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Selected topics

• Constraints on New Physics from Cosmological 
Observables (decaying DM, axions) 

• Primordial Universe (Inflation, Leptogenesis) 

• Large Scale Structure of the Universe (BAO’s and 
neutrino masses, galaxy clusters)  

• Gravity and New Gravity



Decaying Dark Matter (I)

Strongest model-independent bound on the lifetime of Dark Matter 
Benjamin Audren,a Julien Lesgourgues,a,b,c Gianpiero Mangano,d Pasquale Dario Serpico,c and Thomas Trama 

Figure 1. CMB temperature power spectrum for a variety of models, all with the same parameters
{100 ✓s,!ini

dcdm

,!
b

, ln(1010As), ns, ⌧reio} = {1.04119, 0.12038, 0.022032, 3.0980, 0.9619, 0.0925} taken
from the Planck+WP best fit [26]. For all models except the “Decaying CDM” one, the decay
rate �

dcdm

is set to zero, implying that the “dcdm” species is equivalent to standard cold DM with a
present density !

cdm

= !ini

dcdm

= 0.12038. The “Decaying CDM” model has �
dcdm

= 20 km s�1Mpc�1,
the “Tensors” model has r = 0.2, and the “Open” (“Closed”) models have ⌦k = 0.02 (�0.2). The
main di↵erences occur at low multiples and comes from either di↵erent late ISW contributions or
non-zero tensor fluctuations.

To check (ii), we plot in Figure 1 the unlensed temperature spectrum of models with �
dcdm

set either to 0 or 20 km s�1Mpc�1

3. To keep the early cosmological evolution fixed, we stick
to constant values of the density parameters (!ini

dcdm

, !
b

), of primordial spectrum parameters
(As, ns) and of the reionization optical depth ⌧

reio

. Of course, for �
dcdm

= 0, the dcdm
species is equivalent to standard cold DM with a current density !

cdm

= !ini

dcdm

. We need to
fix one more background parameter in order to fully specify the late cosmological evolution.
Possible choices allowed by class include h, or the angular scale of the sound horizon at
decoupling, ✓s = rs(t

dec

)/ds(t
dec

). We choose to stick to a constant value of ✓s, in order to
eliminate the e↵ect (i) described above, and observe only (ii). We see indeed in Figure 1 that
with such a choice, the spectra of the stable and decaying DM models overlap everywhere
except at small multipoles. To check that this is indeed due to a di↵erent late ISW e↵ect, we
show in Figure 2 the decomposition of the total spectrum in individual contribution, for the
stable model and a dcdm model in which the decay rate was pushed to 100 km s�1Mpc�1.

Since the dominant e↵ect of decaying DM is a modification of the small-` part of the
CMB temperature spectrum, in the rest of the analysis, it will be relevant to investigate de-

3
It is useful to bear in mind the conversion factor 1 km s

�1
Mpc

�1
= 1.02⇥ 10

�3
Gyr

�1
.
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Figure 2. The single contributions to the CMB temperature spectrum (Sachs-Wolfe, early and late
Integrated Sachs-Wolfe, Doppler and polarisation-induced) for a stable model (solid) and a dcdm
model (dashed) with �

dcdm

= 100 km/s/Mpc. The value of other parameters is set as in Figure 1.
We see that only the late ISW e↵ect is sensitive to the decay rate (for other contributions, solid and
dashed lines are indistinguishable).

generacies between �
dcdm

and other parameters a↵ecting mainly the large-angle CMB spec-
tra, like the spatial curvature parameter ⌦k or the tensor-to-scalar ratio r (defined throughout
this paper at the pivot scale k⇤ = 0.05/Mpc). We show examples of such models in Figure 1,
from which it is not obvious that very small variations of �

dcdm

, ⌦k and r can be distin-
guished, given the cosmic variance uncertainty on low `’s. It is useful to plot the matter
power spectrum P (k) of the same models, to see whether CMB lensing or direct measure-
ments of P (k) can help to reduce the degeneracy. This is done in Figure 3. We see that all
the parameters discussed here have a di↵erent e↵ect on P (k). Playing with tensor modes
leaves the matter power spectrum invariant, since it is related to scalar perturbations only.
Varying �

dcdm

changes P (k) slightly for several reasons:

• the di↵erent background evolution of ⇢
dcdm

leads to an overall vertical shift of the
spectrum;

• the di↵erent values of h needed to get the same ✓s changes the ratio of the Hubble scale
at equality and today, hence shifting the spectrum horizontally;

