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Abstract

The visual system needs to extract the most important elements of the external world from a large flux of information in a
short time for survival purposes. It is widely believed that in performing this task, it operates a strong data reduction at an
early stage, by creating a compact summary of relevant information that can be handled by further levels of processing. In
this work we formulate a model of early vision based on a pattern-filtering architecture, partly inspired by high-speed digital
data reduction in experimental high-energy physics (HEP). This allows a much stronger data reduction than models based
just on redundancy reduction. We show that optimizing this model for best information preservation under tight
constraints on computational resources yields surprisingly specific a-priori predictions for the shape of biologically plausible
features, and for experimental observations on fast extraction of salient visual features by human observers. Interestingly,
applying the same optimized model to HEP data acquisition systems based on pattern-filtering architectures leads to
specific a-priori predictions for the relevant data patterns that these devices extract from their inputs. These results suggest
that the limitedness of computing resources can play an important role in shaping the nature of perception, by determining
what is perceived as ‘‘meaningful features’’ in the input data.
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Introduction

The visual system needs to extract the most important features

in the environment from a large flux of information in a short time

for survival purposes. In fact, rapid and reliable detection of visual

stimuli is essential for triggering autonomic responses to emotive

stimuli, for initiating adaptive behaviours and for orienting

towards potentially interesting, or dangerous, stimuli [1]. The

speed of visual processing can be as low as 100 ms for animals and

face processing [2], reduced to 30 ms when images present

affective contents [3].

The amount of information that needs to be processed in that

limited amount of time is quite significant. Based on the number of

neurons and their capacity of transmission, Echeverry [4]

estimated the capacity of transmission of photoreceptors (9.2?107

rods and 4.6?106 cones) around 20 Gb/s for each eye, reduced to

4 Gb/s at the level of optic nerve fibers (approximately 106 for

each eye), with a neural ratio of nearly 124:1. Comparing these

data with the limits on the brain’s capacity to process visual

information imposed by intrinsic costs of neuronal activity

involved in cortical computation [5] [6] (largely dependent on

the rate at which neurons produce spikes [7]) highlights the

existence of information bottlenecks [8]. It is therefore widely

believed that the visual system operates by performing a strong

data reduction at an early stage [9], [10], creating a compact

summary of relevant information that can be handled by further

levels of processing. Independently motivated models describe the

initial processing of visual information as the extraction of a

simplified ‘‘sketch’’ based on a limited number of ‘‘salient features’’

[11], [12], that therefore contains a much reduced amount of

information.

Past studies have shown that some known properties of early

vision can actually be understood in terms of efficient coding of

information by reducing redundancy [10], [8], [13]. These models

however take an approach based on preserving the majority of the

available information, and do not lead to large reduction factors,

with extraction of few salient features. Conversely, existing

successful models of how the visual system extracts salient features

are based more on the a-posteriori knowledge of specific

physiological details, than on considerations of information

compression efficiency [14–16].

In the present work, we discuss a model of early visual

processing, aimed explicitly at reducing information significantly

through a selection of salient features. Our model is based on some

very general assumptions. First, we impose a tight upper bound on

the total amount of data that can be produced as output. Second,

we assume that there is only a fixed number of pre-determined

patterns (visual features) that the system can recognize in its input.

Third, that the reduction of data flow is achieved by filtering only

those pieces of input data matching this reference set of patterns,

disregarding any other information. Our model is purely

functional: we do not concern ourselves with the details of how

this computation is implemented.

This allows the model to be applied to a wide range of

problems. The need for extracting a small amount of ‘‘relevant’’

information from a large input flux of data is certainly not unique

to vision [17], although vision may be one of the fields where the

requirements are particularly severe. An interesting example in a
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very different field is data acquisition in experimental particle

physics (HEP). Experiments in this field often require the

collection of data output from large particle detectors, exceeding

O(Tbyte/s) for extended periods of time (years). Cost and practical

considerations limit the flux of data that can be stored for later

analysis to factors of thousands less data, and as a consequence, the

typical operating mode of these experiments is based on a real-

time selection of a very small fraction of data that are deemed

‘‘interesting’’ and saved for later analysis [18].

