Update sulle simulazione MC di rivelazione di protoni nel profiler

S. Muraro INFN Milano

MC FLUKA reliability

Test at Heidelberg Ion-Beam Therapy Center (HIT) Feb. 2014 FLUKA

	HIT 90deg	Full Sim.
Оху300	6.20x10 ⁻³	
Oxy260	2.88x10 ⁻³	
Oxy210	1.65x10 ⁻³	
C220 (*GSI)	1.83x10 ⁻³ 0.78x10 ⁻³ <d> 0.12x10⁻³ <t></t></d>	
C220 <r12-14></r12-14>	2.31x10 ⁻³	1.73x10 ⁻³
C181	1.06x10 ⁻³	0.85x10 ⁻³
C160	0.67x10 ⁻³	0.56x10 ⁻³
C120	0.22x10 ⁻³	0.20x10 ⁻³
C80 (* Catania)	0.021x10 ⁻³	
He145	0.79x10 ⁻³	0.66x10 ⁻³
He125	0.43x10 ⁻³	0.44x10 ⁻³
Protons / sr Primary		

Monitoring of hadrontherapy treatments by means of charged particle detection

G. Battistoni (INFN Milano), F. Collamati (Univ. Roma 1 and INFN-RM1), E. De Lucia (INFN-LNF), R. Faccini (Univ. Roma 1 and INFN-RM1), F. Ferroni (Univ. Roma 1 and INFN-RM1), M. P. Frallicciardi (Centro Fermi), M. Marafini (centro Fermi), I. Mattei (Univ. Roma 3 and INFN-LNF), S. Morganti (INFN-RM1), S. Muraro (INFN-MI), L. Piersanti (INFN-LNF), A. Rucinski (INFN-RM1), A. Russomando (Univ. Roma 1), A. Sarti (Univ. Roma 1 and INFN-LNF), A. Sciubba (Univ. Roma 1 and INFN-RM1), E. Solfaroli-Camillocci (IIT,INFN-RM1), M. Toppi (Univ. Roma 1 and INFN-LNF), G. Traini (Univ. Roma 1), C. Voena (INFN-RM1) and V. Patera (Univ. Roma 1, Centro Fermi and INFN-RM1)

- - -

$$\frac{dNp}{Nc \ d\Omega} (60^{\circ}) = (8.78 \pm 0.07_{\text{stat}} \pm 0.64_{\text{sys}}) \times 10^{-3} \text{ sr}^{-1}$$

$$\frac{dNp}{Nc}$$
 (Profiler) = 2.36 × 10⁻³ Protons/¹²C _{primary}

What next:

Evaluation of the proton emission distribution shape @ different target thickness

With growing target thickness, the proton emission shape changes.

How to manage it:

L Piersanti et al. Phys. Med. Biol. 59 (2014) 1857 Create a parameter "map":

- Simulation with the parametric proton generator
- Cylindrical PMMA target with different thicknesses
- Fit of the proton emission curve with the function:

$$f(x) = p_0 \frac{1}{1 + \exp\left(\frac{x - p_1}{p_2}\right)} \frac{1}{1 + \exp\left(-\frac{x - p_3}{p_4}\right)} + p_5$$

Parameter VS thickness relation

NOTE: We will have to consider also the **proton range variation** due to the **material/density discontinuity** into the patient CT

Conclusions

- FLUKA reliability related to the integral secondary proton flux at large angle seems noticeable, notwithstanding the known issues related to the transition region between two different N-N interaction models. Maximum error within ~50%
- We have shown the need to investigate the relationship between the proton emission shape and the crossed material thickness (for NON-homogeneous materials as well!)