• on top of these shifting e↵ects, the di↵erent evolution of �
dcdm

is such that dcdm has a
reduced linear growth factor, a↵ecting the actual shape of the matter power spectrum.
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main effect at low l 
possibly degenerate with open universe, tensor modes

decaying DM = decaying grav. pot 
= Late ISW effect

decaying DM

stable DM

including data on from Planck, WMAP on lensing, polarisation + BAO’s data 
(Wigglez, BOSS):  

⌧DM > 160 Gyr (95% c.l.) (100% of DM decays,  
relativistic products)

JCAP 1412 (2014) 12, 028



Decaying Dark Matter (II)

Reconciling Planck results with low redshift astronomical measurements 
Zurab Berezhiani,1, 2 A.D. Dolgov,3, 4 and I.I. Tkachev5, 3 

PRL, to appear

h = 0.6727 ± 0.0066 h = 0.738 ± 0.024 

Planck 2015 low redshift data
HST2
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FIG. 1. Hubble parameter h as a function of DM decay
width � for several values of DDM fraction F .

model we vary the initial fraction of decaying component

F ⌘ !ddm

!sdm + !ddm
. (1)

We assume that decay occurs into invisible massless par-
ticles and does not produce too many photons. We nor-
malize the width of the decaying component to H0, i.e.
�/H0 is another independent variable cosmological pa-
rameter in our model. It is bounded from above by the re-
quirement that unstable component starts to decay only
after last scattering. In the range we consider later on,
�/H0 < 5000, observed CMB spectra are not altered by
decays.

Furthermore, we require that the angular diameter dis-
tance to the last scattering should be the same for all
values of parameters, namely we fix the sound horizon
angle 100 ⇤ ✓s to the Planck value 1.04077. This deter-
mines Hubble parameter h as a function of F and � and
guarantees that derived CMBR spectra in our model are
identical (at high l) to the best fit Plank spectrum for all
values of parameters. Resulting h as a function of �/H0

is shown in Fig. 1 for di↵erent values of F .
Relevant cosmological calculations have been carried

out using the CLASS Boltzmann code [17, 18]. The pa-
rameter space is explored using the Markov Chain Monte-
Carlo technique with the Monte Python package [16]. We
verified that all spectra are identical at l & 40. At smaller
l the spectra somewhat deviate because the cosmological
constant in our model is typically larger as compared to
the standard ⇤CDM (we consider spatially flat Universe
only). However, corresponding changes are smaller than
the cosmic variance, therefore we do not constrain model
parameters using low l Planck data. Instead, we use su-
pernova data to constrain the model parameter range
were cosmological constant values are excessive.

FIG. 2. One and two sigma likelihood contours for our model
parameters. Data included JLA sample of SN Ia and HST
measurements of h, on top of the best fit Planck model pa-
rameters, as explained in the text.

Adding supernova and HST constraints. For fitting
to supernovae observations we use the JLA [19] compi-
lation composed of 740 SN Ia. This is the largest data
set to date containing samples from low redshift z ⇡ 0.02
to a large one, z ⇡ 1.3. The data were obtained from
the joint analysis of SDSS II and SNLS, improving the
analysis by means of a recalibration of light curve fitter
SALT2 and in turn reducing possible systematic errors.
For ”standardization” of SN data the linear model for
the distance modulus µ is employed with four nuisance
parameters in the distance estimates. All necessary data
for the analysis were retrieved from [20]. Resulting best
fit values for all nuisance parameters in our cosmology
do not di↵er notably from the values quoted in Ref. [19],
derived for ⇤CDM.

We further constrain our model using determination
of the Hubble parameter with the HST [4]. Resulting
one and two sigma likelihood contours in the plain of
�/H0 and F are shown in Fig. 2. We see that the base
⇤CDM with �/H0 = F = 0 is outside of 2� contours in
our model. Derived likelihood for the Hubble parameter
corresponds h = 0.716 ± 0.02 at one �. Therefore, with
a fraction of decaying dark matter the data of Planck on
CMBR anisotropies, data on supernova, and HST data
all can be reconciled.

DDM and BAO. We now turn to the data on Baryon
Acoustic Oscillations. The measurement of the charac-
teristic scale of BAO in the correlation function of di↵er-
ent matter distribution tracers provides a powerful tool
to probe the cosmic expansion and a convincing method
for setting cosmological constraints. The BAO peak in
the correlation function at a redshift z appears at the
angular separation �✓ = rd/(1 + z)DA(z), where DA

4

DDM

FIG. 4. ⌦m and �8 derived from cluster counts and from
CMB. Line marked DDM shows trend of these parameters
when F and � are varied in our model. White circle represents
a model with F = 0.1 and �/H0 = 2000 as an example.

the dot representing a model moves to right, closer to the
base ⇤CDM model.

