. 5.4 and sec. 5.3, can be directly
compared with the numerical results of the implemented filter. As shown in
fig. 5.4.1 and fig. 5.4.2, the results of the numerical implemented filter are in
good agreement with the analytic formulation. Moreover, the test performed
on real CT datasets, composed by LIDC1 and LIDC2, shows that the direct
implementation of the eigenvalues together with the Lienard Chipart criterion
improve the algorithm performance, on average, of 2.5 times. The average
time of eigenvalues computation passes from 69 seconds per CT, using the
iterative version, to 27.8 seconds on an i7 9503.07GHz processor with 12GB
of RAM.



Chapter 6

Detection of juxta-pleural nodules

6.1 Introduction

Juxta-pleural nodules can be regarded as concave hemi-spherical objects con-
nected to the pleura surface (see fig. 2.5.2). To detect such a kind of objects,
a method based on the Pleura Surface Normal (PSN) overlap is implemented.
This approach consists in searching the points where many surface normals
intersect (see fig. 6.4.1). This approach can be implemented in many dif-
ferent ways, since many choices are available in the literature to represent
the surface and to evaluate the normals and their intersections. In the next
sections the implementation choices are described.

6.2 Surface representation

The pleura surface may be defined as the surface associated with the mask
obtained in the segmentation step (see chap. 4). However, representing a
surface using cubes (i.e. voxels) is an ill-posed problem. To overcome this
limit, it is common to use an algorithm to transform a binary mask, e.g. to
transform a segmented volume, in a polygon mesh [58]. A polygon mesh is
a collection of vertices, edges and faces that defines the shape of a polyhe-
dral object in 3D computer graphics and solid modeling. The faces usually
consist of triangles, quadrilaterals or other simple polygons. One of the most
used algorithm to obtain a mesh from a binary mask is the “marching cube
algorithm” [59].
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Figure 6.2.1: The 15 unique combinations of the marching cube
algorithm.

The algorithm proceeds through the scalar field, taking eight neighbor lo-
cations at a time (thus forming an imaginary cube), then determining the
polygon(s) needed to represent the part of the iso-surface that passes through
this cube. The individual polygons are then fused into the desired surface.

This is done by creating an index to a precalculated array of 256 possible
polygon configurations (28 = 256) within the cube. By means of reflections
and symmetrical rotations it is possible to reduce the configurations to 15
unique cases (see fig. 6.2.1). The application of the marching cube leads to
a mesh as the one shown in fig. 4.7.1.

6.3 Normals computation

The implemented idea was inspired by [22,27]. The main difference between
these approaches and the one proposed is the way the normals are computed.
To evaluate the normals a procedure based on a representation of the pleura
surface as a polygonal mesh is implemented, rather than a voxel based one
as described in [22, 27].

Normals are evaluated using the triangular mesh representing the pleura
surface. In particular, the normal to each triangle is calculated by using the
vector product between the triangle edges; then the normals are evaluated
for each vertex by averaging all the normals to the neighbor triangles. This
procedure is used in computer graphics to evaluate light reflection on surfaces
and it is called “Gouraud shading” [60].
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6.4 Normals intersection

Since the evaluation of the intersections in the real 3D space is a complex
and computationally intensive operation, it is implemented in the voxel space.
This means that each voxel accumulates a score proportional to the number
of normals passing through it. This information is collected in the score
matrix S(x, y, z) (see fig. 6.4.1). To implement this operation a line rasteri-
zation algorithm is needed [61], and the “Bresenham’s line algorithm” [62] is
implemented.

The “Bresenham line” is an algorithm which determines which points in an n-
dimensional raster should be plotted in order to form a close approximation
to a straight line between two given points. It is commonly used to draw
lines on a computer screen, as it uses only integer addition, subtraction and
bit shifting, all of which are very cheap operations in standard computer
architectures.

Since the intersections in the voxels space are prone to numerical errors
and to errors in the computation of the normals, it is preferable to consider
Gaussians cylinders instead of line segments. This operation is equivalent to
a Gaussian smoothing of scale σcylinder of the matrix S(x, y, z) [27]

A(x, y, z) =

ˆ ˆ ˆ

S(x′, y′, z′)
e
− (x−x′)2+(y−y′)2+(z−z′)2

2σ2
cylinder

(σcylinder2π)3
dx′dy′dz′ (6.4.1)

At the end of this procedure, it is possible to collect the list of locations of
nodule candidates looking for the local maxima in the matrix A(x, y, z). Of
course, in addition to the true nodules, this list is expected to contain also a
quite large number of false positive findings.

6.5 Tests on artificial objects

A theoretical validation of the response of the PSN filter is difficult, however
it is possible to qualitatively assess the correct work of the filter using artificial
shapes of different size as those shown in fig. 6.5.1.

For an hemispherical object of radius r, the expected PSN score obtained
using normals of length l = r is expected to be
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Figure 6.4.1: Pictures representing the matrix S(x, y, z): each voxel
accumulates a score proportional to the number of normals passing
through it.

PSNhemisphere ∝ r2

whereas for a cylinder objects the expected score is

PSNcylinder ∝ r.

The results of the tests are shown in fig. 6.5.2, the PSN score is normalized
to the max output obtained in the range, in order to factor out the constant.
The results of these tests are obtained with a σcylinder = 3 mm.
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(a) Hemisphere shape. (b) Cylinder shape.

Figure 6.5.1: Artificial objects used for testing the PSN filter.

(a) Cylinder (b) Hemisphere

Figure 6.5.2: PSN filter results on artificial objects of radius in the
range[0, 20] mm, the parameter of the filter l in this test is equal to
the radius of the object.
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Figure 6.5.3: Picture showing the normals computed on the pleura
surface. The blue circle underlines a juxta-pleural nodule.



Chapter 7

Reduction of false positive
findings

7.1 Introduction

As discussed in chap. 5 and in chap. 6, candidate nodule detectors provide
a lot of false positives that must be reduced, in order to obtain a reasonable
number of findings. Since radiologists’ experience is the leading factor to
decide between nodules and non nodules, it is natural to think of a classifier
[63] as an approach to reduce the amount of false positive generated by the
algorithms.

The challenging task to build a successful classifier is how to encode the
information contained in the images in few relevant numbers, called features.
The approach followed to reduce the amount of false positive findings is an
upgrade of the Voxel Based Neural Approach (VBNA), presented in [16, 17,
19,28,64,65]. In the following sections the features to be extracted together
with the candidate segmentation algorithm are shown.

7.2 Candidate segmentation

As discussed in chap. 5 and chap. 6, internal and juxta-pleural nodule can-
didate locations are obtained computing local maxima in the Z(x, y, z) and
A(x, y, z) matrices. In order to obtain a reasonable number of findings, the
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(a) (b)

Figure 7.2.1: Example of a candidate nodule segmentation: a) a
nodule, b) the corresponding segmentation.

lists of local maxima are sorted according to their values and only those can-
didates above the two values Tinternal and Tjuxta−pleural are kept, thus obtaining
a first selection of candidates with low specificity and an high sensitivity.

However, it is possible to further use the information contained in Z(x, y, z)
and A(x, y, z) to obtain also a rough segmentation of the nodule candidate.
The segmentation of candidates is implemented with the same algorithm
both for internal and juxta-pleural candidates.

First, a thresholding operation, with a fixed and empirical threshold Tcandidate,
followed by a connect component analysis is applied to the Z(x, y, z) and
A(x, y, z) images. Then, a dimensional analysis is applied to the components
found in the previous step, and those with the major axis outside an interval
[dmin, dmax] are discarded.

This operation provides the segmentations of a large number of candidates,
however the features are extracted only for those candidates that are con-
tained in the lists of local maxima. Those candidates with an empty seg-
mentation are discarded, while for the others the features described in the
following sections are evaluated.

7.3 VBNA features

The VBNA method consists in assigning to each voxel of a candidate a vector
of features. The features are grey level intensity values, morphological fea-
tures of the voxel neighborhood, candidate detector features and ROI level
features.
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The idea behind the method is to give the classifier raw data in order to favor
the learning of hidden correlations.

