Uncertainties in Nuclear Data for Cosmic Ray Physics

Nicola Tomassetti

LPSC - CNRS / IN2P3 - Grenoble

p/He workshop - Torino - 6 July 2015

Physics case for CRs: antiproton/proton ratio

Uncertainty in "cosmic ray propagation"

Cosmic Ray Propagation

A LEADING THEORY [SNR PARADIGM] → phenomenological models

- ✓ Supernova Remnant (SNR) origin via **diffusive shock acceleration** (DSA) mechanisms
- ✓ **Diffusive transport** off magnetic turbulence + **interactions** in the interstellar matter.

Basic pillars

- 1. Diffusive Shock Accleration @SNRs: accounts for energetics & power-law spectra
- 2. Diffusion off magnetic turbulence: explain CR isotropy and large CR residence time
- 3. Interactions off ISM: account for Li-Be-B abundances & diffuse γ-ray emission

AMS-02

Secondary e+ production

Cosmic Ray Nuclei

Secondary Li-Be-B nuclei: produced by high energy collisions of C-N-O, Si, Fe with the ISM.

Sec/Pri ratios: fundamental quantities for modeling the processes of CR acceleration, propagation and interactions in the Galaxy.

Transport parameters

 $\psi(\mathbf{r}, p, t)$ – density per total momentum

Parameter degeneracy & physics observables

Primary spectra: α+δ

p, He, C-N-O, Fe Emitted from SNRs.

Their source spectra are modified by diffusion

Sec/Pri ratios: δ , K₀/L

$$B/C \sim \frac{L}{D} q_{sp} \propto \frac{L}{D_0} E^{-\delta}$$

Li/C, B/C, F/Ne, Ti/Fe

Secondary nuclei are from spallation. Their production depends on D(E) and L.

Unstable/Stable sec: L

 $q \sim E^{-\alpha} K \sim K_0 E^{\delta}$

10
 Be/ 9 Be~ $\sqrt{\tau / D}_{0}$

¹⁰Be/⁹Be, ²⁶Al/²⁷Al Unstable 10Be isotopes are not sensitive to the halo boundaries $\sqrt{\gamma \tau D(E)} \ll L$

p-He XS Measurements – Torino 06 July 2015

Parameter degeneracy & physics observables

Primary spectra: $\alpha + \delta$ $p \sim \frac{q_{pri}}{K/L} \propto E^{-(\alpha + \delta)}$

p, He, C-N-O, Fe *Emitted from SNRs. Their source spectra are modified by diffusion*

Sec/Pri ratios: δ , K₀/L

$$\mathrm{B/C} \sim \frac{\mathrm{L}}{D} q_{\mathrm{sp}} \propto \frac{\mathrm{L}}{\mathrm{D}_0} \mathrm{E}^{-\delta}$$

Li/C, B/C, F/Ne, Ti/Fe

Secondary nuclei are from spallation. Their production depends on D(E) and L.

Unstable/Stable sec: L

 $q \sim E^{-\alpha} K \sim K_0 E^{\delta}$

10
 Be/ 9 Be~ $\sqrt{\tau / D}_{0}$

¹⁰Be/⁹Be, ²⁶Al/²⁷Al

Unstable 10Be isotopes are not sensitive to the halo boundaries $\sqrt{\gamma \tau D(E)} \ll L$

Decaying/Decayed elemental ratios

- The Be/B elemental ratio may replace the 10Be/9Be ratio.
- Be/B, maximize the effect of radioactive decay ¹⁰Be→¹⁰B
- No mass separation required

Cross-sections for secondary CR production

Secondary production

To extract the D/L ratio from Sec/Pri data, the rates Γ have to be precisely known.

Secondary production rate (from nucleus k fragmenting into j)

 $\Gamma_{k \to j} = n_H \beta_k c \sigma^H_{k \to j} + n_{He} \beta_k c \sigma^{He}_{k \to j}$

Hydrogen density in Fragmentation the galactic medium cross section k+H->j the galactic medium

Helium density in

Fragmentation *cross section k+He->i*

Several fragmentation XS are involved. Some of them are poorly known.

Destruction rate for nucleus j colliding with ISM matter or decaying

$$\Gamma_s^{tot} \quad \beta_j c \left(n_H \sigma_{j,H}^{tot} + n_{He} \sigma_{j,He}^{tot} \right) + \frac{1}{\gamma_j \tau_j}$$

total inelastic cross section k+H->anything Few inelastic XS are involved (~50). Experimentally better known.