Planck collaboration concluded on cluster counts is-
sue [8] that the situation is not yet satisfactory. It is
unclear if this modest tension arise from low-level system-
atics in the astrophysical studies, or are the first glimpse
of something more important. We would say again that
the hypotheses of decaying dark matter may help to ease
these tensions as well.

CONCLUSIONS

Cosmological parameters deduced from the Planck
measurements of the CMB anisotropies with unprece-
dented accuracy are at some tension with direct astro-
nomical measurements of various parameters at low red-
shifts. We have shown that Planck-inspired ⇤CDM cos-
mology can be reconciled with HST measurements within
the hypotheses of Decaying Dark Matter. Joint fit to
Planck, supernova, and HST data tells that if the dark
matter decayed between recombination and the present
time, then the unstable fraction should be about 5 -
10 per cent at the recombination epoch. Interestingly,
within the same parameter range the DDM model may
alleviate also the emerging tension with the cluster data.
Situation with the BAO discrepancies is less clear at
present and we should wait to see in which direction the
intrigue will develop.
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FIG. 1. Hubble parameter h as a function of DM decay
width � for several values of DDM fraction F .

model we vary the initial fraction of decaying component

F ⌘ !ddm

!sdm + !ddm
. (1)

We assume that decay occurs into invisible massless par-
ticles and does not produce too many photons. We nor-
malize the width of the decaying component to H0, i.e.
�/H0 is another independent variable cosmological pa-
rameter in our model. It is bounded from above by the re-
quirement that unstable component starts to decay only
after last scattering. In the range we consider later on,
�/H0 < 5000, observed CMB spectra are not altered by
decays.

Furthermore, we require that the angular diameter dis-
tance to the last scattering should be the same for all
values of parameters, namely we fix the sound horizon
angle 100 ⇤ ✓s to the Planck value 1.04077. This deter-
mines Hubble parameter h as a function of F and � and
guarantees that derived CMBR spectra in our model are
identical (at high l) to the best fit Plank spectrum for all
values of parameters. Resulting h as a function of �/H0

is shown in Fig. 1 for di↵erent values of F .
Relevant cosmological calculations have been carried

out using the CLASS Boltzmann code [17, 18]. The pa-
rameter space is explored using the Markov Chain Monte-
Carlo technique with the Monte Python package [16]. We
verified that all spectra are identical at l & 40. At smaller
l the spectra somewhat deviate because the cosmological
constant in our model is typically larger as compared to
the standard ⇤CDM (we consider spatially flat Universe
only). However, corresponding changes are smaller than
the cosmic variance, therefore we do not constrain model
parameters using low l Planck data. Instead, we use su-
pernova data to constrain the model parameter range
were cosmological constant values are excessive.

FIG. 2. One and two sigma likelihood contours for our model
parameters. Data included JLA sample of SN Ia and HST
measurements of h, on top of the best fit Planck model pa-
rameters, as explained in the text.

Adding supernova and HST constraints. For fitting
to supernovae observations we use the JLA [19] compi-
lation composed of 740 SN Ia. This is the largest data
set to date containing samples from low redshift z ⇡ 0.02
to a large one, z ⇡ 1.3. The data were obtained from
the joint analysis of SDSS II and SNLS, improving the
analysis by means of a recalibration of light curve fitter
SALT2 and in turn reducing possible systematic errors.
For ”standardization” of SN data the linear model for
the distance modulus µ is employed with four nuisance
parameters in the distance estimates. All necessary data
for the analysis were retrieved from [20]. Resulting best
fit values for all nuisance parameters in our cosmology
do not di↵er notably from the values quoted in Ref. [19],
derived for ⇤CDM.

We further constrain our model using determination
of the Hubble parameter with the HST [4]. Resulting
one and two sigma likelihood contours in the plain of
�/H0 and F are shown in Fig. 2. We see that the base
⇤CDM with �/H0 = F = 0 is outside of 2� contours in
our model. Derived likelihood for the Hubble parameter
corresponds h = 0.716 ± 0.02 at one �. Therefore, with
a fraction of decaying dark matter the data of Planck on
CMBR anisotropies, data on supernova, and HST data
all can be reconciled.

