PRIN 2012 Theoretical astroparticle physics

Phenomenology of v masses and mixings (Bari Unit)

FRANCESCO CAPOZZI PhD student Università degli Studi di Bari - INFN

Istituto Nazionale di Fisica Nucleare

Research activity - Bari group

Phenomenology of neutrino oscillations and mass hierarchy

Neutrinoless double beta decay

•

Collective effects in supernova neutrinos

Neutrino oscillations

In the 3v framework, the mixing matrix U is:

Oscillations depend on mass differences. Assuming m₂>m₁:

$$\begin{split} \delta m^2 &= m_2^2 - m_1^2 > 0 &\ll \ \Delta m^2 = m_3^2 - \frac{m_2^2 + m_1^2}{2} \\ \text{``SOLAR''} & \text{``ATMOSPHERIC''} \end{split}$$

If $\Delta m^2 > 0$ we are in **NORMAL HIERARCHY** If $\Delta m^2 < 0$ we are in **INVERTED HIERARCHY**

Global analysis

(based on arXiv:1312.2878, F. Capozzi, G. L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo)

For the relatively "low" value $sin^2\theta_{13}$ ~0.02 preferred by SBL reactors (and Solar + KL) data, the appearance signal in T2K is maximized by CP violating $\delta \simeq 1.5\pi$. SK Atm lowers a bit this value.

Global analysis

(based on arXiv:1312.2878, F. Capozzi, G. L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo)

(based on arXiv:1503.01999, F. Capozzi, E. Lisi, A. Marrone)

Mass hierarchy from matter effects in Earth core and mantle (NH for v e IH for \overline{v}): θ_{13} (matter) $\gg \theta_{13}$ (vacuum).

(based on arXiv:1503.01999, F. Capozzi, E. Lisi, A. Marrone)

Normal hierarchy

(based on arXiv:1503.01999, F. Capozzi, E. Lisi, A. Marrone)

In the limit of high statistics we must take into account possible residual correlated and uncorrelated uncertainties, which may not have a definite parametrization. For correlated, we use quartic polynomial in (E, θ)

(based on arXiv:1503.01999, F. Capozzi, E. Lisi, A. Marrone)

Bands \leftrightarrow sin² $\theta_{23} \in [0.4, 0.6]$

Including all systematics (right panel) there is a **reduction in hierarchy sensitivity of** ~35% (~40%) after 5 (10) years with respect to the left panel, which refers to standard systematics. Further studies are needed.

(based on arXiv:1309.1638, F. Capozzi, E. Lisi, A. Marrone)

If baseline \sim 50 km, we can probe neutrino mass hierarchy through the study of the channel $\overline{v}_e \rightarrow \overline{v}_e$

The experiments are sensitive to short wavelength oscillations (θ_{13} , Δm^2), to long wavelength oscillations (θ_{12} , δm^2), and to their tiny interference (mass hierarchy)

(based on arXiv:1309.1638, F. Capozzi, E. Lisi, A. Marrone)

All parameters are floating with Markov chain Montecarlo

(based on arXiv:1309.1638, F. Capozzi, E. Lisi, A. Marrone)

Assuming the standard systematics (osc. + norm., dotted black curve) hierarchy sensitivity can reach about 5σ in 10 years. With current spectral uncertainties (red curve) hierarchy sensitivity may not reach 3σ after 10 years.

(based on arXiv:1309.1638, F. Capozzi, E. Lisi, A. Marrone)

Assuming the standard systematics (osc. + norm., dotted black curve) hierarchy sensitivity can reach about 5σ in 10 years. With current spectral uncertainties (red curve) hierarchy sensitivity may not reach 3σ after 10 years.

PEGENERACIES IN OVBB

(based on arXiv:1506.04058, E. Lisi, A. M. Rotunno, F. Simkovic)

$$T_i^{-1} = G_i^j |M_i^j| (\lambda^j)^2$$

G^j_i = Kinematical phase space

M^j_i = Nuclear matrix element

 $\lambda^{j} = LNV$ parameter

The uncertainties on M_i^J make challenging the disentanglement of the particle physics mechanisms behind $0\nu\beta\beta$, even with multi-isotope data

PEGENERACIES IN OVBB

(based on arXiv:1506.04058, E. Lisi, A. M. Rotunno, F. Simkovic)

- For a given decay mechanism, the nuclear model uncertainties are degenerate with the LNV parameter λ^j

 The two different mechanisms (L and H) are largely degenerate with one another

Supernova neutrinos

(based on arXiv:1503.03485, A. Mirizzi, G. Mangano, N. Saviano)

In high density SN regions, evolution becomes non linear. These locks the oscillations among modes in some energy ranges.

Collective phenomena take place.

 $H = H_{\rm vac} + H_{\rm matter} + H_{\nu\nu}$

$$H_{\nu\nu} = \sqrt{2}G_F \int \frac{d^3q}{(2\pi)^3} (1 - \cos\theta_{pq}) \left(\rho(\overrightarrow{q}) - \overline{\rho}(\overrightarrow{q})\right)$$

Synchronized oscillations: all neutrinos oscillate with the same frequency
 Bipolar oscillations: Coherent v_ev̄_e↔v_xv̄_x oscillations even for extremely small mixing angle (only for inverted hierarchy)

3) Spectral splits: v_e and \overline{v}_x (v_e and \overline{v}_x) spectra interchange completely only within certain energy ranges (because of lepton number conservation)

(based on arXiv:1503.03485, A. Mirizzi, G. Mangano, N. Saviano)

These phenomena are obtained assuming the bulb model (spherical, azimuthal and translational symmetry). Relaxing these hypotheses, instabilities may grow...

v emitted by an infinite boundary at z=0, in only two directions (L,R). Assumed an excess of v_e over \overline{v}_e and normal hierarchy

 $P_{L,R}^3(x,0) = \langle P_{L,R}^3(x,0) \rangle + \epsilon \cos(k_0 x)$

(Translational symmetry broken)

1% difference in the initial conditions of L and R modes

(L↔R symmetry broken)

Till z=2.5 all the neutrinos oscillate in phase and the surfaces of equal phase are planes parallel to the radiating surface at z = 0. Then...

Large variations along the x direction at increasingly smaller scales

Coherent behavior of oscillations lost

 $P^{3}L(x,z) \neq P^{3}R(x,z)$ (not shown)

Work in progress

- (In)Stability and symmetry (breaking) of SN ν
 (F. Capozzi, A. Mirizzi *et al.*)
- Refined Earth model for geo-v analysis
 (E. Lisi in collaboration with PRIN-Ferrara)
- Quenching of g_A in $0\nu\beta\beta$ and related weak processes (E. Lisi, A. Marrone, in collaboration with F. Simkovic *et al.*)
- Updated global 3v analysis of oscillation data after Summer 2015 Conferences
 (F. Capozzi, E. Lisi, A. Marrone, D. Montanino, A. Palazzo)
- My PhD thesis