In particular, the common HEP problem of recognizing the

trajectories of particles crossing the detector, starting from a set of

measured points, is quite similar to the problem faced by the visual

system in extracting meaningful elements of the external word,

starting from a luminance map on the retina. It is interesting to

note that in HEP experiments, a very effective solution to this

problem [18], [19] has been achieved through specialized VLSI

electronic devices (Associative Memories) [20], which allow for

massively parallel pattern-matching at high speed, implementing a

pattern-filtering functionality precisely of the type we have defined

above in general terms as our reference model.

The functionality of our abstract pattern-filtering model is

completely defined by its reference set of patterns. This also means

that our discussion does not need to be concerned with the specific

computation used in their recognition, nor with its localization

within any specific anatomical structure. However, the number of

possible a-priori choices for a set of visual patterns is very large,

and in order to make any progress in developing and testing our

model we must determine it precisely. Possible approaches are to

appeal to known properties of neuron receptive fields, or to

considerations of performance in the reconstruction of visual

scenes; they have often been used in developing similar models in

literature. In experimental HEP applications, the appropriate

patterns are determined from a detailed knowledge of the

detectors and the laws governing the motion of particles.

We have chosen a different approach, focusing only on the

requirement to be information-efficient. We assume that the

system is optimal from the point of view of delivering the

maximum amount of information to the following processing

stages. This idea has already had some successful applications in

redundancy reduction [8]; we apply it here to the selection of

features. We adopt the principle of maximum entropy as a

measure of optimization: we ask what is choice of the pattern set

producing the largest amount of entropy allowed by the given limitations of the

system. We will see that this simple requirement, together with the

imposed strict limitations to the computing resources of the system,

allows to completely determine the choice of the pattern set from

the knowledge of the statistical properties of the input data. This

allows us to make detailed predictions with very few tunable

parameters, and to compare them with the real behavior of both

human viewers, and artificial systems for data acquisition in HEP

experiments. The latter can provide useful insight, as their

structure is fully known in all details.

Materials and Methods

Ethics Statement
For research involving human participants the data were

analyzed anonymously.

All subjects were aware of the purposes of the study and gave

written informed consent.

The research was approved by the local ethics committee of the

Department of Psychology of University of Florence.

Model
As mentioned in the introduction, we assume that our system

can recognize only a fixed number of pre-determined patterns. Let

pi be the probability that a given portion of the input data matches

a specific pattern i, out of a set Q of mutually exclusive patterns,

such that gpi = 1, when i runs over all Q. The pattern-recognition

system can be thought of as an array of N pattern-matching

elements, each of them capable of recognizing the occurrence of

the single pattern i, providing a single output bit, that signals the

presence of the pattern in the input. This system would produce,

on average, an information output equal to 2pilog(pi) – that is, it is

a source of entropy 2pilog(pi). Neglecting correlations, the total

entropy of the system is simply gN
i 2pilog(pi). In absence of other

constraints, maximization of the total entropy would be attained

by simply including all possible patterns. This trivial solution

implies transferring to the output the whole information in the

original input, with just a change of format. The key to a

meaningful answer is the explicit inclusion of the limitations of the

system. The system can recognize up to a maximum number N of

distinct patterns; to obtain the maximum entropy output under

this constraint, patterns should be chosen to maximize the function

2pilog(pi), which peaks at p = 1/e < 0.368. This is a large

probability, and in practice it is likely to lead to selecting the

patterns with the highest probability of occurrence in the input (see

fig. 1). However, the output flux of the system is also bounded, due

to bandwidth limitations, and the choice of the most probable

patterns could quickly exceed this limit. In order to account for

both constraints, we associate a ‘‘worst-case’’ cost to each pattern,

defined as the larger of the ‘‘storage cost’’ 1/N and the

‘‘bandwidth cost’’ pi/W, where W is the maximum allowed total

rate of pattern acceptance, g pi,W. Therefore, an entropy yield

per unit cost is given for each pattern by:

f (p)~
{p log (p)