However, this method implies that the classifier must be trained with a lot
of patterns to infer the relation. In the following sections the used features
are described in details.

7.3.1 Gray level intensity features

Each voxel of a ROI is characterized by the gray level intensity values of its
neighborhood. The CT values of the voxel 3D neighborhood are rolled down
into a feature vector to be analyzed by a Support Vector Machine (SVM)
classifier (see fig. 7.3.1). The radius of extraction of the features is 2 voxels;
this means that the collected intensity values for each voxel are 125 (5×5×5).

Other experiments employing different radiuses of extraction were carried out
using the values of 1 and 3 voxels. The former resulted in worst performance
during the training phase while the latter resulted in 343 gray level features
making the training unfeasible.

7.3.2 Morphological features

The eigenvalues of the gradient and the Hessian matrices are computed for
each voxel. However, as discussed in [54], before computing the derivatives
a smoothing procedure has to be applied.

For the internal candidates, the variance of the smoothing is provided by the
scale which led to the best zmax value; whereas for juxta-pleural candidates
the variance is fixed and it is equal to σcylinder.

The gradient matrix is computed as

Gi,j =
∑

∂xi
I(x1, x2, x3)∂xj

I(x1, x2, x3) for i, j = 1, .., 3 (7.3.1)

where the sums are over the neighborhood area, and I(x1, x2, x3) are the
values of the image (see fig. 7.3.1).

The Hessian matrix is then computed using the expression

Hi,j = ∂xi
∂xj

I(x1, x2, x3) for i, j = 1, .., 3.

The eigenvalues of Gi,j and Hi,j are then computed for each voxel of the
candidate and added to the list of features.
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These six features, exploiting the morphology of the voxel neighborhood,
are added to the textural features given by the intensity values, in order to
improve the method discriminating power.

7.3.3 Candidate detector features

To improve the classic VBNA method, each voxel is assigned the local value
extracted by the matrices generated by the candidate detectors Z(x, y, z) and
A(x, y, z).

7.3.4 ROI based features

The main improvement of this analysis is the introduction of two ROI level
features: the size in mm3 of the candidate and the integrated ROI candidate
detector score, i.e. the sum over the ROI of the local candidate value.

Therefore, the total number of features for each voxel is 134: 125 gray level
intensity features, 6 features exploiting the morphology of the voxel neigh-
borhood, 2 features extracted from candidate detectors and the volume of
the candidate in mm3.

7.3.5 Classifier selection

There is no theoretical principle to build an optimal classifier for solving a
specific problem. The only general purpose approach available at present is
to choose the best among different models. More specifically, it is possible
to view a classifier selection problem as choosing, within a set of candidate
model structures, the “best” one according to a certain criterion.

In this context, a standard tool in statistics known as K-fold cross-validation
[63, 66] may be used.

The K-fold cross validation consists in dividing the dataset in K different
subsets, training the classifier on K − 1 subsets and validating it on the
remaining one. This operation can be repeated in K different ways, using each
time different K−1 subsets for training and one for performance assessment.
At the end of the procedure each subset is unbiasedly evaluated by a classifier,
i.e. by a classifier that was not trained with it.
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Figure 7.3.1: Basic idea of the VBNA false positive reduction: each
voxel is characterized by a feature vector constituted by the intensity
values of its 3D neighbors (5× 5× 5).

The K classifiers provide an estimate of the performance of the classifier
trained on the whole datasets and validated on a dataset of homogeneous
characteristics. This method is very useful when the availability of labeled
data is reduced, since it allows to use the same set of data both for training
and assessing the performance. A special case of the K-fold cross validation
is the Leave One Out (LOO) cross validation, where K is equal to the number
of pattern N. Therefore, for each fold, there is only one pattern that is not
used for the training.

In developing CAD systems it often happens to train classifiers with patterns
that belong to the same exam. These patterns may be highly correlated,
therefore a K-fold cross validation at pattern level may be not the optimal
approach. However, a LOO at patient/exam level may be implemented [67],
i.e. patterns are divided in folds according to the patient/exam they belong
to. This special LOO validation is often referred as Leave One Patient Out
(LOPO) cross validation.

An SVM classifier (see appendix C) is trained to assign each voxel either to
the nodule or to the normal tissue target class. At the end of this procedure,
each ROI is assigned a score, averaging all the values attributed by the SVM
to the voxels. With this score, it is possible to evaluate the FROC curve as
discussed in sec. 2.3.
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7.4 Discussion

The segmentation of nodule candidates is a necessary step in order to include
in the analysis only those voxels belonging to the structures of interest and
in order to exclude from the evaluation voxels belonging to anatomical struc-
tures surrounding the candidates, e.g. lung parenchyma, pleura surface, etc
etc..

The main advantage of the VBNA method is that, in principle, it doesn’t
require a very accurate segmentation, since no shape based features are ex-
tracted from each ROI. This means that, if the difference between the “op-
timal” segmentation and the obtained one is sufficiently small, the overall
score of the ROI is almost unaltered.

On the contrary, the approaches based on shape features extraction may be
very sensitive to the output of the segmentation, since small differences in the
segmentation may completely change the values of the features, thus leading
to very different results.
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Chapter 8

CAD training and validation

8.1 Introduction

As different training sets may lead to significantly different results, to assess
the stability of the developed CAD it is necessary to carry out several training
and validation sessions. The datasets used in this chapter are those described
in chap. 3. The datasets LIDC1 and LIDC2 are used as training sets, for both
the CAD for internal nodules (CADI) and the CAD for juxta-pleural nodules
(CADJP). Only nodules with at least AL2, i.e. only those nodules annotated
by at least two radiologists, are considered relevant for the training.

In the following sections the results of the experiments made with the CADI

and the CADJP are shown. At the end of the training session, the CADI

and the CADJP are combined using the approach explained in sec. 8.4 and
discussed in [17]. The best CAD, among all those trained, is then applied to
the ANODE09 50 CT dataset. The result of the ANODE09 validation must
be intended as a real life unbiased measurement of the CAD performance.

8.2 Training on LIDC1

The LIDC1 data set consists of 69 CTs containing 96 relevant internal nodules
and 42 relevant juxta-pleural nodules (see sec. 3.3). Here follows a description
of the training sessions.
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8.2.1 CADI training

The CADI is applied to the 69 LIDC1 CTs, using the segmentation settings
described in chap. 4 and the MSDE with parameters d0 = 4 mm, d1 = 7 mm
and N = 5. An example of the MSDE filter application to a real CT is shown
in fig. 8.2.3. After the computation of the MSDE, local maxima, with a basis
of 5 mm are searched in the Z(x, y, z) matrix.

Analyzing the distribution of FPs and TPs, it is found that discarding find-
ings below the Tinternal = 15 score a sensitivity of 91

96 ∼ 95% is achieved at
155 FP/CT on average.

The candidate feature vectors are then classified with a linear SVM (see
appendix C), using the features and the methods described in chap. 7, an
empirical threshold Tcandidate = 2 and discarding those candidates with major
axis outside the [dmin = 2, dmax = 20] mm range.

The candidate feature vectors are sampled with a 2 to 1 FP to TP ratio for
a total of 22413 patterns.

To search for the best model, a LOPO cross validation (see appendix B.6) is
carried out, varying the penalty parameter C of the linear SVM in the range
[2−20, 220]. The best model is then selected according to the AUC.

The results of the SVM training are shown in fig. 8.2.1. The results of the
LOPO training show that the performance of the classifiers is stable in a
wide range of values, with a peak value of AUC=0.98 for C = 0.0625.

It is possible to evaluate the performance of the CADI on the LIDC1 in LOPO
mode, by using the 69 models originating from the best C training, in oder
to assess the quality of the model trained. Results of the LOPO are shown
in fig. 8.2.2 and in tab. 8.1, the score is evaluated only on internal nodules.

Table 8.1: FROCSV of the CADI trained on LIDC1 and validated
on the LIDC1 in LOPO mode at the four LIDC ALs.

