Minimal Asymmetric Dark Matter

in collaboration with S. Boucenna, and E. Nardi PLB (2015), arXiv:1503.01119

Martin B. Krauss

Theoretical Astroparticle Physics Workshop Torino 2015

July 9, 2015

How is dark matter produced in the early universe?

WIMP scenario:

Thermal freez-out of weakly interacting massive particle.

ADM scenario:

Asymmetry between DM particle χ and its antiparticle $\overline{\chi}$. Relic density due to χ excess (similar to baryogenesis). Usually requires new symmetries.

ightarrow Minimal asymmetric dark matter (MADM):

use SM gauge symmetries to transfer asymmetry to multiplet DM

The MADM model

- Particle content: SM + SU(2)_L multiplet χ (c.f. Minimal Dark Matter [Cirelli, Fornengo, Strumia (2006)])
- Non-zero hypercharge y
- Not self-conjugate \rightarrow can carry asymmetry
- Neutral component with t₃ = -y if isospin t = y + k, for non-negative integer k
- Non-minimal multiplets for k > 0
- Neutral component has to be the lightest state
- Matter parity to stabilize χ

Asymmetry transfer

Transfer operator

$$\mathcal{O}^{\phi} = \frac{1}{\Lambda^{4y-x}} \ \chi \chi \phi^{4y}$$

x = 1 (2) if χ is fermion (boson)

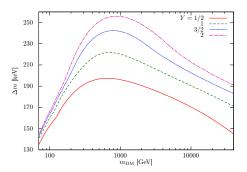
The operator \mathcal{O}^{ϕ} plays two roles:

- At T > T_{EW}: Enforces chemical equilibrium between φ and χ, communicates asymmetry
- At $T < T_{EW}$: Generates mass splitting

$$\delta m_0^x = \frac{v^{4y}}{\Lambda^{4y-x}}$$

between the two real degrees of freedom $\chi^0_{1,2}$ of theneutral χ component [Asymmetry transfer also possible via, e.g., $\frac{1}{\Lambda^{3\gamma-x}}\chi\chi(e_Re_R)^{\gamma}$.]

3 / 12


Mass splitting of $\chi^{\rm 0}$

Consequences of splitting:

- χ_1^0 does not couple to Z boson
- Inelastic transition $\chi_1^0 \to \chi_2^0$ kinematically forbidden if

$$\delta m_0 = 2m_\chi \left(rac{v}{\Lambda}
ight)^{4y} \left(rac{\Lambda}{2m_\chi}
ight)^x \gtrsim \delta m^{\min}$$

• $\delta m^{\min} \sim (1+0.2y) \times 175 \text{ keV}$ for m_{χ} of order few TeV

[Nagata, Shirai (2015)]

Charged/neutral mass splitting

Two contributions to charged-neutral splitting:

Splitting from EW breaking

Breaking via
$$\mathcal{O}^{\vec{t}} = \lambda_{v} \left(\chi^{\dagger} \vec{t} \chi \right) \left(\phi^{\dagger} \frac{\vec{\tau}}{2} \phi \right)$$
,

$$\delta m^{\nu} = -(t_3 - t_3') \frac{\lambda_{\nu} \nu^2}{4m_{\chi}} \approx -151 (t_3 - t_3') \lambda_{0.02}^{1\,\text{TeV}} \text{ MeV}, \qquad \lambda_{0.02}^{1\,\text{TeV}} = \frac{\lambda_{\nu}}{0.02} \frac{1\,\text{TeV}}{m_{\chi}}$$

and

Splitting from gauge boson loops

$$\delta m^{\alpha_2} = \frac{\alpha_2}{2} \left(t_3 - t_3' \right) \left\{ \left(t_3 + t_3' \right) \left(M_W - c_W^2 M_Z \right) + 2y s_W^2 M_Z \right\}$$
$$= 152 \left(t_3 - t_3' \right) \left\{ 1.1 (t_3 + t_3') + 4.6y \right\} \text{ MeV}$$

Non-minimal DM neutral for $\lambda_{0.02}^{1\,{\rm TeV}}=2.5y\pm1.1$

Timeline

Steps required to produce DM:

- For $T \gg T_{EW}$ in-equilibrium reactions via \mathcal{O}^{ϕ} feed asymmetry between SM and χ sector
- At $T_a > T_{EW}$ chemical decoupling of χ , the asymmetry in the abundances $Y_{\Delta\chi} \equiv Y_{\chi} - Y_{\overline{\chi}}$ remains conserved $(T_a \sim \frac{m_{\chi}}{10})$
- Symmetric component annihilates via $\chi \overline{\chi} \rightarrow SM$ until $T_s < T_a$ $(T_s \sim \frac{m_{\chi}}{25})$ Asymmetric component can restart annihilation after EWPT $\rightarrow T_s > T_{EW}$. $Y_{\overline{\chi}} \ll Y_{\Delta\chi} \approx Y_{\chi}$ at $T_s \rightarrow$ relic abundance dominated by initial asymmetry.
- At $T \ll T_{\rm EW}$ all χ components will decay to χ_1^0
- Present DM density is then

$$ho_{\mathsf{DM}} = s \, m_{\chi} Y_{\Delta \chi}$$

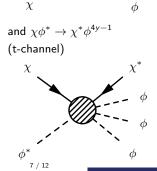
Chemical decoupling

φ

 ϕ

Equilibrium via $\chi\chi \rightarrow \phi^{4y}$ (s-channel)

