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Introduction
• Jiangmen Underground Neutrino Observatory (JUNO) is a reactor anti-neutrino 

experiment under construction in Jiangmen City, Guangdong Province, China. 
• Approved in Feb 2013 in China
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Juno Detector Design
JUNO central detector is a 20 kton liquid 
scintillator (LS) detector with a total overburden of 
1850 meter water equivalent. 

Key Features 

• PMTs 
• Photo-multiplier tube (PMT) coverage ~75% 
• PMTs with high quantum efficiency ~35% 

• High performance liquid scintillator  
• high photon yield with >14,000 photons /MeV 
• optical attenuation length order of 30 m 

• The spherical central detector will be placed 
inside an instrumented water pool to identify 
cosmic muons and provide shielding from 
radioactive backgrounds. 

• A muon tracker on top of the detector will 
further enhance the muon identification. 

M. Grassi Ferrara, Feb 2015
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Juno Collaboration
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JUNO: A Multi-purpose Neutrino 
Observatory

• Neutrino Mass Hierarchy determination (primary goal). 
• Precision measurement of mass-squared splittings and mixing angle. 
• Underground science including supernova burst neutrinos, geo-neutrinos, solar 

neutrinos and proton-decay.
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anti-Neutrino Energy Spectrum (at 50 km 
baseline)

Standard Resolution  
Function in Calorimetry

A 3% resolution at 1MeV is pivotal  

Term b (stochastic) is mainly driven by the number of detected photons (aka photo-coverage, aka 
number of pmts)  

Constant term (c) is sensitive to all the “experimental issues” (Spatial Uniformity, Energy Linearity, 
Quantum Efficiency Fluctuations...)  

c ≤ 1% is an ambitious but unavoidable 

from Marco Grassi talk in Ferrara ”The JUNO Experiment Entering the Era of Precision Neutrino Physics”
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Experimental Challenges

• Keep Constant Resolution Term Below 1% (Energy Calibration)  

• Energy Non-linearity due to Liquid Scintillator Response and Readout 
of the Electronics 

• Non-uniformity  

• Reduce Natural Radioactivity (Purification) Reduce Cosmogenic Backgrounds 
(MuonTracking) Maximize Light Collection (PMTS) 
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Scintillator Non Linearity
Quenching

• If the concentration of excited 
molecules in the LS is high they can 
interact and quench the total light 
output 

• Particles with low initial energy have a  
large dE/dx so the total light output is 
quenched.  

• More energetic particles have most of 
their energy lost with small dE/dx.   

• Ionization quenching leads to a non-
linear relation between the energy of 
the ionizing particle and the light 
produced by the scintillator 

Cherenkov

• Charged particles in LS have speed 
greater than phase velocity of light  

• Cherenkov light emission (mostly 
UV)  

• LS is opaque to UV light 
Cherenkov light is re-absorbed by 
LS Sometimes it is re-emitted as 
scint. light Re-emission prob is 
poorly known 
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Overall Scintillator Non-Linearity

Ionization quenching reduces light at low particle energy Cherenkov light mildly 
enhances LS light yield at higher particle energy  

Overall non-linear energy dependence of the light output needs to be carefully 
evaluated 

from Marco Grassi talk in Ferrara ”The JUNO Experiment Entering the Era of Precision Neutrino Physics”
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Electronics Non-Linearity

Light yield increases towards the 
edge of the detector:  

a) Energy deposition in the center: 
all the photons are attenuated  

  

b) Energy deposition at the edge:  
 some pmts see many photons 

(a) (b)
from Marco Grassi talk in Ferrara ”The JUNO Experiment Entering the Era of Precision Neutrino Physics”
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Electronics Non-Linearity

Single Photon
Output Signal from FADC

Multiple Photons

from Marco Grassi talk in Ferrara ”The JUNO Experiment Entering the Era of Precision Neutrino Physics”
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Electronics Non-Linearity
Experience (i.e. previous 

experiments) tells us that charge 
extraction from complex waveforms 

tends to be biased  

Such bias is both energy and position 
dependent 

(it is a function of the number of p.e. 
collected at the PMT anode)  

Ad hoc correction might be 
implemented on single-channel basis

Study this Non-Linearity with Digital Signal Processing (DSP) 
Techniques to reconstruct the # of Hits and the total charge

from Marco Grassi talk in Ferrara ”The JUNO Experiment 
Entering the Era of Precision Neutrino Physics”
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Simulated Signal 1/2

From Soeren Jetter and Marco Grassi
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Simulated Signal 2/2

From Soeren Jetter and Marco Grassi
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Fourier Transform of the Signal

• Noise 
• Single Photo Electron Signal 
• Multiple Photo Electron Signal
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Data Sets Features 

1. # of Hits 
2. height of Hits 
3. Width of hits 
4. Overshoot

Gaussian Signal

Use of Gaussian Signal to 
investigate the effectiveness of DSP 
techniques
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Preliminary Filtered Signal

Filtering Signals in Frequency 
Domain 

• Subtract the noise 
frequencies from the signal 
frequencies 

• Cut all the frequencies 
grater than a threshold

AD
C

AD
C

AD
C

AD
C

Time (nS) Time (nS)

Time (nS)Time (nS)



Theoretical Astropartical Phisycs Workshop, Turin 09/07/2015

Wiener Deconvolution

Deconvolution in the Frequency Domain 
to obtain informations about Peaks, 
ideally Dirac Deltas.  

Peak Analysis 
• Fixed Threshold 
• Variable Threshold for eache 

event
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Fixed Threshold vs Variable Threshold

Number of hit 
recognized vs Threshold 

Probability to Recognize 
the right # of hit vs 

Threshold

vs
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Preliminary Charge Reconstruction

Real Charge vs Reconstructed Charge
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What Next?

• New Filters to increase the Signal to Noise Ratio 
• Increase the effectiveness of the Deconvolution 
• Explore new ways to Reconstruct the Peaks and the Charge 
• How to integrate informations on # of peaks and Charge? 
• Study Border Effect