Agreement level FROCSV

AL1 0.472
AL2 0.605
AL3 0.676
AL4 0.743
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Figure 8.2.1: Results in terms of the AUC of the SVM training on
the LIDC1 with the features extracted by the CADI as a function of
the penalty parameter C.
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Figure 8.2.2: FROC curves obtained by the CADI at the four ALs
in LOPO mode on the LIDC1.

(a) (b)

Figure 8.2.3: a) Rendering of the MSDE filter results applied to a
CT scan. The voxels with higher score are colored in red. b) One
slice of the CT scan shown in a).
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8.2.2 CADI validation

The first validation of the CADI is carried out using the LIDC2 dataset, the
ITALUNG− CT dataset and the five ANODE09 examples. The best model
found and the settings described in sec. 8.2.1 are used. As shown in tab. 8.2,
the system performs better on the LIDC1 than on the LIDC2, whereas it
obtains a very good result on the ITALUNG − CT dataset. However, the
performance on the five ANODE09 example CTs is instead comparable to
those obtained on the LIDC1 and the LIDC2 with AL1.

8.2.3 CADJP training

CADJP is applied to the 69 CTs of the LIDC1, using a 5 mm long normal
and σcylinder = 0.75 mm. After the computation of the PSN, local maxima
with a basis of 5 mm are searched in the A(x, y, z) matrix. An example of
the PSN filter application to a real CT is shown in fig. 8.2.6.

Analyzing the distribution of FPs and TPs, it is possible to show that when
discarding findings below the score Tjuxta−pleural = 6, a sensitivity of 40

42 ∼ 95%
is obtained at 80 FP/CT on average.

The candidate feature vectors are then classified with a linear SVM, us-
ing the features and methods described in chap. 7, an empirical threshold
Tcandidate = 2 and discarding those candidates with major axis outside the
[dmin = 0, dmax = 40] mm range. The features of the candidates are sampled
with a 3 to 1 FP to TP ratio for a total of 39168 of training patterns.

To search for the best model a LOPO cross validation is carried out, varying
the penalty parameter C of the linear SVM in the range [2−20, 220]. The best

Table 8.2: FROCSV obtained by the CADI trained on the LIDC1

and validated on the ANODE09 five example CTs, the LIDC2 and
the ITALUNG − CT datasets.

Dataset FROCSV

ANODE09 5 examples 0.462
LIDC1(LOPO) 0.472/0.605/0.676/0.743

LIDC2 0.471/0.548/0.592/0.615
ITALUNG − CT 0.685
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Figure 8.2.4: Results in terms of AUC of the SVM training on the
LIDC1 with the features extracted by the CADJP as a function of
the penalty parameter C.

model is then selected according to the AUC.

The results of the SVM training are shown in fig. 8.2.4. The results of the
LOPO training show that the performances of the classifier are stable in a
wide range of values, with a peak value of AUC = 0.86 for C = 1.0. The
evaluation of the CADJP performance in LOPO mode on the LIDC1 leads to
the results shown in fig. 8.2.5 and in tab. 8.3, the score is evaluated only on
juxta-pleural nodules.

8.2.4 CADJP validation

The validation of the CADJP is carried out using the LIDC2 dataset, the
ITALUNG−CT dataset and the five ANODE09 examples. The best model
found and the settings described in sec. 8.2.3 are used. The results in terms
of FROCSV are shown in tab. 8.4.
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Figure 8.2.5: FROC curves obtained by the CADJP at the four
ALs in LOPO mode on the LIDC1 (as described in sec. 3.3).

Table 8.3: FROCSV obtained by the CADJP trained on the LIDC1

and validated on the LIDC1 in LOPO mode, at the four LIDC ALs.

Agreement level FROCSV

AL1 0.276
AL2 0.384
AL3 0.405
AL4 0.407
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(a) (b)

Figure 8.2.6: a) Rendering of the results of the PSN filter applied
to a CT scan. The voxels with higher score are colored in red. b)
One slice of the CT scan shown in a).

Table 8.4: FROCSV obtained for the CADJP trained on the
LIDC1 and validated on ANODE09 five examples, the LIDC2 and
theITALUNG − CT datasets.

Dataset FROCSV

ANODE09 5 examples 0.381
LIDC1(LOPO) 0.276/0.384/0.405/0.405

LIDC2 0.251/0.330/0.314/0.286
ITALUNG− CT 0.238
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8.3 Training on LIDC2

The LIDC2 consists of 69 CTs, containing 95 relevant internal nodules and
19 relevant juxta-pleural nodules (see sec. 3.3). Here follows a description of
the training sessions.

8.3.1 CADI training

The CADI is applied to the 69 CTs of the LIDC2, using the segmentation
settings described in chap. 4 and MSDE with parameters d0 = 4 mm, d1 =
7 mm and N = 5. After the computation of the MSDE, local maxima,with
a basis of 5mm are searched in the Z(x, y, z) matrix.

Analyzing the distribution of FPs and TPs, it is found that discarding find-
ings below the score Tinternal = 15, a sensitivity of 84

95 ∼ 88% is achieved at
148 FP/CT on average.

The candidate feature vectors are then classified with a linear SVM (see
appendix C), using the methods described in chap. 7, an empirical threshold
Tcandidate = 2 and discarding those candidates with major axis outside [dmin =
2, dmax = 20] mm range.

The features of the candidates are sampled with a 2 to 1 FP to TP ratio,
for a total of 31509 train patterns. To search for the best model a LOPO
cross validation is carried out, varying the penalty parameter C of the linear
SVM in the range [2−20, 220]. The best model is then selected according to
the AUC.

The results of the SVM training are shown in fig. 8.3.1. The LOPO results
show that the performances of the classifier are stable in a wide range of
values, with a peak value of AUC = 0.97 for C = 1.0.

It is possible to evaluate the performance of the CADI on the LIDC2 in
LOPO mode, using the 69 models originated from the training session, thus
assessing the quality of the model trained. Results are shown in fig. 8.3.2
and in tab. 8.5, the score is evaluated only on internal nodules.

8.3.2 CADI validation

The validation of the CADI is carried out using the LIDC2 dataset, the
ITALUNG− CT dataset and the five ANODE09 examples. The best model
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Figure 8.3.1: Results in terms of AUC of the SVM training on the
LIDC2 with the features extracted by the CADI as a function of the
penalty parameter C.

Table 8.5: FROCSV of the CADI trained on the LIDC2 for the
four different LIDC ALs.

Agreement level FROCSV

AL1 0.465
AL2 0.538
AL3 0.577
AL4 0.597
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Figure 8.3.2: FROC curves obtained by the CADI on the LIDC2

at the four ALs in LOPO mode.
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Table 8.6: Average score obtained by the CADI trained on the
LIDC2 and validated on ANODE09 five examples, the LIDC1 and
the ITALUNG − CT datasets.

Dataset FROCSV

ANODE09 5 examples 0.428
LIDC1 0.466/0.591/0.669/0.740

LIDC2(LOPO) 0.465/0.538/0.577/0.597
ITALUNG− CT 0.661

found and all the settings described in sec. 8.3.1 are used. The obtained
results are shown in tab. 8.6.

8.3.3 CADJP training

The CADJP is applied to the 69 CTs of the LIDC2, using a 5 mm long normal
and σcylinder = 0.75 mm. After the computation of the PSN local maxima,
with a basis of 5 mm are searched in the A(x, y, z) matrix.

Analyzing the distribution of FPs and TPs, it is possible to show that dis-
carding findings below the score Tjuxta−pleural = 5, a sensitivity of 18

19 ∼ 95%
is achieved 107 FP/CT on average.

The candidate feature vectors are then classified with a linear SVM using
the methods described in chap. 7, an empirical threshold Tcandidate = 2 and
discarding those candidates with major axis outside the [dmin = 0, dmax =
40] mm range. The features of the candidates are sampled, with a 6 to 1 FPs
to TPs ratio for a total 33453 of train patterns.

To search for the best model a LOPO cross validation is carried out, varying
the penalty parameter C of the linear SVM in the range [2−20, 220]. The best
model is then selected according to the AUC.

The results of the SVM training are shown in fig. 8.3.3. The results of the
LOPO training show that the performance of the classifiers are stable in a
wide range of values, with a peak value of AUC = 0.91 for C = 1.0.