max (1=N,p=W )
ð1Þ

Figure 1. Entropy yield per unit cost, plotted as a function of
the pattern probability (eq. 1). Blue curve: limited bandwidth and
unlimited pattern storage capacity (W = 0.001, N = ‘); green curve:
limited storage and unlimited bandwidth (N = 100, W = ‘); Red curve:
limited bandwidth and storage (N = 100, W = 0.001)). Parameter values
and the vertical scale are arbitrarily chosen for illustration.
doi:10.1371/journal.pone.0069154.g001
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The optimal performance of the filtering system is then attained by

choosing the set of patterns such that f(pi).c, where c is determined

by the computational limitations: #f(p).cd(p)dp,N and
1

Ntot

#f(p).cpd(p)dp,W, where d(p) is the density of patterns having

probability of occurrence p, normalized to the total number Ntot of

patterns in Q. The quantity
1

Ntot

#f(p).cpd(p)dp is the average

fraction of image elements that match successfully, and get

preserved in the output - its inverse is the compression factor achieved

by the filtering algorithm.

We have therefore an unambiguous and general recipe to

determine the optimal set of patterns that a generic pattern-

filtering system should use, in order to achieve maximum

information preservation under the given constraints.

It is interesting to note that the function f(p) has a rather sharp

maximum (a cusp, see fig. 1). As a consequence, the optimal set of

patterns will be concentrated in a limited range of values of p

around the maximum of f(p), which occurs at p = W/N; it will

therefore depend on both available storage size and bandwidth.

Application to Real-time Data Acquisition in HEP
We can test the effects of the formula derived in the previous

section in the above-mentioned case of data-reduction in HEP

experiments with Associative Memory electronics. For simplicity

we used a sample of simulated data with a Monte Carlo methods,

rather then real data. This is a common practice in the field and

will not affect our conclusions. We performed our tests with a

detector structure and configuration that has been in actual use in

particle physics experiments. For simplicity, we use the earliest and

simplest configuration that has been in actual use, with four planar

measuring layers [18]. Using the same computer code used in the

real application, we produced simulated events, containing

particles moving along circular trajectories, at a rate of about 50

per event. Only one sector of the 72 composing a whole detector

was simulated. Realistic detector conditions were simulated by

addition of random noise hits at an average rate of 1% per bin,

and four ‘‘always on’’ hits due to defective detector channels.

Measured coordinates on each layer of the detector are discretized

in 500 mm bins. Every possible combination of bins (one on each

layer) defines a ‘‘pattern’’ (fig. 2a). From the knowledge of the

detector geometry and response characteristics, we computed a

priori the set of all possible patterns corresponding to valid particle

traversing the detector, as it is done in the real application in order

to pre-program the pattern-finding device [18]. In a second step,

we generated the probability distribution d(p) of the frequency of

all possible patterns, from a sample of 100,000 simulated events.

We then proceeded to compare the probabilities of the valid

patterns within the overall distribution with the prediction

obtained from our own recipe outlined in the previous section

(fig. 2b).

Extraction of Optimal Visual Patterns from Natural Image
Statistics

In applying our model to vision, we have considered the

simplest possible set Q of base patterns, defined as all possible

configurations of 3*3 square pixel matrices in black-and-white

images (1-bit depth) (this discretization step is analogous to the pre-

processing done to prepare data for Associative Memory devices).

Although there are evidences of non-uniform distribution and

characteristics of neurons within the same visual structure over the

visual field carrying different information rates (see for instance

[21], [22]), we assume a single pattern set, with a single spatial

scale, to be valid for the whole image. This is clearly a

simplification, but it should be adequate for our purpose of

exploring the usefulness of the general principles of our model.

oWe then evaluated the probability distribution of the patterns

in a set of natural images, and extracted the optimal set of patterns

as per our recipe (fig. 3a). For this purpose we used a public

database of 560 calibrated natural pictures [23] (see examples in

fig. 4a). Each image (7686576 pixel) was digitized to 1-bit

luminance (black/white), by setting the threshold at its median

luminance value (fig. 4b).

The choice of the algorithm parameters (N,W) was based on the

following considerations. Since the algorithm revolves on the idea

of a strong compression at the minimum possible computational

price, we decided to consider compressions of at least a factor 20,

so we set W = 0.05 as a constraint, and we picked N = 16 as a

‘‘bare minimum’’ to be able to handle at least a few different

spatial orientations. We take as a reasonable upper bound to N a

value of 10% of all possible distinct patterns. Given that only 512

total distinct patterns are possible in our basic 3*3 model, we

picked N = 50 as a limit.

