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INntroduction

Jiangmen Underground Neutrino Observatory (JUNO) is a reactor anti-neutrino
experiment under construction in Jiangmen City, Guangdong Province, China.
Approved in Feb 2013 in China
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Juno Detector Design

JUNO central detector is a 20 kton liguid
scintillator (LS) detector with a total overburden of
1850 meter water equivalent.

Key Features

 PMTs
* Photo-multiplier tube (PMT) coverage ~75%
 PMTs with hlgh quantum efficiency ~35% 20.000 t LS spherical detector
j for high uniformity
» High performance liquid scintillator . 35 m
* high photon yield with >14,000 photons /MeV - No GO
 optical attenuation length order of 30 m larger attenuation length

and better radio-purity

The spherical central detector will be placed
inside an instrumented water pool to identify
cosmic muons and provide shielding from
radioactive backgrounds.

A muon tracker on top of the detector will Acrylic sphere
further enhance the muon identification.

Steel truss
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JUNO: A Multi-purpose Neutrino
Observatory

* Neutrino Mass Hierarchy determination (primary goal).

* Precision measurement of mass-squared splittings and mixing angle.

* Underground science including supernova burst neutrinos, geo-neutrinos, solar
neutrinos and proton-decay.

Supernova v

~5kin 10s for 10kpe  Neutrino Rates

Atmosphericv .
several/day

| Cosmic muons
~ 250k/day

0.003 Hz/m?
215 GeV

36 GW,53 km 10% multiple-muon

60/day 20k-ton \Geo-neutrinos
@ 1-2/day
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anti-Neutrino Energy Spectrum (at 50 km
baseline)

- 3% Res

Entries (au.)
Entries (au.)

> 3 i 5 6 [
Neutrino Energy [MeV]

2 3 4 5 6
Positron Energy [MeV]

from Marco Grassi talk in Ferrara "The JUNO Experiment Entering the Era of Precision Neutrino Physics”

Standard Resolution A E) » P -
Function in Calorimetry E = (f+717+(‘)

A 3% resolution at TMeV is pivotal

Term b (stochastic) is mainly driven by the number of detected photons (aka photo-coverage, aka
number of pmts)
Constant term (c) is sensitive to all the “experimental issues” (Spatial Uniformity, Energy Linearity,
Quantum Efficiency Fluctuations...)
c < 1% is an ambitious but unavoidable
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Experimental Challenges

. Keep Constant Resolution Term Below 1% (Energy Calibration)

. Energy Non-linearity due to Liquid Scintillator Response and Readout
of the Electronics

. Non-uniformity

* Reduce Natural Radioactivity (Purification) Reduce Cosmogenic Backgrounds
(MuonTracking) Maximize Light Collection (PMTS)
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Scintillator Non Linearity

Quenching

e |f the concentration of excited

molecules in the LS is high they can Cherenkov
interact and quench the total light
output * Charged particles in LS have speed

greater than phase velocity of light
* Particles with low initial energy have a

large dE/dx so the total light output is  Cherenkov light emission (mostly
quenched. UV)
* More energetic particles have most of » LS is opaqgue to UV light
their energy lost with small dE/dx. Cherenkov light is re-absorbed by
LS Sometimes it is re-emitted as
* |onization quenching leads to a non- scint. light Re-emission prob is
linear relation between the energy of poorly known

the ionizing particle and the light
produced by the scintillator
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Overall Scintillator Non-Linearity

lonization quenching reduces light at low particle energy Cherenkov light mildly
enhances LS light yield at higher particle energy

Overall non-linear energy dependence of the light output needs to be carefully

evaluated
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from Marco Grassi talk in Ferrara "The JUNO Experiment Entering the Era of Precision Neutrino Physics”
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Electronics Non-Linearity

YIELD —

LIGUT

Light yield increases towards the .
edge of the detector: RADIVS

a) Energy deposition in the center:
all the photons are attenuatead

b) Energy deposition at the edge:
some pmts see many photons

(a) (b)

from Marco Grassi talk in Ferrara "The JUNO Experiment Entering the Era of Precision Neutrino Physics”
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Electronics Non-Linearity

| Output Signal from FADC
Single Photon

PMT |
— e [
Multiple Photons
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from Marco Grassi talk in Ferrara "The JUNO Experiment Entering the Era of Precision Neutrino Physics”
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Electronics Non-Linearity

Experience (i.e. previous
experiments) tells us that charge
extraction from complex waveforms
L \ tends to be biased

Such bias is both energy and position
dependent
(it is a function of the number of p.e.
collected at the PMT anode)

Ad hoc correction might be
implemented on single-channel basis

from Marco Grassi talk in Ferrara "The JUNO Experiment
Entering the Era of Precision Neutrino Physics”

Study this Non-Linearity with Digital Signal Processing (DSP)
Techniques to reconstruct the # of Hits and the total charge
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Simulated Signal 1/2

Waveform simulation

Simulated waveform
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2 main inputs to configure simulation via PmtService

® Single p.e. response encapsulates correlated response from PMT +electronics
B Noise spectrum encapsulates uncorrelated response from PMT+electronics

®m Both templates can be configured to allow for testing of different PMT
prototypes and electronics setups

From Soeren Jetter and Marco Grassi
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Simulated Signal 2/2

Scheme of waveform deconvolution

Raw waveform c(t) Unfolded waveform u(t)

Wiener deconvolution

U(f) = ®(NC(F)/R(f)

Noise filter @(1)
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Model-independent unfolding scheme

® MC response and noise to be extracted from MC data to avoid closed loops
® Performance heavily depends on level of noise contamination

® Unfolded waveform can be used to either integrate charge or count photons

From Soeren Jetter and Marco Grassi
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Fourier Transform of the Signal

Magnitude of the 1st transform
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ADC

ADC
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Use of Gaussian Signal to
investigate the effectiveness of DSP

techniques

Data Sets Features

1. # of Hits

2. height of Hits
3. Width of hits
4. Overshoot

Theoretical Astropartical Phisycs Workshop, Turin 09/07/2015



ADC
” 2

Preliminary Filtered Signal

The backward vransform result

4
) P ——

o0 ) w00 1
Time (nS)

The backward ransform result
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Filtering Signals in Frequency
Domain
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. Subtract the noise
frequencies from the signal
|l g frequencies
Cut all the frequencies
" | grater than a threshold

The backward ransform result
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Charge(p.e.)

Charge(p.e.)

Wiener Deconvolution
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i \ ’ ~ 'Deconvolution in the Frequency Domain
| to obtain informations about Peaks,

i ideally Dirac Deltas.
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. #of Recognized Hits

Probability to recognize the right # of hits

Fixed Threshold vs Variable Threshold
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Number of hit
recognized vs Threshold

Probability to Recognize
the right # of hit vs
Threshold

Turin 09/07/2015



Reconstructed Charge

Reconstructed Charge

Preliminary Charge Reconstruction

Reconstruction_2
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Real Charge vs Reconstructed Charge
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What Next”?

New Filters to increase the Signal to Noise Ratio

Increase the effectiveness of the Deconvolution

Explore new ways to Reconstruct the Peaks and the Charge
How to integrate informations on # of peaks and Charge?
Study Border Effect
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