It is possible to evaluate the performance of the CADJP on the LIDC2 in
LOPO mode, using the 69 models originating from the train session, thus
assessing the quality of the model trained. Results are shown in fig. 8.3.4
and in tab. 8.7, the score is evaluated only on juxta-pleural nodules.
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Figure 8.3.3: Results in terms of AUC of the SVM training on the
LIDC2 with the features extracted by the CADJP as a function of
the penalty parameter C.

Table 8.7: FROCSV of the CADJP trained on the LIDC2 for the
four different LIDC ALs.

Agreement level FROCSV

AL1 0.267
AL2 0.409
AL3 0.476
AL4 0.482
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Figure 8.3.4: FROC curves obtained by the CADJP on the LIDC2

at the four ALs in LOPO mode.
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Table 8.8: Average score obtained for the CADI trained on the
LIDC2 and validated on the ANODE09 5 example, the LIDC1 and
the ITALUNG − CT datasets.

Agreement level FROCSV

ANODE09 5 0.458
LIDC1 0.344/0.495/0.553/0.575

LIDC2(LOPO) 0.267/0.409/0.476/0.482
ITALUNG − CT 0.340

8.3.4 CADJP validation

The validation of the CADJP is carried out using the LIDC1 dataset, the
ITALUNG − CT dataset and the ANODE09 five CTs examples. The best
model found and all the settings described in sec. 8.3.1 are used. The obtained
results are shown in tab. 8.8.

8.4 CADI and CADJP combination

The CADI and the CADJP are intended as complementary procedures to
detect the two main nodule categories identified in this study. However,
in many cases it is preferable to obtain a list of all the lung candidates; the
procedure that merges the list of candidates belonging to two different CADs
is referred to as combination.

To combine efficiently two CAD systems may be regarded as a non trivial
task. The side effect of simply merging findings is to obtain a CAD of unpre-
dictable performance. Therefore a procedure to combine the two approaches
should be implemented.

To combine the CADI and the CADJP, the algorithm discussed in [16,17,68]
is implemented. This algorithm may be divided in two steps: normalization
and clustering.

The normalization procedure is applied in order to make findings that come
from different CAD schemes directly comparable.

For each CAD, a function assigning to each degree of suspicion p a new value
f(p) is evaluated according to the rule
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Table 8.9: Summary of the FROCSV values obtained by CADI and
CADJP. The results obtained on the training dataset are evaluated
in LOPO mode.

Training dataset CAD LIDC1(AL1/../AL4) LIDC2(AL1/../AL4) Anode5 ITALUNG− CT

LIDC1 CADI 0.472/0.605/0.676/0.743 0.471/0.548/0.592/0.615 0.462 0.685
LIDC1 CADJP 0.276/0.384/0.405/0.405 0.251/0.330/0.314/0.286 0.381 0.238
LIDC2 CADI 0.466/0.591/0.669/0.740 0.465/0.538/0.577/0.597 0.428 0.661
LIDC2 CADJP 0.344/0.495/0.553/0.575 0.267/0.409/0.476/0.482 0.458 0.340

Table 8.10: FROCSV values obtained combining the CADI and
CADJP, using the normalization function obtained on the training
dataset using AL2 nodules.

Train dataset Validation dataset Average performance

LIDC1(AL2) LIDC2(AL2) Anode5 ITALUNG − CT

LIDC1 0.467 0.507 0.418 0.405 0.449
LIDC2 0.382 0.520 0.397 0.316 0.404

p → f(p) =
TP (p)

TP (p) + FP (p) + 1
(8.4.1)

where TP(p) and FP(p) are the number of TPs and FPs with degree of
suspicion ≥ p. Eq. 8.4.1 is, except for the term +1, the positive predictive
value of the CAD at the threshold p.

The normalization procedure is implemented on a set for which the annota-
tions are known, and then the obtained function (p, f(p)) is used to normalize
findings belonging to different datasets.

Once all the findings are normalized, it is possible to combine the information
provided by different CAD schemes, by clustering those findings lying within
a predefined distance and by summing their f(p).

This procedure is applied both to the CADI and CADJP, and the normaliza-
tion functions are those evaluated on the training dataset using AL2 nodules.
The results of the combination are summarized in tab. 8.10.
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8.5 Validation on the ANODE09 dataset

As shown in tab. 8.10, the CAD trained on the LIDC1 performs, on average,
considerably better than the CAD trained on the LIDC2 and moreover it
shows more stable performances across the LIDC1 and the LIDC2 datasets.

The CAD system trained on the LIDC1 has been therefore applied to the
ANODE09 50 CT dataset. The CADI is applied using the settings described
in sec. 8.2.1 on the 50 ANODE09 CT dataset producing 144 candidates per
CT on average. The CADJP has been run with the settings described in
sec. 8.2.3 on the 50 ANODE09 CT dataset producing 38 candidates per CT
on average.

Since in the ANODE09 evaluation at most 2000 findings are processed, the
list of findings of the 50 CTs was sorted according to their degree of suspicion
and the 2000 most significative findings have been retained.

The FROCSV obtained on the 50 ANODE09 CTs is 0.393 with a peak sen-
sitivity of 81% obtained at 32.76 FP/CT.

The FROCSVs of each category are summarized in tab. 8.11. The overall
performance of the CAD is slightly worse than the estimation provided by
the five example CTs (0.418).

This is probably due to the underrepresentation of pleural nodules in the five
ANODE09 example CTs (only three relevant juxtapleural nodules are anno-
tated), thus leading to an inaccurate estimation of the CADJP performance.

Indeed, as it is clear from tab. 8.11, the CADJP is lowering the average
FROCSV of the overall CAD. This low performance may be explained by
taking into account the combination procedure. As shown in tab. 8.9 the
CADI always outperforms the CADJP in terms of FROCSV thus resulting in
normalization factors that penalize the CADJP.

However, the maximum sensitivity obtained by the CADJP is 74% at 32.76
FP/CT. This shows that, even though the performance in the low FP/CT
range is not good, the CADJP may be improved modifying the classification
step.

8.6 Analysis of the FPs of CADI and CADJP

The list of FPs generated by the CADI and the CADJP on the LIDC2 dataset
was analyzed: the 50 FPs with the highest score findings of each CAD were
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Table 8.11: Score obtained on the ANODE09 50 CTs for the six
categories of nodules.

Nodule category FP/CT FROCSV

1/8 1/4 1/2 1 2 4 8

small nodules 0.095 0.154 0.287 0.350 0.453 0.516 0.616 0.353
large nodules 0.279 0.317 0.371 0.455 0.504 0.551 0.634 0.444

isolated nodules 0.143 0.266 0.367 0.453 0.54 0.600 0.62 0.421
vascular nodules 0.259 0.314 0.442 0.523 0.605 0.616 0.663 0.489

juxtapleural nodules 0 0 0 0 0.062 0.193 0.407 0.09
peri-fissural nodules 0.314 0.371 0.474 0.6 0.657 0.669 0.715 0.543

all nodules 0.175 0.225 0.324 0.396 0.475 0.531 0.624 0.393

reviewed and classified according to the visual assessment.

The vast majority of CADI FP findings (38/50) are related to vessels, i.e.
they are vessels crossing, branching or large airways. The remaining 12 find-
ings are small nodular objects that were not contained in the annotations (see
fig. 8.6.1). The FPs have probabilities in the range of 0.41 to 1 corresponding
to a FROC point with 65% sensitivity.

The 50 most important CADJP FPs are in correspondence of ribs and clavicles
(8/50), the azygos vein (13/50), apical scars (4/50) and pleura thickenings
(17/50) (see fig. 8.6.2).

The FPs have probabilities in the range of 0.91 to 1 corresponding to a FROC
point with 16% sensitivity.

8.7 Comparison with literature

In this section, some of the results found in literature are reported. Most of
the mentioned approaches were selected among those systems participating
to the ANODE09 initiative.