All simulations and computations were implemented with

Mathematica software (Wolfram research) on MacBook Pro

computers.

Psychophysical Methods
For all research involving human subjects, data were analyzed

anonymously. All subjects were aware of the purposes of the study

and gave written informed consent.

To measure contrast sensitivity (inverse of contrast thresholds),

stimuli were presented to subjects with a 2IFC procedure. Each

trial was composed by two intervals, both preceded by a tone, one

containing the pattern on a mean luminance grey background, the

other was set to mean luminance grey. Subjects (two naı̈ve and one

of the authors) were required to indicate the interval containing

Figure 2. Monte Carlo simulation of track reconstruction and
pattern filtering in a HEP particle detector. a , Schematic
representation of a sector of a four-layers tracking detector, with
simulated data (see Methods). Black dots represent measured positions
where flying particles cross the detector layers - they can also be
produced by random noise. Each layer is subdivided into a finite
number of intervals (bins), delimited here by vertical bars. Every possible
combination of bins (one on each layer) defines a pattern (grey line
example). Only a small fraction of the patterns are compatible with the
presence of a real particle (red line example),              , Probability distribution
of the frequency of patterns (d(p)) produced by a sample of simulated
events of the type shown in (a) (grey histogram). The distribution of the
sub-sample of patterns corresponding to valid particle trajectories is
shown as a red histogram. The red curve is the function of eq. 1, with
N = 50 and W = 0.15. The vertical red lines indicate the probability range

selected by our model, using the constraint
1

Ntot

#f(p).cpd(p)dp,W.
doi:10.1371/journal.pone.0069154.g002

Information and Perception of Meaningful Patterns

PLOS ONE | www.plosone.org 3 July 2013 | Volume 8 | Issue 7 | e69154

b



the pattern. For each subject and for each pattern, contrast

thresholds (defined as the 75% probability of detecting a given

pattern as a function of its Michelson contrast) were evaluated off-

line with a 2 independent parameter MLE fit, cumulating data

over 300 trials.

Contrast of patterns was randomly chosen from trial to trial

within a set of predetermined values in the range 0.01 to 0.22

(‘‘method of constant stimuli’’). All patterns, 3.5 min/arc wide,

were chosen randomly at each trial from the whole set and

presented for 200 ms., in the center of the monitor (Barco

Calibrator: frame rate = 80 Hz, resolution = 12806962 pixel), via

a 15 bit luminance resolution graphic board (VSG23F, Cambridge

Research Systems). Their average luminance was normalized to

the background (30 cd/m2). A smoothing algorithm (=2(L) = 0,

implemented with a relaxation method with 100 iterations) was

applied to patterns to smoothly blend the outer pattern boundaries

with the surrounding background. This is aimed at avoiding

possible biases in the measurement due to the presence of spurious

edges at the outer boundary of the pattern. Viewing distance was

60 cm.

For the discrimination experiment, we prepared ‘‘sketches’’

from natural images extracted from the same database used in

determining the pattern set. These sketches were obtained by

keeping in the thresholded image only those patterns correspond-

ing to the chosen pattern set and blanking all other parts of the

image. All possible 363 pixels patches, centered on every pixel of

the image were considered (including overlaps).

In the discrimination experiment, sketches (23u618u wide) were

shown centrally to the subject using a Silicon graphics (frame

rate = 100 Hz, resolution = 11526864 pixel). In order to probe

early stages of visual analysis [24], the presentation duration was

20 ms, and the stimulus was followed by a random noise mask

(duration 750 ms, 23u618u wide). Subsequently, two additional

stimuli (19u618u each) were presented side-by-side for 700 ms,

one of them being the unfiltered image corresponding to the

sketch, and the other a distractor, randomly selected from the

dataset; both of them digitized to 1-bit. The subject was asked to

Figure 3. Human contrast sensitivity to visual patterns vs. model predictions. a, Probability distribution of the 512 possible 363 1-bit pixel
patterns (grey histogram). The curves are the model selection functions (eq. 1) for W = 0.05 and two different values of N.(green: N = 50; blue: N = 15).
Green and blue histograms are the probability distributions of corresponding selected patterns. Their actual bandwidth occupancies