NICOLA TOMASSETTI - LPSC - CNRS/IN2P3 GRENOBLE

p-He XS Measurements - Torino 06 July 2015

Cross-section re-determination

For several P->F reactions, the GALPROP cross-sections have been re-fitted as:

$$\sigma^{\scriptscriptstyle H}_{\scriptscriptstyle CNO \rightarrow B}(E) = a \cdot \sigma^{\scriptscriptstyle G}_{\scriptscriptstyle CNO \rightarrow B}(b \cdot E)$$

- ✓ New value often close to original GALPROP XS's
- \checkmark Uncertainty band: one-sigma constraints provided by the data

Boron production cross-sections

- Main fragmentation cross sections for CNO(p,X)B between 20MeV/n and 10GeV/n
- Data from various experiments between 1970's and 2000.
- Formulae: Webber 98->2003. Sielberberg & Tsao 2000. GALPROP (CEM2k)
- Yellow bands: our error estimations after re-fit: $\sigma_{CNO \rightarrow B}^{H}(E) = a \cdot \sigma_{CNO \rightarrow B}^{G}(b \cdot E)$

Beryllium production cross-sections

- Main fragmentation cross sections for CNO(p,X)Be between 20MeV/n and 10GeV/n
- Data from various experiments between 1970's and 2000.
- Formulae: Webber 98->2003. Sielberberg & Tsao 2000. GALPROP (CEM2k)
- Yellow bands: our error estimations after re-fit: $\sigma_{CNO \rightarrow Be}^{H}(E) = a \cdot \sigma_{CNO \rightarrow Be}^{G}(b \cdot E)$

Cross-sections for "tertiary" reactions

- Secondary nuclei Be, B may also fragment in Li, Be, B.
- B(p,X)Be reactions poorly known. Relevant contribution on Be production.