ISI CAD

The ISI CAD is described in [17] and [69]. This method implements a region
growing and morphological smoothing of the lung boundaries to segment the
lungs. To extract nodule candidates, the shape index and curvedness are
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Figure 8.6.1: Four example FP findings generated by the CADI.
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(a) Pleura thickening (b) Apical scar

(c) Clavicle (d) Azygous vein

Figure 8.6.2: Four FP findings generated by the CADJP.

computed at a fixed scale of 1 voxel. Those voxels having these values in a
predefined range are clustered into candidates.

FP candidates are then removed by means of a two-step approach using k-
Nearest Neighbor classification (kNN). First a kNN classifier is trained using
simple features such as intensity value and image gradients to discard the
most obvious candidates, then a second KNN classifier employing 19 more
complex features, is trained to finally classify the candidates.

In [17] the ISI CAD is reported to have 80% sensitivity with an average of
4.2 FP/CT on 813 CTs scan belonging to the NELSON study. This method
applied to the ANODE09 datasets led to a FROCSV of 0.632.

VBNA CAD

The VBNA method, which may be regarded as an older version of the here
proposed CAD approach, is described in [17, 22, 65]. This method uses a
thresholding and morphological approach to segment the lungs. A MSDE
and a PSN filter are then implemented to identify the nodule candidates. A
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total of 131 features are extracted for each voxel candidate and classified by
a neural network (see appendix B) to reduce FPs.

This method is claimed to have a sensitivity of 78% at 8 FP/CT and 70% at
4 FP/CT on a 30 CT dataset of the ITALUNG−CT database, containing 35
internal nodules and 32 juxta-pleural nodules. The same approach applied
to the ANODE09 dataset resulted in a FROCSV of 0.293.

The results of an improved version of the VBNA CAD, trained on the LIDC1

are reported in [16], where a sensitivity of ∼ 60% at 4 FP/CT and and a
FROCSV of 0.43 were obtained on the LIDC2 dataset using nodules with
AL2.

CAM CAD

The Channeler Ant Model (CAM) method is described in [17]. The method
employs a 3D region growing method to segment the lung parenchyma and a
wave-front algorithm for the definition of the lung surface on the inner side.

Two virtual ant colonies are then started from the root of the vessel tree to
segment the bronchial tree. Then the same method is employed to segment
the nodule candidates. When all the ants have died, candidates are obtained
thresholding the pheromone map and classifying them using five intensity
features by means of a neural network classifier.

This method claimed a sensitivity of 46% and 64% obtained at an average of
2 and 6 FP/CT respectively, on a subset of the ITALUNG-CT database.The
same method applied on the ANODE09 dataset resulted in a FROCSV score
of 0.254.

The results of an improved version of the CAM CAD are presented in [16]
where a FROCSV of 0.57 is obtained by training the system on LIDC1 and
validating it on LIDC2.

RGVP CAD

The Region Growing Volume Plateau (RGVP) CAD is described in [17].
This method uses the same lung segmentation method of the CAM approach
and identifies nodule candidates evaluating an adaptive threshold for each
and then filtering the candidates according to their roundness and volume.
The list of obtained candidates is then classified using seven intensity based
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features. The system obtained a FROCSV value of 0.291 on the ANODE09
database.

The results of an improved version of the RGVP CAD are presented in [16]
where a FROCSV of 0.39 is obtained training the system on LIDC1 and
validating on LIDC2.

Flyerscan CAD

The “Flyerscan” CAD is described in [21]. This approach first segment the
lung by using a thresholding operator, then big airways are segmented and
the lungs are separated with a dedicated procedure. After preprocessing, a
nodule candidate detection and segmentation algorithm is employed to locate
potential lung nodules. First the candidate segmentations are obtained using
15 predefined thresholds, then an expert system is trained to discards those
segmentations not belonging to nodules and then the obtained segmentations
at the different thresholds are merged by means of an OR operator. Finally
each candidate is classified using a Fisher Linear Discrimination (FLD) clas-
sifier and 40 2D and 3D intensity and geometric features.

In [21] this approach is claimed with a sensitivity of 82.66% with an average
of 3 FP/CT on a set of 84 LIDC CTs containing 143 nodules. The same
algorithm applied to the ANODE09 50 CTs dataset led to a FROCSV score
of 0.552.

MIG CAD

In [70] the MIG CAD is described. This method first segments the lungs using
histogram thresholding, seeded region growing and morphological operators.
Then a fast radial filter is applied to the lung to detect candidates. Then a
Volume Of Interest (VOI) is extracted from each candidate and is used to
evaluate the Maximum Intensity Projections (MIP) along the three principal
axis.

The three MIP images are used to extract the Zernike moments and the re-
sulting three feature vectors are classified using an SVM. A region is classified
as a true nodule if at least two over three vectors are classified as positive.

The system is reported to have a sensitivity of 71% at 6.5 FP/CT and 60%
at 2.5 FP/CT on a subset of the LIDC database containing 154 CTs using
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nodules with AL4 only. The same CAD applied to the ANODE09 dataset
led to a score of 0.310.

Li et al. CAD

In [23]the Li et al. CAD is presented. First the lung is segmented using a
threshold operation followed by a procedure devoted to the inclusion of juxta-
pleural nodules in the volume of interest. Then an MSDE filter is applied
to the whole lung and the candidates are detected thresholding the MSDE
matrix and searching connected components within a range of dimensions.
To each candidates is then assigned a vector of 18 intensity and morphological
based features. The candidates are then classified with a rule based classifier.

Li et al. [23] reported a 86% sensitivity at 6.6 FP/CT, 81% at 3.3 and 75%
at 1.6 FP/CT obtained on a set of 117 not public scans. Unfortunately the
CAD never joined the ANODE09 initiative.

Discussion

The performances of the proposed approach are comparable with those pre-
sented in this section (see tab. 8.12). However, there are few elements that
may be improved in order to solve the issues highlighted in sec. 8.6.

First, as the vast majority of the CADI FPs are related to vessel branch-
ings and crossings, the CADI may be improved using a more refined vessel
and airway segmentation as the one implemented in the CAM CAD or im-
plementing a dedicated procedure to remove the findings corresponding to
these structures.

However, from sec. 8.5 it is also clear that the weak point of the proposed
approach is the CADJP. This approach may be improved implementing other
features to classify the juxta-pleural candidates, in particular positional fea-
tures, i.e. features that describe the position of the candidate in the lung
with respect to the organs and shape based features.

Moreover as the number of candidates generated by the MSDE and the PSN
is very high, i.e. order of 100 candidates per filter, it should be useful to
implement a pre-filtering to reduce the number of candidates before the clas-
sification step. This filtering should be based on features other than VBNA
and should be able to discard the most obvious FPs.



108 CHAPTER 8. CAD TRAINING AND VALIDATION

Table 8.12: Comparison of results found in literature. Note that
since the FROC points are not directly available on the ANODE09
website [48] the results in terms of sensitivity are only approximatively
estimated from the provided FROC curve images.

CAD Declared performance Dataset ANODE09

FROCSV max sens.

ISI [17] 80% sens. at 4.2 FP/CT 813 CT Nelson study 0.632 ∼ 80%
VBNA [17] 78% sens. at 8 FP/CT 30 CT ITALUNG-CT 0.293 ∼ 70%
CAM [17] 64% sens. at 6 FP/CT ITALUNG-CT 0.254 ∼ 65%
RGVP [17] - - 0.291 ∼ 60%

Flyerscan [21] 82.66% sens. at 3 FP/CT 84 CTs LIDC 0.552 ∼ 85%
MIG [70] 71% sens. at 6.5 FP/CT 154 CTs LIDC 0.310 ∼ 50%

Li et al. [23] 86% sens. at 6.6 FP/CT 117 not public CTs - -
Proposed CAD 75% sens. at 8.2 FP/CT 69 CTs LIDC2 0.393 ∼ 81%

As a final remark, it should be noticed that the proposed approach provides
the unique characteristic of implementing two dedicate procedures to detect
internal and juxta-pleural nodules. Therefore the combination of this two
approaches affects the overall performance and thus may be regarded as an
algorithm to be optimized.



Conclusions

Computer aided detection systems are becoming a widespread technology
to support radiologists in many hospitals around the world. However, for
problems as lung cancer early detection, CAD systems are far from being
“perfect” and even though many improvements occurred in the last decade
the research on this topic is still active.