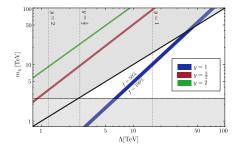
 χ


$$\Gamma_{\chi\chi} = n_{\chi}^{0} \langle \sigma | \mathbf{v} | \rangle_{\chi\chi} , \qquad \Gamma_{\chi\phi} = n_{\phi}^{0} \langle \sigma | \mathbf{v} | \rangle_{\chi\phi}$$

$$\langle \sigma | \mathbf{v} | \rangle_{\chi\chi} \sim \eta_{\mathsf{PS}}^{(n)} \, m_{\chi}^{-2} \, \left(\frac{m_{\chi}}{\Lambda} \right)^{2(4y-\chi)},$$

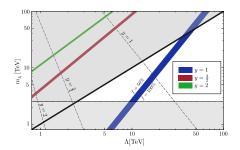
 $\langle \sigma | \mathbf{v} | \rangle_{\chi\phi} \sim \langle \sigma | \mathbf{v} | \rangle_{\chi\chi} \, \left(\frac{T}{m_{\chi}} \right)^{4(2y-1)},$

For $y > rac{1}{2}$ the relevant contribution is $\Gamma_{\chi\chi}$ ($T_a \sim rac{m_\chi}{10}$)


After decoupling $(\Gamma_{\chi\chi}, \ \Gamma_{\chi\phi} \lesssim H(T_a))$:

$$Y_{\Delta\chi} = -2y \left. \frac{n_{\chi}^0}{n_{\phi}^0} Y_{\Delta\phi} \right|_{T=T_a}$$

MADM with different hypercharge I


Fermions

 $f=\Omega_\chi/\Omega_{\mathsf{DM}}$

- For y = 1: $\Lambda \lesssim 17 \text{ TeV}$ from DD constraints, and $m_{\chi} \lesssim 10 \text{ TeV}$ $(T_s \sim \frac{m_{\chi}}{25} \gtrsim T_{\text{EW}}).$
- y = ³/₂ and y = 2 the allowed bands are in the m_χ > Λ region
 → effective theory breaks down
- $\label{eq:Formula} \begin{array}{ll} \textbf{For } y = \frac{1}{2} \\ \text{DD limit: } \Lambda \lesssim 1.5 \times 10^5 \, \text{TeV} \\ \text{correct abundance requires} \\ \Lambda \gtrsim 4.1 \times 10^5 \left(\frac{T_a}{100 \, \text{GeV}} \right)^{1/2} \, \text{TeV}. \\ \rightarrow \text{disagreement for } T_a > T_{EW} \end{array}$
- Viable DM candidate for y = 1 → minimal choice is SU(2) triplet

MADM with different hypercharge II

Scalars

Scalar multiplet with hypercharge
 y = 1 viable:

$$\Lambda pprox 18 \left(rac{10}{z_a}
ight)^{1/8} \, {
m TeV}$$

and 2.5 TeV $\lesssim m_\chi \lesssim$ 6.7 TeV

- Higher hypercharge → EFT breakdown
- For y = 1/2 transfer operator is renormalizible DD limit $\frac{m_{\chi}}{\lambda} \lesssim 8 \times 10^4 \text{ TeV}$ Decoupling requires $\frac{m_{\chi}}{\lambda} \gtrsim 4.1 \times 10^5 \left(\frac{T_a}{100 \text{ TeV}}\right)^{1/2} \text{ TeV}$

Efficient $\chi \overline{\chi}$ annihilation \rightarrow symmetric component remains subdominant $\Omega_{\overline{\chi}} \ll \Omega_{\chi} \sim \Omega_{DM}$

- Sizable suppression of symmetric relic density due to Sommerfeld enhancements
- y = 1 fermionic triplet relic density completely symmetric for 2.7 TeV $\lesssim m_\chi \lesssim$ 2.8 TeV
- relevant contribution from asymmetry marginally allowed
- y = 1 scalar triplets similar
- \blacksquare higher multiplets \rightarrow enhanced cross section \rightarrow larger masses required without asymmetry
- Thermally produced fermion quintuplet with $m_{\chi} \ll 10 \text{ TeV} \rightarrow \text{contributes}$ whole DM only with asymmetry

Phenomenological implications

Searches at colliders:

- \blacksquare LHC reach up to few hundred GeV \rightarrow too low for MADM
- Future e^+e^- and pp colliders probe multi TeV region only marginally

Direct detection:

- Z mediated interactions kinematically forbidden
- Loop level interactions with $\sigma \sim \mathcal{O}(10^{-47}) \, \mathrm{cm}^2$ far below current bounds

Indirect detection:

- heavily depends on DM halo model
- Most relevant bounds from antiproton measurements and absence of γ-ray lines towards the galactic center
- y = 0 fermion triplet (wino-like) DM excluded for 1.8 TeV $\lesssim m_{\widetilde{W}} \lesssim$ 3.5 TeV
- Similar expected for y = 1, since m_{χ} close to $M_W/\alpha_2 \sim 2.4 \text{ TeV}$

Conclusions

- Any new SU(2)_L multiplet with y ≠ 0 and in chemical equilibrium at T > T_{EW} inherits asymmetry from SM sector
- Neutral component ADM candidate, if stable and lightest member
- Transfer operator:
 - \rightarrow enforces chemical equilibrium
 - ightarrow mass splitting of neutral component, Z interactions kinematically forbidden
- Decoupling before EWPT
- Allows do exclude all MADM candidates except y = 1 scalar/fermion multiplets
- Minimal multiplets disfavoured by symmetric annihilation and indirect detection
- Quintuplets less constraint due to enhanced annihilation
- Relaxing minimality criteria can avoid constraints (e.g., additional DM singlet as in Higgsogenesis [Servant, Tulin (2013)])