(
1

Ntot

#f(p).cpd(p)dp) turn out to be slightly lower (respectively 0.025 and 0.015) than the imposed limit W. Cyan and yellow histograms are the

distributions of low-probability patterns used in our measurements. b,c, Visualization of the pattern sets shown in (a), in green and blue

respectively. d, Visualization of the lowest-probability patterns (discarded by our approach due to large storage occupation). e, Visualization of
the highest-probability patterns (discarded due to large bandwidth occupation). f, Averaged sensitivity for detection of the patterns as a
function of their probability, measured on three human subjects (different colors). Errors are determined by the fit (see Methods). The results
of pairwise statistical comparisons (z tests, N = 100) amongst sensitivities plotted in (f) are: Log pð Þ~{7:5vs:Log pð Þ~{12:3R:P:p~0:01,M:D:p~

5:6 � 10{6,C:G:p~0:007; Log pð Þ~{7:5vs:Log pð Þ~{5:3R:P:p~0:04,M:D:p~6 � 10{5,C:G:p~5:4 � 10{4; Log pð Þ~{7:5vs:Log pð Þ~{9:8R:P:p
~0:25,M:D:p~0:02,C:G:p~0:077:
doi:10.1371/journal.pone.0069154.g003
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identify the correct match with the sketch in a 2AFC procedure,

by pressing a computer key.

In the control experiment, we used a full image with 256 grey

levels instead of the sketch for the fast presentation, and the same

image and a distractor in the second presentation, also with 256

grey levels.

Experiments were performed with three naive subjects and one

of the authors, interleaving different conditions. Viewing distance

for all experiments was 60 cm. (Luminances: white = 45 cd/m2,

black = 1.4 cd/m2, medium gray = 13.8 cd/m2).

Results

A significant difference between HEP applications and natural

vision is that in HEP the reference set of patterns is completely

defined by the a-priori knowledge of detector geometry and other

details. We can compare what our model predicts to be the

optimal pattern set with what has been actually implemented in

HEP following completely independent methods. Comparison of

these two sets shows that the patterns corresponding to real

particles all fall within a limited range of intermediate probability

within the overall distribution (fig. 2b). This implies that they could

have been identified and selected according to eq. 1 (for an

appropriate choice of parameters), that is, purely on the basis of

statistical properties of the data. This remarkable fact is not

exploited in current HEP applications, because one can usually

rely on the a-priori knowledge of the meaningful patterns,

although in principle it might find some applications (for instance,

automatic adaptation to changes in detector positioning over

time). In any case, the success of our model in identifying the right

patterns in a HEP application encourages us to consider its

application to the question of identification of salient features in

natural vision, where the ‘‘right set of patterns’’ for the problem is

not a-priori known.

Results for visual patterns extraction are shown in fig. 3 (a, b, c),

for two different choices of N and W. Interestingly, it turns out

that, independently of the precise choice of parameters, about

70% of the patterns selected by this algorithm can be classified as

edges, bars, or end-stops, of various orientations (within the

limitations of a 3*3 grid). Others are interpretable as corner

detectors. Conversely, most of the patterns discarded by our

selection have either an irregular structure resembling visual noise

(fig. 3d), or uniform luminance, (fig. 3e), with lower resemblance to

known visual features. In summary, biologically plausible features

emerge here naturally from first principles, as the patterns that can

be efficiently encoded by a system with finite computational

resources.

While these results are suggestive, more direct evidence is

needed that the human visual system actually assigns to these

patterns a privileged role in its image-reconstruction process. To

this purpose, we performed psychophysical measurements of

contrast sensitivities for the detection of single isolated patterns.

We tested a wide selection of all possible patterns, scanning the

entire range of probabilities found in natural images (see Methods).

Results (figure 3f) show that the contrast sensitivity of all subjects

peaks within a limited probability range, in agreement with the

predictions of our model.