Within this framework a CAD system for the identification of lung nodules
in CT images has been proposed. The CAD system may be divided in two
subprocedures the CADI and the CADJP each dedicated to detect a specific
lung nodule category. The two systems consist of three modules: lung seg-
mentation, nodule candidate detection and nodule candidate classification.
The lung segmentation is built using standard elements of image analysis
and dynamic programming, whereas the candidate detectors are based on
hessian eigenvalues filters (MSDE) and on pleura surface normals intersec-
tions (PSN). Finally the candidate classification is carried out using the
VBNA method, which was improved by adding new features.

These procedures were completely optimized and tested on CTs belonging
to the largest collection of annotated chest CTs publicly available at present,
the LIDC [41].

The reason why the LIDC database has been extensively used in this work
is that it provides a variety of CTs acquired and reconstructed with different
protocols and annotated with the same multi-reader paradigm. Therefore
a CAD trained on such a dataset is expected to be more robust and less
database dependent than a CAD trained on a homogeneous set.

However, as discussed in sec. 3.3, the LIDC provides a lot of information that
has to be processed in order to be used for detection purpose. In particular, it
was chosen to use the annotations provided by [46] and to train the algorithms
only with nodules annotated by at least two radiologists (AL2).
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The AL2 level of agreement is a tradeoff between including in the annota-
tions objects with an uncertain nature, e.g. nodules annotated by only one
radiologist, and having enough nodules to train the CAD algorithms.

Since the performance of a CAD may radically change according to the train-
ing set, different training and validation sessions were carried on the LIDC
and ITALUNG-CT datasets.

The most stable obtained CAD was then blindly applied to the 50 CT AN-
ODE09 dataset, resulting in a FROCSV of 0.393. This means that the system
is able to detect, on average, 39% of the nodules in the range of 1/8 to 8
FP/CT.

The application to the ANODE09, ITALUNG-CT and LIDC dataset has
shown that there is still room for improvement for both the CADI and the
CADJP, in particular the CADJP may be improved including new features to
classify candidates in order to improve the separation between FPs and true
juxtapleural nodules.

However, the proposed CAD performed considerably better than the CAD
scheme presented in [22] that participated to the original ANODE09 compe-
tition and that may be regarded as a previous version of this approach.

In literature a wealth of publications about CAD for lung nodules detection
are available. However, as training, validation sets and evaluation procedures
play a prominent role in the evaluation of a CAD performance, it is always
difficult to compare the results of the described approaches. Therefore it was
chosen to compare mostly the performance of the CAD that participated to
the ANODE09, as this competition provides an unbiased measurement of the
CAD performances obtained with the same evaluation protocol.

Another important topic described in this work is the combination of the
CAD systems. In the context of this work, the combination algorithm has
been used only to combine the CADI and the CADJP, but in general it may be
considered a tool to improve the single CAD performance. Indeed, as shown
in [16, 17, 68] the combination of CADs may be regarded as a promising
technique to improve the results.

Finally, it should be noticed that lung nodules are common to many patholo-
gies, thus it might be possible to apply the proposed CAD scheme to struc-
tures related to pathologies other than lung cancer, e.g. detection of silicosis
nodules in dust exposed patients and detection of lung secondary metastasis
in patients that underwent chemotherapy cure.
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As discussed in sec. 2.2, the CAD systems are typically intended to be used
by radiologists as a “second reader”, therefore the real value of a CAD has to
be assessed in a clinical trial context, where it will be possible to verify if the
system is able to help the radiologist’s work. For this purpose, a dedicated
plugin for the OsiriX DICOM viewer [42] was developed to allow easy chest
CT annotations and visualization of the CAD findings.
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Appendix A

Lung Cancer

The staging of the lung cancer is an important factor to assess the patient’s
prognosis. There are mainly two categories of lung cancer: Small Cell Lung
Cancers (SCLC) and Non-Small Cell Lung cancers (NSCLC). These two
types of cancers grow and spread in different ways and may have different
treatment options, so a distinction between these two types is important.

For a SCLC, the TNM classification is associated with the stages of the
tumor [71]: T describes the size of tumor, N the involvement of the regional
lymph node and M the presence of distant metastasis.

The variable T ranges in a 1-4 scale proportional to the size of the primary
tumor.

The N variable ranges in 0-3 scale, where:

• N0: tumor cells absent from regional lymph nodes

• N1: regional lymph node metastasis present; (at some sites: tumor
spread to closest or small number of regional lymph nodes)

• N2: tumor spread to an extent between N1 and N3 (N2 is not used at
all sites)

• N3: tumor spread to more distant or numerous regional lymph nodes
(N3 is not used at all sites)

The variable M ranges

• M0: no distant metastasis
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Stage TNM subset

0 carcinoma in situ
IA T1 N0 M0
IB T2 N0 M0
IIA T1 N1 M0
IIB T2 N1 M0

T3 N0 M0
IIIA T3 N1 M0

T1 N2 M0
T2 N2 M0
T3 N2 M0

Stage TNM subset

IIIB T4N0M0
T4 N1 M0
T4 N2 M0
T1 N3 M0
T2 N3 M0
T3N3M0

T4 N3 M0
IV Any T Any N M1

Table A.1: Cancer stages according to TNM classification.

• M1: metastasis to distant organs

There are four main stages for lung cancer according to the spread of the
pathology that may be resume in tab. A.1.



Appendix B

Artificial Neural Networks

Introduction

Classifiers are often used in modern science to infer from data some relations,
that may be hidden at first sight. In particular, their usage is common in
fields like pattern recognition, where there is no strong theoretical basis.
There are a lot of classifiers available in literature, and among all it is possible
to identify two main families: classifiers that need to have labeled data to
be trained (supervised classifiers) and classifiers which don’t (unsupervised
classifiers). Typical examples of supervised classifiers are support vector
machines and neural networks, while examples of unsupervised classifiers are
Self Organizing Map (SOM) and K-means algorithms [63].

In this thesis only supervised classifiers are used, and in the following ap-
pendices two different kinds of classifiers are described: Artificial Neural
Network (ANN) and Support Vector Machine (SVM).

B.1 What is a neural network?

The term Artificial Neural Network [63] is traditionally referred to mathemat-
ical models inspired by the structure and the functional aspects of biological
neural networks. An ANN consists of an interconnected group of artificial
neurons, and it processes information using a connectionist approach to com-
putation. Modern ANNs are non-linear statistical data modeling tools and
they are used to model complex relationships between inputs and outputs,
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to find patterns in data and, in general, to solve problems hard to model
theoretically.

There are several ANN architectures available in literatures, the most com-
mon are the Single Layer Perceptron (SLP) and the Multi-Layer Perceptron
(MLP). The MLP consists of neurons distributed in layers of different sizes.
The SLP is an MLP without hidden layers, i.e. where the input layer is di-
rectly connected to the output layer. As it has been shown [63,72], the SLP
is able to solve only linear separable problems, thus it cannot be regarded as
an optimal tool for solving general problems. Instead, it was shown that a
MLP with one hidden layer is able to approximate an arbitrary continuous
function (see universal approximation theorem).

B.2 Neurons

The basic element of an ANN is the neuron. There are several neuron models
available in literature, the most common is the McCulloch–Pitts [63]. The
neurons are connected themselves trough synapses wij and have a special
synapse, called bias bi, whose input is always 1. The value of each neuron
depends on the sum of values of all the neurons connected to it, each weighted
on the synaptic connection and filtered with the neuron activation function
ϕ(·)

Vj = ϕ(
∑

i∈neurons connected to j

wijVi + bi),

where wij is the value of the synapse between the neurons i and j and Vi and
Vj are the values of the neurons and bi is the bias of the i− th neuron. The
single neuron can be interpreted as the union of a summing junction directly
connected to an activation function ϕ(·) (see fig. B.3.1(a)).