Production cross sections – summary @ 10 GeV/n

				и и			На на На
$\operatorname{Proj} \longrightarrow \operatorname{Frag}$	GALPROP	WNEW	YIELDX	$\sigma_{P \to F}^{n} \pm \delta \sigma_{P \to F}^{n}$	Data Sets	$F_{\alpha/p}$	$\sigma_{\rm P \to F}^{\rm ne} \pm \delta \sigma_{\rm P \to F}^{\rm ne}$
$^{16}\text{O} \longrightarrow {}^{11}\text{B}$	$27.34~\mathrm{mb}$	14.57 mb	14.41 mb	$(25.66 \pm 1.06) \text{ mb}$	_●□*▼	1.34	$(34.37 \pm 1.43) \text{ mb}$
$^{16}\text{O} \longrightarrow {}^{10}\text{B}$	$11.00 \mathrm{\ mb}$	$9.52 \mathrm{~mb}$	8.81 mb	$(11.92 \pm 0.52) \text{ mb}$	_●□*▼	1.34	$(15.97 \pm 0.70) \text{ mb}$
$^{15}N \longrightarrow {}^{11}B$	26.12 mb	$26.12 \ \mathrm{mb}$	21.71 mb	$(30.63 \pm 2.48) \text{ mb}$	•0	1.31	$(40.04 \pm 3.24) \text{ mb}$
$^{15}N \longrightarrow {}^{10}B$	$9.56 \mathrm{~mb}$	8.81 mb	$7.63 \mathrm{~mb}$	$(9.69 \pm 0.77) { m ~mb}$	•0	1.31	$(12.66 \pm 1.01) \text{ mb}$
$^{14}N \longrightarrow {}^{11}B$	$29.22 \mathrm{~mb}$	29.98 mb	26.66 mb	$(29.80 \pm 1.08) \text{ mb}$	●□*★	1.21	$(35.94 \pm 1.30) \text{ mb}$
$^{14}N \longrightarrow {}^{10}B$	10.44 mb	10.64 mb	$9.18 \mathrm{~mb}$	$(10.15 \pm 0.84) \text{ mb}$	●□*★	1.21	$(12.24 \pm 1.01) \text{ mb}$
$^{12}C \longrightarrow {}^{11}B$	$56.88 \mathrm{~mb}$	54.86 mb	$52.83 \mathrm{~mb}$	$(54.73 \pm 2.57) \text{ mb}$	●□■∗▼★◇	1.29	$(70.50 \pm 3.32) \text{ mb}$
$^{12}C \longrightarrow {}^{10}B$	$12.30 \mathrm{~mb}$	16.21 mb	$11.59 \mathrm{~mb}$	$(12.05 \pm 0.58) \text{ mb}$	●□■∗▼★◇	1.29	$(15.52 \pm 0.74) \text{ mb}$
$^{16}O \longrightarrow {}^{10}Be$	2.14 mb	$1.34 \mathrm{~mb}$	$2.07 \mathrm{~mb}$	$(1.90 \pm 0.13) \text{ mb}$	${\bigtriangleup} \blacksquare$	1.47	$(2.79 \pm 0.19) \text{ mb}$
16 O \longrightarrow 9 Be	$3.48 \mathrm{~mb}$	$3.35 \mathrm{~mb}$	$3.51 \mathrm{~mb}$	$(3.40 \pm 0.22) \text{ mb}$	∆*▼	1.47	$(4.99 \pm 0.32) { m ~mb}$
$^{16}\text{O} \longrightarrow {}^{7}\text{Be}$	$10.00 \mathrm{~mb}$	$8.75 \mathrm{~mb}$	$8.92 \mathrm{~mb}$	$(8.97 \pm 0.29) { m ~mb}$	${\vartriangle} \blacksquare$	1.47	$(13.16 \pm 0.42) \text{ mb}$
$^{14}N \longrightarrow {}^{10}Be$	$1.75 \mathrm{~mb}$	$1.06 \mathrm{~mb}$	$1.81 \mathrm{~mb}$	$(1.73 \pm 0.21) \text{ mb}$		1.43	$(2.47\pm0.30)~\mathrm{mb}$
14 N \longrightarrow 7 Be	10.10 mb	$7.46 \mathrm{~mb}$	$8.47 \mathrm{~mb}$	$(7.90 \pm 0.47) \text{ mb}$	$ \square $	1.43	$(11.29 \pm 0.67) \text{ mb}$
$^{12}C \longrightarrow {}^{10}Be$	$3.94 \mathrm{~mb}$	$2.05 \mathrm{~mb}$	$3.41 \mathrm{~mb}$	$(3.61 \pm 0.27) \text{ mb}$	⊿□∎▼◊	1.41	$(5.07 \pm 0.38) \; { m mb}$
$^{12}C \longrightarrow {}^{9}Be$	6.76 mb	$5.31 \mathrm{~mb}$	4.98 mb	$(6.63 \pm 0.29) { m ~mb}$	△□■ ∗ ▼◊▲	1.41	$(9.32\pm0.41)~\mathrm{mb}$
$^{12}C \longrightarrow {}^{7}Be$	$9.58 \mathrm{~mb}$	10.32 mb	10.76 mb	$(8.88 \pm 0.30) \text{ mb}$	△●□∎▼★◊	1.41	$(12.48 \pm 0.42) \text{ mb}$
$^{11}\text{B} \longrightarrow ^{10}\text{B}$	38.91 mb	42.58 mb	38.91 mb	$(37.83 \pm 9.25) \text{ mb}$	•0	1.29	$(48.63 \pm 11.89) \text{ mb}$
$^{11}\text{B} \longrightarrow {}^{10}\text{Be}$	$12.95 \mathrm{~mb}$	$5.90 \mathrm{~mb}$	4.56 mb	$(6.52 \pm 1.04) \text{ mb}$	•□	1.40	$(9.14 \pm 1.46) \text{ mb}$
$^{11}B \longrightarrow {}^{9}Be$	10.00 mb	15.27 mb	$8.01 \mathrm{~mb}$	$(7.22 \pm 1.08) \text{ mb}$	$\triangle \bullet$	1.40	$(10.13 \pm 1.51) \text{ mb}$
$^{11}B \longrightarrow {}^7Be$	4.48 mb	4.48 mb	$3.63 \mathrm{~mb}$	$(4.31 \pm 0.60) \text{ mb}$	●□o	1.40	$(6.05 \pm 0.85) { m ~mb}$

Cross section uncertainties – impact in CR calculation

Reference model setting

Parameter	Name	Ref. Value	
Injection index	$ u_1$	1.80	
Injection index	$ u_2$	2.38	
Rigidity break	R _B [GV]	9	
Ref. rigidity	R ₀ [GV]	4	
Diffusion coeff.	$D_0 \ [10^{28} { m cm}^2 { m s}^{-1}]$	5.04	
Diffusion slope	δ	0.38	
Halo height	L [kpc]	3.9	
Halo radius	r_{max} [kpc]	30	
Alfvén speed	$v_A [{ m km \ s^{-1}}]$	33	
Modulation potential	φ [MV]	550	

Cross sections errors can be translated into errors in the B/C and Be/B ratios predicted. For secondaries:

$$\left(\delta q_j^{\text{sec}}\right)^2 = c \sum_i n_i \sum_k \beta_k \psi_k \left(\delta \sigma_{k \to j}^i\right)^2$$

These errors affect the constraining power of B/C and Be/B ratios in determining the transport parameters

At present, errors on CR data seem to be of the same level of nuclear uncertainties

What about future AMS data?