It is worth noting that these results are not simply a consequence

of the band-pass behaviour of the human contrast sensitivity as a

function of spatial frequency. Although there is a mild correlation

between the probability of pattern occurrence and their spatial

frequency content (the rarer patterns containing on average more

of the higher spatial frequencies), there is a significant overlap of

spatial frequency content between the patterns over the whole

range of fig. 3f. More importantly, the spatial frequency spectrum

of all our patterns lies entirely above the frequency of maximum

human sensitivity. Our range of spatial frequencies is between 9

cycles/deg and 27 cycles/deg, while the maximum sensitivity lies

at about 7 cycles/deg in our illumination conditions [25].

Therefore, spatial frequency sensitivity considerations would

predict a low-pass behaviour, resulting in an increasing function

in fig. 3f, which is very different from what we observe.

Figure 4. Examples of images from the database and sketches used. a Examples of full color natural images extracted from the database
[23], available at: http://tabby.vision.mcgill.ca/html/browsedownload.html. b Digitized versions of images in (a). c Sketches obtained from the images
in (b), by using the optimal pattern set of fig. 3b.
doi:10.1371/journal.pone.0069154.g004
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The model, however, makes a stronger statement than an

enhanced sensitivity: it predicts that early visual processing

exclusively utilizes those parts of the images matching predicted

reference patterns to create a compressed internal representation

for fast processing. To test this prediction, we created ‘‘sketches’’

from our images, by keeping only those patches of the binarized

image matching one of the patterns of a given reference set,

dropping all other parts. These sketches represent our prediction

for the output of the early visual processing stage we are trying to

model. Inspection of the examples shown in fig. 4 and 5 show that,

independently of the specific choice of parameters, the sketches

obtained from optimal pattern sets appear to retain most of the

salient features of originals, in spite of a substantial reduction of

information. To quantify this qualitative observation, we measured

the effectiveness of these sketches in allowing human observers to

identify natural images under fast viewing conditions (20 ms) (see

Methods). If the early visual system really selects only those specific

patterns for its processing, than our sketches should elicit nearly

the same response as complete images.

All subjects were able to identify the original images from which

these sketches were extracted with extremely high accuracy

(fig. 5e). Even more important, performance was comparable to

measurements obtained in a control experiment using the fully

detailed original images in place of their sketches. Subjects

reported that they could not tell whether originals or sketches had

been shown to them in these fast presentations. In contrast, we

found that sketches built based on alternative, non-optimal pattern

sets yield a much worse representation of the features perceived as

salient by human observers, even when constructed to contain the

same amount of information of our ‘‘optimal’’ sketches (fig. 5d vs.

5c). The ability of subjects to identify original images from these

alternative sketches is much worse than with our optimal sketches.

It must however be noted that the distributions of the number of

points found in these two sets, taken over the whole image

database (fig. 5f), have different average values: ,14000 for the

alternative set and ,24000 for the set predicted by the model.

Therefore, we performed an additional test to exclude that the

observed difference in average performance might be due to the

difference in the average number of visible points. For each

experimental trial, we reweighted in the final average the data

taken with the pattern set predicted by the model by a factor equal

to the ratio of the probability distributions of the two sets, i.e. the

ratio of the heights of the histogram bars in (fig 5f) corresponding

to the number of points of the sketch presented. In this way, the

density distribution of the predicted patterns is forced to match

that of the rarer patterns, and any possible dependence of the

result on the density of the image gets equalized between the two

sets. The results (fig. 5e) show that the reweighting procedure has

no significant effect (it shifts the results by less than one standard

deviation). To further investigate the issue, we replotted our data

differently, splitting the trials in different sets, according to classes

defined by the number of points in the sketches (fig. 6). The

difference in discrimination performance between the two sets is

apparent over the whole range: even densely-populated sketches

made of rare patterns are less visible than those from the standard

set confirming that the number of displayed points plays no

measurable role in our measurements.

All these results support the central idea of our model, that the

features identified in natural images by our mathematical model

carry most, or all of the information that the visual system is

capable of using under fast viewing conditions.

Discussion

In vision research literature, it is usually taken for granted that

edge-detection is amongst the main objectives of visual processing.

