

Genova Pixel-Lab Setups and Activities

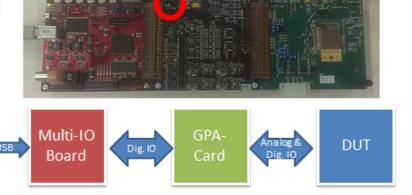
G.Darbo, G. Gariano, <u>A. Gaudiello</u>, C. Gemme, L. Rossi, A. Rovani, E. Ruscino

Milano, June 8th, 2015



BASIC SETUPS: USBPIX + STCONTROL

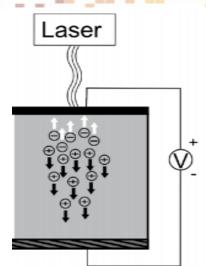
Setup for Planars and 3Ds Testing


4 Single or double FE-I4 modules can be tested sequentially using 2 USBPix (1 Master and 1 slave) + 2 BURN-IN Card Adapters which replace the standard USBpix FE-I4 adapter card

The software used for data taking is STControl

Setup for HV-CMOS: Usbpix+GPAC+DUT The software used is a modified version of STControl

The General-Purpose-Analog-Card (GPAC) is an adapter card for the Multi-IO FPGA board. It extends the digital IO capabilities of the Multi-IO card by analog blocks (power supplies, voltage and current sources, fast ADC etc.), programmable level LV-CMOS, and LVDS digital IOs.



CCPD PCB

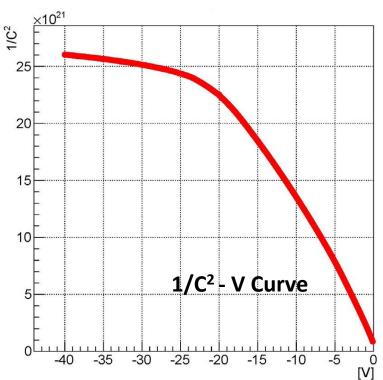
LASER SETUP

Most of the particles that are detected by the ATLAS pixel detector are MIPs.

- By traversing the sensor they produce approximately 80 electrons/μm
- ✓ Wavelengths used for our setup is 1060 nm ($E_{\gamma} = 1.17 \text{ eV}$)
- Deposition like MIPs
- ✓ Useful to find efficiency map of one pixel
- ✓ Remote controlled X, Y, Z and Phi stages
- ✓ 50 ps laser synchronized with 40 MHz clock of USBpix
 Prototype board for dividing the USBPix clock (1/2000) and
 trigger the laser
 - In testing a new board with adjustable 250 ps step fine delay, with microcontroller and USB interface.
- ✓ Stages controlled by ST control software
- ✓ System tested to work with 3D module, but it works also on other types of sensors

C-METER SETUP

- ✓ Frequency: 1 MHz ± 0.01%
- Possible to use: External or Internal Bias

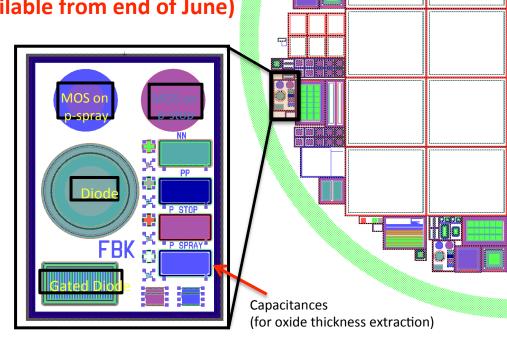

(Range 0 – 100 V Resolution 1 mV)

- ✓ Possible to do C(G)-V , C(G)-t curve with floating or grounded DUT
 - ✓ C Measurement Range: 1 fF ~ 1.9 nF
 - ✓ G Measurement Range: 1nS ~ 12 mS

We have developed a PC interface controlled via GPIB with ROOT graphic libraries integrated

MEASUREMENTS IN PROGRAM

FBK PLANARS AND STRUCTURES

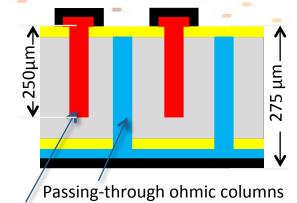

FBK Planars:

- p-type SiSi DWB wafers from IceMOS
- √ 100 ÷ 130 µm high-R active sensor thickness.
- ✓ Bump-bonding: 5 wafers at IZM, 1 at Selex (W69)
- ✓ <u>Bare Sensors:</u> I-V, C-V, charge collection with laser and Cremat Amplifier/Shapers → (Available)
- ✓ Bump-Bonded Sensors: Assembled with flex / PCB
 - ✓ Complete Lab for Sensor and FE Characterization (IV, Digital, Threshold scans...) including Laser and Source Tests with ²⁴¹Am and ⁹⁰Sr. → (Available from end of June)

FBK Test structures:

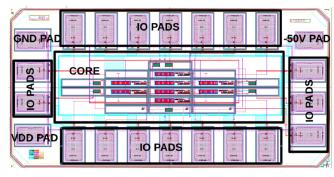
Received a diced wafer with test structure and 10 FE-I4 tiles

 ✓ I-V, C-V measurements, charge collection with laser and Cremat Amplifier/Shapers
 ▲ (Available)


Sensors: FE-I4 size

FBK IBL LIKE 3Ds on 6" WAFERS AND HV-CMOS

FBK 3Ds:


Defect rate higher than IBL: no totally good FE-I4!

- ✓ One wafer currently for bump-bonding at Selex with special bump-mask: leave unconnected pixel column with low V_{BD}
- ✓ We will receive the two worst sensor assembled to FE-I4 to check that the bad columns are really unconnected (bumps are missing only on sensors side and FE-I4 side bumps can connect to open bump-pads)
- ✓ If the assemblies have not low breakdown assemble into dressed modules: flex or PCB and complete Lab Characterization including Laser and Source Tests with ²⁴¹Am and ⁹⁰Sr → (Available from end of June)

Partially etched junction columns Column (10÷13 μ m) partially filled with doped poly-silicon

- Test the prototype submitted in December to ST Microelectronics should arrive this July
- Active and passive diodes
- ✓ We think to do I-V, C-V curve, test charge collection with laser and Cremat Amplifier/Shapers, CSA (Charge Sensitive Amplifier) measurements and checking it with simulation

We have also 2 HV2FEI4v2 chips to make to new assemblies and they will be tested with USBpix+GPAC (+ other 2 already assembled actually in debug)

CONCLUSIONS

- ✓ Starting from the end of this month we have in planning many measures on Planars, 3Ds and HV-CMOS.
- Many efforts should be also done on test scans improvement and development.
- ✓ It could be a good occasion to share competence in our community.
 - ✓ Anyone is interested to participate is surely welcome in our Lab!