AMS Sensitivity to CR propagation parameters

AMS Sensitivity to CR propagation parameters

Orange area: one sigma contour regions, from AMS mock data on the **B/C ratio** \rightarrow The **D/L** degeneracy is apparent.

Red area: one sigma contour regions from simultaneous AMS mock data on B/C and Be/B
→ The D/L degeneracy is broken

Star: true model (corresponding to best-fit model)

Nuclear uncertainties are now accounted

AMS Sensitivity to CR propagation parameters

Systematic Biases in Cross Sections Data

Large errors/bias in single cross-section reactions:

- Break correspondence between best model and best-fit model
- \rightarrow mis-predictions of the ratios B/C or Be/B.
- \rightarrow mis-determination of CR transport parameters

An example: 11B \rightarrow 10Be reactions [Hams et al 2004; Molnar & Simon 2003]

Systematic Biases in Cross Sections Data

- Introduce bias in the cross-section normalization
- Generated a biased reference model \rightarrow new AMS predictions for B/C + Be/B
- Re-apply the parameter reconstruction, with the unbiased model

NICOLA TOMASSETTI - LPSC - CNRS/IN2P3 GRENOBLE

- ✓ From AMS expected capabilities, the combination of the B/C+Be/B can in principle break the D/L degeneracy and precisely measure the CR transport parameters L and D.
- ✓ Once the nuclear uncertainties are accounted in the model prediction, the D/L degeneracy remains largely unresolved.
- ✓ Large systematic bias in the main production channels (e.g. 12C->11B) may well lead to a parameter mis-determination.
- ✓ The presence of biases can be detected by AMS using Be/B at highenergy (E>10 GeV/n) or secondary-to-secondary ratios of stable species.
- ✓ The Be/B ratio give little information on the CR transport. Isotopically resolved data (10Be) are better for propagation studies.

✓ For CR propagation physicists

Use independent strategies (and observables) to infer the CR parameters. For L/D degeneracy: heavy nuclei propagation; low-energy leptons; radio emission

✓ For CR experiments (AMS)

Along with Be/B, feasibility studies for **10Be/9Be** at 1 - 10 GeV/n. A ~5% of systematic error would be a great progress. Other elemental ratios can be considered be Al/Mg or Cr/Ar

✓ For nuclear physicists

Better data on Li-Be-B production in p+N and α +N reactions. In particular, beryllium. More in particular, tertiary reaction 11B->10Be.

backup

Ideal 10Be/9Be measurement

²H/⁴He and ³He/⁴He Ratios: Propagation

Shaded bands:

From models consistent with the B/C ratio after a parameter scan.

Key parameters:

- δ : diffusion coefficient index
- D_0/L : diffusion coeff. / halo eight
- Va: Alfvenic speed

³He/⁴He

0.3

0.2

³He/⁴He

Aguilar et al 2011 (AMS) Wang et al 2002 (BESS)

Reimer et al 1998 (IMAX)

Beatty et al 1993 (SMILI) Hatano et al 1995

Webber & Yusak 1983

²H/³He Ratio: Model Check

Cross section uncertainties in the main production channels.

 \rightarrow Intrinsic uncertainties model predictions

 \rightarrow Mis-determination of the transport parameters

model consistency check: sec/sec ratios

2H/3He ratio is almost insensitive to CR transport parameters.

kinetic energy (GeV/n)

NICOLA TOMASSETTI - LPSC - CNRS/IN2P3 GRENOBLE

Destruction?

Measured with better precisions. Less impact in light-nuclei propagation Used: Tripathi et al 1999.

Helium target?

Adopted Ferrando 1989. No data to test it. Typical He/H factor is ~1.2-1.4 Typical He fraction in ISM: 10% -> Expected to contribute at ~15% in the flux. Same relative uncertainty as H assumed.

Straight ahead?

Assumed to be valid. Proven at O(%) accuracy for LiBeB (Kneller 2003) With the expected AMS precision, it probably needs to be re-investigated.

(High-)Energy dependence?

All XS's assumed FLAT above few ~GeV/n No data at E >10 GeV/n to test it. Possible impact on delta parameter