Many models have been proposed, aimed at attaining the best

performance in detecting objects contours using biologically

plausible elements, based on a-posteriori knowledge of physiolog-

ical details [14-16]. In this work we found that the edge-detection

functionality in itself, follow directly from very general principles,

as the optimal solution for fast processing, when dealing with an

information bottleneck and limited computational resources.

It is interesting to compare our results to the work of Olshausen

and Field [13], who succeeded in deriving biologically plausible

basis functions for visual representation, based on considerations of

information efficiency. In spite of some superficial similarities,

there are important differences. Their work aims explicitly at

reproducing the original luminance map as closely as possible,

based on a minimum chi-square criterion, and utilizes a number of

free parameters to achieve the best results: it can be described as

aiming to an ‘‘almost-lossless’’ compression, akin to image

compression algorithms.

In the present work, we consider instead a scenario where a

strong reduction of information is needed, and look at entropy

maximization without regard to fidelity of reproduction – there is

no choice of free parameters, and the solution is uniquely

determined by the system limitations, resulting in selection of a

restricted number of salient features. Our figure of merit for the

results is recognisability by human observer, not the accuracy of

the raw luminance map (which is definitely much worse than in

Olshausen and Field [13]).

In comparing to past studies specifically devoted to the

extraction of features, we note that several of them argued that

the visual system evolved to detect the features of natural images,

and devotes resources to this detection in proportion to the

probability of feature occurrence [26], [27]. Results here, on the

other hand, show that principles of computational efficiency lead

to a somewhat different algorithm: resources are devoted to

features with an intermediate probability of occurrence. Discarding

the most probable input configurations is necessary to fit within

the bandwidth limitations of the next processing stage. As an

example, the most common visual patterns, uniform luminance

patches, which are obviously inefficient to encode, are automat-

ically rejected by our model.

A unique feature of our model is that there exists at least one

concrete example of a detailed successful implementation (in

electronic devices) so there is no question that it is actually

implementable. It is also not hard to conceive that it can be

implemented in a neural network: it is well known that recognizing

the presence of a certain set of discrete input patterns is within the

typical capability of a neural network [28].

One may wonder whether this process of ‘‘data compression by

pattern selection’’ happens within the visual system. In principle it

does not need to be localized to any specific area, as it might be

distributed along a path, but several evidences indicate as most

likely candidate the primary visual cortex. Only a modest amount

of compression occur in transporting information from the retina

to V1, that is actually the most extended visual area, and has a

large neural ratio with respect to the retina. This has a direct

analog in the Associative Memory, that is used in performing

pattern selection in HEP applications, which is the most

conspicuous part of the system and uses the largest fraction of

electrical power. These characteristics are not accidental, but a

necessary consequence of a pattern-selection organization. It must

also be noted that many of the patterns selected by our algorithm
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are good approximations, within the limitations of a simple 3*3

grid, of the structure of some types of receptive fields of neurons in

primary visual areas [29] [30], so their involvement in their

recognition and selection appears plausible. All of this is consistent

with the idea, previously advanced, that the function of V1 is to

create a ‘‘bottom-up saliency map’’ enabling a ‘‘lossy pre-attentive

selection of information’’, so that data rate can be further reduced

for detailed processing [31], [32]. This is also consistent with the

involvement of V1 in fast natural object recognition [2], and its

activation in fMRI experiments of fast image viewing in conditions

similar to ours [33].