To ensure the universality of the MLP (see universal approximation theorem),
the function ϕ(·), also referred as neuron activation function, must be a non
constant bounded monotone continuous function. Typical choices for ϕ(·)
are the sigmoid function

ϕ(V ) =
1

1 + exp(−αV )
(B.2.1)

or the hyperbolic tangent

ϕ(V ) = a ∗ arctan(bV ).
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(a) Scheme of a neuron represented
as a summing junction connected to
the activating function

(b) Picture representing a three-
layer MLP with 4 input neurons, 1
neuron in the hidden layer and 2
output neurons

Figure B.3.1: Pictures representing a neuron and MLP.

B.3 Multi-layer perceptron architecture

The MLP consists of three or more layers (an input and an output layer with
one or more hidden layers) of nonlinearly-activating nodes. Each node in one
layer is connected with a certain weight wij to every node in the following
layer. The first layer is commonly referred as “input layer” while the last one
is referred as “output layer”. All the layers between the last and the first are
typically called “hidden” layers (see fig. B.3.1(b)). The input vector of an
ANN is often referred to as “features”.

For the MLP it is possible to prove the following theorem:

Theorem. Universal approximation theorem

Let be ϕ(·) be a non constant, bounded and monotone-increasing continuous
function. Let Im0 denote the m0-dimensional unit hypercube [0, 1]m0. The
space of continuous functions on Im0 is denoted by C(Im0). Then, given any
function f ∈ C(Im0) and ε > 0, there exist an integer m1 and sets of real
constants αi, bi, and wij, where i = 1, ..,m1 and j = 1, ..,m0 such that we may
define

F (x1, ..., xm0) =
m1
∑

i=1

αiϕ(
m0
∑

j=1

wijxj + bi)

as an approximate realization of the function f(·); that is
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|F (x1, ..., xm0)− f(x1, ..., xm0)| < ε

for all x1, x2, ...., xm0 that lie in the input space.

The universal approximation theorem is directly applicable to the MLP,
where :

• ϕ(·) is the activation function

• m0 and m1 are the input nodes and number of hidden neuron

• x1, .., xm0 are the input features of the ANN

• wi1, ...,wm0 are the hidden neurons synaptic weights and bi the bias

• α1, ..., αm1 are synaptic weights of the output layer

The theorem shows that a single hidden layer network is enough for a MLP
to compute an approximation to a given training set. However, this theo-
rem does not say that a single layer is optimum for generalization or how
many neurons should be used in the hidden layers. The problem of finding
the optimal architecture for an MLP to solve a problem is addressed in the
following sections.

B.4 Learning process

B.4.1 Back-propagation algorithm

An ANN learns about its environment through an interactive process of ad-
justment applied to its synaptic weight and bias levels. This process is also
called training phase and for the MLP can be carried out using the Back-
Propagation (BP) algorithm described in [63]. The BP is an iterative algo-
rithm that modifies the MLP weights wij in order to reproduce the relation
between the train patterns i = 1, ..,N and their desired value di.

Each step of the iteration n produces a new set of wij, and for each set it
is possible to evaluate the distance between the desired output di and the
obtained output yi.

For a single pattern, the distance can be evaluated as
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E(n) =
1

2

∑

j∈output layer

e2j (n)

with ej = dj − yj, and obtain the average distance on a set averaging all the
E(n)

Eaverage(n) =
1

N

N
∑

n=1

E(n) (B.4.1)

The number of times the entire train dataset has been presented to the ANN
is called epoch. The BP determines the weights using an iterative steepest
descend algorithm to find the minimum of E . The requirement for the BP
algorithm to work, is that ϕ(·) must be a derivable function, for a complete
description of the algorithm see [63].

The E is function of the wij. To find the minimum of such a function, each
weight is adjusted in the opposite direction to the gradient of E

∆wij = −η
∂E(wij)

∂wij
(B.4.2)

where η is the learning rate parameter that controls the size of the step
against the direction of the gradient.

There are two different ways of implementing the BP algorithm on a dataset:
the batch mode and the sequential mode. The batch mode consists in up-
dating the weights of the ANN only at the end of an epoch, whereas the
sequential mode consists in randomizing the order of the patterns each epoch
and update the weights after each pattern is presented to the ANN.

If avoiding to be stuck in a local minima is the most important factor, the
sequential mode should be preferred to the batch mode, because presenting
the patterns in a random order each epoch make it less likely for the BP to be
trapped in a local minima. Instead the batch algorithm, which is very easy to
parallelize, can be used to solve large problems. In this thesis the sequential
mode is always used to train the ANN classifiers. The ANN classifiers can be
used to solve two different kinds of problems: classification and regression.
Classification consists in dividing the input data in two or more classes, while
regression consists in fitting a continue value function.
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B.5 Normalization

Each feature vector must be scaled in order to avoid numerical problems
in the algorithms and to avoid that attributes in greater numeric ranges
dominate those in smaller numeric ranges. Note that the statistics needed to
normalize the input, such as the mean and standard deviation, are computed
from the training data, not from the validation or test data. The validation
and test data must be standardized using the statistics computed from the
training data.

Linear scaling

xi →
2xi − (maxi +mini)

maxi −mini
(B.5.1)

where maxi and mini are the max and min value of the i− th feature. Using
this normalization it is possible to obtain all the features in the training set
in the range [−1, 1].

Standardization

The standardization consists in replacing each feature xi with

xi →
xi − µ

σ

where µi and σi are the mean and std-deviation of the i − th feature on
training set with

µi =

∑

xi

N

and

σi =

√

∑

(xi − µ)2

N − 1

B.6 Cross validation techniques

There is no theoretical principle to build an optimal ANN to solve a problem,
i.e. it is not possible to establish how many layers and hidden neuron to use.
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The only available approach at present is to test empirically which is the best
model to fit the problem. More specifically, it is possible to view a classifier
selection problem as choosing, within a set of candidate model structures, the
“best” one according to a certain criterion. In this context, a standard tool
in statistics known as k-fold cross-validation [63,66] may be used. The k-fold
cross validation consists in dividing the dataset in K different subsets, to
train the classifier on K−1 subsets and to “validate” it on the remaining one.
This can be done in K different ways, using each time different K−1 subsets
for training and one for performance assessment. At the end of the procedure
each subset was unbiasedly evaluated by a classifier, i.e. it was evaluated by a
classifier that was not trained with it. The K classifiers provide an estimate of
the performance of the classifier trained on the whole datasets and validated
on a dataset of homogeneous characteristics. This method is very useful when
there is not big availability of labeled data, because it allows to use the same
set of data for training and assessing the performance. A special case of the
k-fold cross validation is the Leave One Out (LOO) cross validation, where
K is equal to the number of pattern N. Therefore, for each fold there is only
one pattern that is not used for the training. In the context of CAD systems
it often happens to train classifiers with patterns that come from the same
exam. These patterns may be highly correlated, so doing a k-fold division at
pattern level may be not the best approach. Instead a LOO at patient/exam
level may be implemented [67], i.e. patterns are divided in folds according
to the patient/exam they belong to. This special LOO validation is often
referred as Leave One Patient Out (LOPO) cross validation.
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Appendix C

Linear Support Vector Machine

C.1 Introduction

Support Vector Machines (SVMs) [63, 72] are a set of supervised learning
methods that analyze data and recognize patterns, typically used for clas-
sification and regression analysis. The SVM paradigm is not based on a
biological analogy, like it is for ANN, but it is based on finding an hyper-
plane separating data with the largest possible margin (see fig. C.1.1). The
SVM classifiers can perform both multi-class classification and regression; for
the sake of simplicity, only the two class SVM, which is the only one used in
this thesis, is described. In the following sections the SVM for linearly and
non linearly separable patterns are described together with their algorithms.
In general it is possible to implement SVM with kernel other than linear,
i.e. the input features are non linearly mapped in a higher dimensional space
before applying the standard SVM algorithm. In this thesis, such a kind of
SVM are not discussed, since the number of features used to classify patterns
is always very high (order of 100). In fact when the number of features is
large, it is not necessary to map data to a higher dimensional space and the
nonlinear mapping does not improve the performance [73]. Using the lin-
ear kernel is good enough, and it is possible to search only for the optimal
parameter C.

