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How is dark matter produced in the early universe?

WIMP scenario:
Thermal freez-out of weakly interacting massive particle.

ADM scenario:

Asymmetry between DM particle x and its antiparticle .
Relic density due to x excess (similar to baryogenesis).
Usually requires new symmetries.

— Minimal asymmetric dark matter (MADM):

use SM gauge symmetries to transfer asymmetry to multiplet DM
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The MADM model

B Particle content: SM + SU(2), multiplet x
(c.f. Minimal Dark Matter [Cirelli, Fornengo, Strumia (2006)])

B Non-zero hypercharge y
B Not self-conjugate — can carry asymmetry

B Neutral component with t3 = —y if isospin t = y + k,

for non-negative integer k
B Non-minimal multiplets for kK > 0

B Neutral component has to be the lightest state

B Matter parity to stabilize x




Asymmetry transfer

Transfer operator

1
0= Ay xxo"

x =1 (2) if x is fermion (boson)

The operator O plays two roles:

B At T > Tew: Enforces chemical equilibrium between ¢ and x,
communicates asymmetry

B At T < Tew: Generates mass splitting

4y

%

X f—
5m0 - N4y —x

between the two real degrees of freedom X(1),2 of theneutral x component

[Asymmetry transfer also possible via, e.g., ,W%XXX(ERGR)Y-]
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Mass splitting of \°

Consequences of splitting:

® ¥ does not couple to Z
boson

B Inelastic transition x? — x3
kinematically forbidden if

om=2m (3)" (55 ) 2om™

B Sm™® ~ (140.2y) x 175 keV
for my of order few TeV
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[Nagata, Shirai (2015)]




Charged/neutral mass splitting

Two contributions to charged-neutral splitting:

Splitting from EW breaking

Breaking via O = A, (x"tx) (¢T§¢) J

v A v? 2 . A, 1TeV
om" = —(t3 — t3) h —151 (t3 — ) Ao oe” MeV, Ao = 003 m,
and
Splitting from gauge boson loops

sm®2 = % (ts — 1) {(t3 +15) (Mw - Cﬁ/Mz) + 2y55vMZ}

=152 (t3 — ;) {1.1(ts + t3) + 4.6y } MeV
Non-minimal DM neutral for A} 18 = 2.5y + 1.1
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Timeline

Steps required to produce DM:

For T >> Tew in-equlibrium reactions via O? feed asymmetry between SM and
X sector

At T, > Tew chemical decoupling of x, the asymmetry in the abundances
Yax = Yy — Yx remains conserved (T, ~ 5X)

Symmetric component annihilates via xx — SM until T, < T, (Ts ~ %)
Asymmetric component can restart annihilation after EWPT — T5 > Tew.
Yx <€ Yay =~ Yy at Ts — relic abundance dominated by initial asymmetry.

At T < Tew all x components will decay to x?
Present DM density is then

poM = S My Yax




Chemical decoupling

Reaction rates

Equilibrium via xx — ¢*

0
(s-channel) Fox = 20|V xx » Mo = ne(a|v])xe
X ¢
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and x> "¢ For y > 5 the relevant contribution is Iy, (T ~ 5
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N " After decoupling (Myy, Tyo < H(T2)):
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Fermions
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For y =1: A < 17TeV from DD
constraints, and m, < 10 TeV

(Ts ~ ';—;‘ 2 Tew).

y= % and y = 2 the allowed
bands are in the m, > A region
— effective theory breaks down
Fory = %:
DD limit: A < 1.5 x 10° TeV
correct abundance requires

5 T, \1/2
ANZ41x10° (rew)~ TeV.
— disagreement for T, > Tew

Viable DM candidate for y = 1
— minimal choice is SU(2) triplet




MADM with different hypercharge Il

B Scalar multiplet with hypercharge
y = 1 viable:

1/8
AN~ 18 (10) TeV

s
and 25 TeV < my $6.7TeV

® Higher hypercharge
— EFT breakdown

B For y = 1/2 transfer operator is
renormalizible
DD limit Zx < 8 x 10* TeV
Decoupling requires

m A 1/2
X >41x10° (p2y) |~ TeV




Symmetric annihilation

Efficient xx annihilation — symmetric component remains subdominant
Qy < Q2 ~ Qpm
B Sizable suppression of symmetric relic density due to Sommerfeld enhancements

B y = 1 fermionic triplet relic density completely symmetric for
2.7TeV S my $2.8TeV

B relevant contribution from asymmetry marginally allowed

B y =1 scalar triplets similar

B higher multiplets — enhanced cross section — larger masses required without
asymmetry

® Thermally produced fermion quintuplet with m, < 10 TeV — contributes
whole DM only with asymmetry
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Phenomenological implications

Searches at colliders:

B LHC reach up to few hundred GeV — too low for MADM

B Future e"e™ and pp colliders probe multi TeV region only marginally
Direct detection:

B 7 mediated interactions kinematically forbidden

B Loop level interactions with o ~ O(107*") cm? far below current bounds
Indirect detection:

B heavily depends on DM halo model

B Most relevant bounds from antiproton measurements and absence of v-ray lines

towards the galactic center
B y =0 fermion triplet (wino-like) DM excluded for 1.8 TeV < my; < 3.5 TeV

B Similar expected for y = 1, since m, close to Mw /az ~ 2.4 TeV
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Conclusions

B Any new SU(2), multiplet with y # 0 and in chemical equilibrium at T > Tew
inherits asymmetry from SM sector

® Neutral component ADM candidate, if stable and lightest member

B Transfer operator:
— enforces chemical equilibrium
— mass splitting of neutral component, Z interactions kinematically forbidden

® Decoupling before EWPT

® Allows do exclude all MADM candidates except y = 1 scalar/fermion multiplets
® Minimal multiplets disfavoured by symmetric annihilation and indirect detection
B Quintuplets less constraint due to enhanced annihilation

B Relaxing minimality criteria can avoid constraints

(e.g, additional DM singlet as in Higgsogenesis [Servant, Tulin (2013)])
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