Another important question is how the visual system could have

developed to use the optimal pattern set. One attractive aspect of

our model is that it allows for easy algorithms for unsupervised

learning. The optimal patterns have probabilities falling within a

limited range. A system that is initially sensitive to a wide variety of

patterns could converge towards optimality simply by discarding

patterns that occur too rarely, or too frequently, in the input. This

process might even happen during normal activity, allowing for

Figure 5. Examples of sketches obtained from different pattern sets. a, Original 256 grey-levels image. b, Sketch obtained from the optimal
pattern set of fig. 3b. The corresponding compression factor is 40, and its information content is 9.8% of the original. c, Sketch obtained from the
optimal pattern set of fig 3c. The corresponding compression factor is 67 and its information content is 5.5% of the original. d, Sketch obtained from
the 244 low-probability pattern set (fig. 3d shows a sub-sample); information (5.5%) and compression (factor 90) are similar to (c). e, Percentage of
correct discrimination for sketches obtained as in (b), (c), (d) (green, blue, yellow bars respectively) and 256 grey-levels images as controls (red bars),
for four subjects. The striped blue bar represents results obtained from the same dataset shown in blue, after reweighting the data to match the
distribution of the number of patterns of the yellow dataset. f, Distributions of the number of points found in the sketches for the two sets in (c) and
(d), shown with the same color code. The distributions are taken over the entire image database of our study. Each data point represents 300 trials.
The black dashed line indicates chance performance. Error bars are s.d. The results of pairwise statistical comparisons (binomial tests) amongst
performances plotted in (f) are: red vs. green: D.B. p = 0.96, V.B. p = 0.06, G.M. p = 0.16, F.C. p = 0.13; red vs. blue: D.B. p = 0.48, V.B. p = 0.009, G.M.
p = 0.003, F.C. p = 0.08; blue vs. green: D.B. p = 0.3, V.B. p = 0.7,G.M. p = 0.3, F.C. p = 0.9; blue vs. yellow: D.B. p = 9.8*10212, V.B. p = 2*1025, G.M.
p = 0.002, F.C. p = 1.1*1027.
doi:10.1371/journal.pone.0069154.g005
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continuous updating and adaptation to changing external condi-

tions. It is interesting to note while initial neural network learning

models using a Hebbian rule would lead to unlimited reinforce-

ment of patterns presented with larger frequencies, most modern

learning models include an anti-Hebbian component (e.g. BCM

[34]) to ensure stability, and this leads to maximize sensitivity to an

intermediate range of frequencies, consistent with the view

presented here.

Several evidences exist of a continuous adaptation of the visual

system to external stimuli. Exposure to visual patterns is necessary

for improvement of visual function in infants [35] and for normal

development of visual cortex in kittens [36], [37], as it ensures that

the feature-detecting properties of cortical cells are matched to the

statistical properties of features in the visual environment [37–39].

Even in adulthood, repeated exposure or training to visual

patterns has been shown either to sharpen perceptual abilities

for novel stimuli [40], [41], or to allow adaptation to familiar

stimuli [42], [43]. This plasticity might have significant evolution-

ary benefits, for example enabling humans to sharpen their ability

to discriminate facial features of their own race [44].

All such phenomena are consistent with the behavior of a

system striving to achieve and maintain the optimal performance

compatible with its limited computational power, by continuous

retuning of its reference patterns to an intermediate probability

range. This same idea might also provide an explanation for the

observed ability of adaptation to very non-natural visual environ-

ments (medical images [45] or other specialized fields [46]), which

would be otherwise difficult to explain or justify on its own merits.

Conclusions
We have seen that a simple abstract model of information-

optimal pattern filtering is capable of producing detailed

predictions, that match very well both the behavior of the visual

system under fast viewing conditions, and the behavior of artificial

data processing devices that have been designed and developed

following entirely different principles. What the two systems have

in common is a need for large data reduction under the constraint

of limited computational resources. It appears that the constraints

on these systems are so severe that they do much more than simply

limit their performance: they seem to take the dominant role in

shaping what the system selects (‘‘perceives’’) as relevant features in

the input, so that they allow us to predict them from simple

information-theoretic considerations. One could argue that the

idea of a pattern-filtering architecture has attained success in HEP

applications due to the pressure of the need for high-speed large-

scale data reduction at reasonable costs [20], and that the

optimization of the use of neural computational resources must

have played an important role in natural selection [47], leading to

an example of convergent evolution of natural and artificial

systems towards the same, optimal solution. As we discussed, this

solution can be reached via an unsupervised learning process, and

can be self-adapting to changing external conditions, which

facilitates its implementation in natural systems. It would be

interesting to investigate experimentally whether such learning

process actually exists, that we have just argued to be plausible.

These ideas are quite general, and it would also be interesting to

study other perception systems with this approach to see if their

features can be understood from the same principles, and to what

extent the ecological limitations to their processing power

determine what the system categorizes as ‘‘meaningful’’.
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