

Validation of the MC In-beam PET simulation

Elisa Fiorina and Francesco Pennazio

PET beam test May 2015 @ CNAO

Monoenergetic 1D proton treatments Single spot, 2E+11 protons

Energy [MeV]	68.3	72.03	84.3
spill	102	98	183
average protons/spill	1.96E+9	2.04E+9	1.09E+9

DATA ANALYSIS:

- □ Online/offline analysis
- For each channel, automated:
 energy window selection
 - time delay calibration
- □ 3D PET image reconstruction
- Profile analysis

p beam

Data results

Let's validate simulation!

E. Fiorina, F. Pennazio

INSIDE PET simulation

Detector simulation

- LFS: no available chemical formula.
 Simulated from LSO with correct density
 Geometry from Hamamatsu data sheet
- Simulated detector response:
 - □ 10% σ ΔE/E
 - \square 460 ps σ time resolution
- 2.5 ns coincidence time window

[STEP1] Annihilation distribution (I)

[STEP1] Annihilation distribution (II)

Simulated isotopes: about 86% during treatment, about 95% after treatment

6

[STEP2] Activity profile check (I)

Comparison between simulated image and annihilation map scored in STEP1

To check the reliability of the two step simulation technique, no artifacts

[STEP2] Activity profile check (II)

[STEP2] Profile Analysis (II)

[STEP2] Beam width check

Beam width at z=8mm (delta z = 3.2mm) <u>×1</u>0³ counts 160 data 140 simulation Quantitative compatible 120 simulation and real data 100 profiles. Beam width evaluation: 80 simulation and real data difference of about 1 mm 60 40 20 2 3 5 4 y [cm]

Coincidence Event Rate

- Delayed coincidence window on acquired data: negligible random coincidence contribution in beam off
 Single channel figures of merit from experimental data
- □ Space and time beam structure from CNAO Dose Delivery System

Preliminary: final INSIDE PET image

Interspill + after treatment

INSIDE meeting, Pisa, June 9th 2015

12

Preliminary: final INSIDE PET image

Interspill + after treatment

Preliminary: final INSIDE PET image

Profile analysis: p @ 68 MeV - INSIDE 10vs10

Compatible Z profiles with 102 and 10 spills.

Preliminary Coincidence Event Rate evaluation: 10x10 rate about 4 times wrt 1x1 INSIDE geometry

Conclusions & Next steps

Simulated PET image profiles are quantitative compatible with the acquired ones.
 In the distal fall off evaluation, a difference between simulation and experimental data < 1 mm is found

 Further improvements needed for simulated Coincidence Event Rate validation/ calibration

- □ Simulation of a ¹⁸F-FDG planar source and point sources
- □ Check beam features
- □ Further analysis on data (apart of any DAQ issue):
 - □ time delay calibration (each couple of channel)
 - planar source for LOR equalization
- □ Treatment plan and monitoring reliability evaluation (after the validation...)