125



126 APPENDIX C. LINEAR SUPPORT VECTOR MACHINE

x2

x1

Large margin

(a) Hyperplane separating the 2-
dimensional data with a "large"
margin

‘

x2

x1

Small margin

(b) Hyperplane separating the 2-
dimensional data with a "small"
margin

Figure C.1.1: Two hyperplanes separating the same set of data.

C.2 Optimal hyperplane for linearly separable
patterns

Suppose, two classes of data have to be separated, and denote the optimal
hyperplane with

w
T

0 x+ b0 = 0

where w0, b ∈ Rn are the parameters of the hyperplane. It is possible to
show that the distance of a point x̃ from the hyperplane is

r =
g(x̃)

‖w0‖
(C.2.1)

where g(x) is

g(x) = w
T

0 x+ b0.

The issue is now to find a criterion to determine w0 and b0 and to define
the concept of the optimal separating hyperplane given the set of training
xi, di. In this context, it is assumed that the data are divided in two classes
di=1,..,N = ±1.

The w0 and b0 of the optimal hyperplane, must satisfy the constraints



C.2. OPTIMAL HYPERPLANE FOR LINEARLY SEPARABLE PATTERNS127

w
T

0 xi + b0 ≥ 1 for di = 1

w
T

0 xi + b0 ≤ −1 for di = −1

which may be rewritten in a single equation

di(w
T

0 xi + b) ≥ 1. (C.2.2)

Of course it is implicit the assumption that such a w0 and b exist, and this
is true only for linearly separable patterns.

The particular data points xi, di for which the equality eq. C.2.2 holds, are
called Support Vectors (SV). This vectors play a prominent role in the op-
eration of this class of learning machine. In conceptual terms the SV are
those data points that lie closest to the decision surface and are therefore the
most difficult to classify. As such, they have a direct bearing on the optimum
location of the decision surface. Using the eq. C.2.1, it is possible to evaluate
the distance from the optimal hyperplane for patterns with di = 1

r =
g(x)

‖w0‖
=

1

‖w0‖
and r = − 1

‖w0‖
for a pattern for di = −1.

The margin between these hyperplanes, is defined as ρ = 2r = 2
‖w0‖

, and to

maximize ρ is equal to find the minimum of ‖w0‖ subject to the constraints
eq. C.2.2.

The problem of finding the optimal hyperplane for a set of N patterns xi, di

can be expressed in terms of finding the minimum of

L(w, b) =
1

2
w

T
w (C.2.3)

subject to the constraints eq. C.2.2, where the factor 1
2 is for convenience.

The constrained problem eq. C.2.3 can be solved finding the “saddle point”
[63, 72] of the Lagrange function

L(w, b, α) =
1

2
w

T
w −

N
∑

i=1

αi[di(w
T
xi + b)− 1] (C.2.4)

where αi are the Lagrange multipliers and w and b are the parameters of
the hyperplane. The saddle point can be found looking for the minimum of
L(w, b, α) with respect to the variables w and b and looking for the maximum
with respect to the αi variables. This problem can be solved either in the
primal space (the space of the parameter w and b) or in the dual space
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(the space of the Lagrange multipliers αi). It is convenient to solve the dual
problem, because this problem can be expressed only in terms of the xi, di.

To find local extrema of a function subject to inequality constraints, the
Kuhn-Tucker (KT) may be used

αi ≥ 0

αi[di(w
T
xi + b)− 1] = 0 (C.2.5)

in this case both the eq. C.2.3 and the constraints are convex, and the KT
conditions are necessary and sufficient for a maximum with respect to αi, of
the function eq. C.2.4.

In particular, the KT conditions imply in this case that αi ,= 0 only for SV.

C.3 Solution of the dual problem

It is possible to re-factor the “primal problem”, using the relations obtained
imposing the partial derivatives, with respect to w and b, to be equal to 0

∂L(w, b, α)

∂w
= 0 ⇒ w =

N
∑

i=1

αidixi (C.3.1)

∂L(w, b, α)

∂b
= 0 ⇒

N
∑

i=1

αidi = 0 (C.3.2)

in particular substituting the eq. C.3.1 and the eq. C.3.2 in the eq. C.2.4.

After this substitution the new problem becomes

Q(α) =
N
∑

i=1

αi −
1

2

N
∑

i=1

N
∑

j=1

αiαjdidjx
T
i xj (C.3.3)

subject to the constraints
N
∑

i=1

αidi = 0

and

αi ≥ 0
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The equation eq. C.3.3 is also called “dual problem” and it is expressed as a
function of xi, di.

Finding the maximum of the “dual problem” Q(α0) is equivalent to find the
minimum of L(w0, b0) under the constraints eq. C.2.2, and the solution of
the “primal problem” can be expressed as

w0 =
N
∑

i=1

α0,idixi (C.3.4)

where α0,i is the solution of the dual problem. It is important to note that
only the SVs contribute to the eq. C.3.4, since for other vectors αi = 0.

Instead the bias can be computed using the relation

b0 =
1

NSV

NSV
∑

s=1

(ds −w
T

0 xs)

where the sum is over all the SVs and NSV is the number of SVs.

C.4 Optimal hyperplane for non linearly sepa-
rable patterns

If the input patterns are not linearly separable, the relation eq. C.2.2 cannot
be satisfied. To allow for deviance from the linearly separable problem, it is
possible to modify the eq. C.2.2 introducing the slack variables ξi.

The relation eq. C.2.2 becomes

di(w
T
xi + b) ≥ 1− ξi (C.4.1)

and the corresponding function to minimize is

L(w, ξ) =
1

2
w

T
w + C

N
∑

i=1

ξi (C.4.2)

with the constraints eq. C.4.1, where C is a parameter selected by the user,
that controls the tradeoff between complexity of the machine and the number
of non separable points. After using the Lagrange multipliers, the eq. C.4.2
becomes

L(w, b, ξi, αi, µi) =
1

2
w

T
w+C

N
∑

i=1

ξi−
N
∑

i=1

αi[di(w
T
xi+ b)−1+ ξi]−

N
∑

i=1

µiξi

(C.4.3)
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where αi and µi are the Lagrange multipliers.

The KT conditions become

αi ≥ 0

αi[di(w
T
xi + b)− 1 + ξi] = 0

and

µi ≥ 0

µiξi = 0

Using the saddle point criterion, for eq. C.4.3 and using the obtained rela-
tions, it is possible to obtain the equation

Q(α) =
N
∑

i=1

αi −
1

2

N
∑

i=1

N
∑

j=1

αiαjdidjx
T
i xj (C.4.4)

with the constraint
N
∑

i=1

αidi = 0.

Taking the derivative of
∂L(w, ξi)

∂ξi
= 0 ⇒ C = µi + αi

and since both αi and µi are ≥ 0

µi = C − αi ≥ 0 ⇒ αi ≤ C

which, together with the constraint αi ≥ 0

0 ≤ αi ≤ C. (C.4.5)

The eq. C.4.4 is the same obtained for linearly separable patterns eq. C.3.3
except for the constraint eq. C.4.5. It is important to note that neither
the slack variables ξi, nor their Lagrange multipliers µi, appear in the dual
problem.

It is possible to rewrite the equation C.4.4 in matrix form
1

2
αTHα− fTα (C.4.6)

where f = {1, .., 1}, α = {α1, .., αN} and Hij = didjxTi xj. The eq. C.4.6 is a
convex optimization problem with linear constraints, and can be solved using
standard programming techniques [63, 72].
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C.5 Normalization

As discussed in sec. B.5, all the input features to a classifier need to be
normalized in order to avoid that attributes in greater numeric ranges domi-
nating those in smaller numeric ranges. The scaling applied in this thesis for
the SVM is a linear scaling eq. B.5.1.

C.6 Cross validation techniques

As shown in B.6 one of the most common way to choose among models, i.e.
to choose between SVM with different C parameters, is the cross validation.
In particular in this thesis the LOPO is often used to assess the best model.
Since there is no a-priori indication on what is the best value of C for different
datasets, it is common to span a range value of C going from 2−20 to 220.
The best model is then selected according to AUC obtained by the LOPO
validation.
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