DDM and BAO. We now turn to the data on Baryon
Acoustic Oscillations. The measurement of the charac-
teristic scale of BAO in the correlation function of di↵er-
ent matter distribution tracers provides a powerful tool
to probe the cosmic expansion and a convincing method
for setting cosmological constraints. The BAO peak in
the correlation function at a redshift z appears at the
angular separation �✓ = rd/(1 + z)DA(z), where DA

only a fraction of DM decays!

combining Planck+HST
+SnIa

Adjusts also tensions between CMB and Clusters

keeping CMB peaks position constant



Decaying Dark Matter (III)

Super Heavy Dark Matter in light of BICEP2, Planck and Ultra High 
Energy Cosmic Rays Observations 

R. Aloisio1,2, S. Matarrese3,1 and A.V. Olinto4 

JCAP (submitted) arXiv:1504.01319
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Figure 1. [Left panel] Inflaton mass as function of the ratio r of tensor to scalar modes for different
choices of the inflaton potential as labeled. [Right panel] Ratio of the SHDM mass and inflaton mass
as function of r, obtained as solution of the equation ΩX = ΩDM using different choices of the inflaton
potential as labelled.

we can determine the inflaton mass as a function of the tensor to scalar ratio r:

Mφ = MGUT

[

β

(

MGUT

MP l

)β (√
πr0
β

)β ( r

r0

)1+β/2
]

1
4−β

, (2.8)

In figure 1, left panel, we plot the value of the inflaton mass Mφ as function of r, choosing
different values of the inflaton potential power law index β = 2/3, 1, 4/3, 2 [34, 35, 36, 37, 38].

Using Eq. (2.8) we can rewrite the density of SHDM today in terms of the inflaton
potential power law index β, the ratio of tensor to scalar modes r and the ratio MX/Mφ:

ΩX(t0) ≃ 10−3ΩR
8π

3

(

TRH

T0

)

×

× β
2

4−β

(

MGUT

MP l

)
8

4−β
(√

4πr0
β

)

2β
4−β

(

r

r0

)

2+β
4−β

(

MX

Mφ

)5/2

e−2MX/Mφ . (2.9)

Taking the reheating temperature TRH ≃ 109 GeV and assuming that the SHDM density
today coincides with the observed DM density ΩX = ΩDM = 0.261, using Eq. (2.9), we can
determine the ratio MX/Mφ as function of r for different choices of the inflaton potential.
In the right panel of figure 1 we plot the resulting behaviours. As already discussed in [33],
although only in the case of an inflaton potential with β = 2, the typical values of the SHDM
mass are such that MX/Mφ ! O(5) with a range in mass that spans from 1012 GeV up to
1017 GeV, depending on the value of r and the choice of the inflaton potential power law
index β.

The result presented in the right panel of figure 1 also depends on the assumption about
the reheating temperature. For instance, in the case β = 2 the equation ΩX = ΩDM = 0.261
has no solutions for r < 3×10−3, in this case a larger value1 of TRH , at the level of TRH ≃ 1010

GeV, is needed in order to obtain the correct SHDM density today for r " 3 × 10−3. To

1In inflationary scenarios embedded in gravity mediated SUSY breaking the gravitino over-production
bound restricts the reheating temperature to TRH " ×109 ÷ 1010 GeV that in the case β = 2 corresponds to
a lower bound on the tensor to scalar ratio around 10−3 (see [33] and references therein).
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inflaton mass vs r=tensor/scalar Super Heavy DM mass (assuming grav. production during inflation)

inflation can be generally approximated by [32, 33]

ρX(te) ∼ 10−3M4
X

(

MX

H(te)

)−3/2

e−2MX/H(te) , (2.3)

quite independent of the specific underlying theory.
Using Eq. (2.1), (2.2) (2.3), and taking the Hubble parameter at te equal to the inflaton

mass H(te) ∼ Mφ one gets a simple estimate of the ratio of the SHDM density to the critical
density today ΩX = ρX(t0)/ρc(t0):

ΩX(t0) ≃ 10−3ΩR
8π

3

(

TRH

T0

)(

Mφ

MP l

)2 (MX

Mφ

)5/2

e−2MX/Mφ . (2.4)

being T0 = 2.3 × 10−13 GeV the CMB temperature today and ΩR = 4 × 10−5 the radiation
density today.

The gravitational production of SHDM is intimately connected to the process that, dur-
ing inflation, generated primordial large-scale density fluctuations. As realized in [33], the
observations of the CMB fluctuations provide important insights into SHDM properties hav-
ing the potential to falsify the model. The production of SHDM during inflation gives rise to
isocurvature perturbations that become sources of gravitational potential energy contributing
to the tensor power spectrum of the CMB.

The observation of a sizeable amount of tensor modes in the CMB fluctuation pattern
would imply an important confirmation of the inflationary paradigm in agreement with the
hypothesis that adiabatic perturbations originate within the single field, slow-roll framework
of inflation.

To asses the impact of primordial B-modes on SHDM, we express the inflaton mass Mφ

in terms of the tensor to scalar ratio r. At leading order in the slow roll approximation we
can write the inflaton potential height V⋆ in terms of r and the amplitude As of the scalar
perturbations on super-Hubble scales. Using the combined analysis of Planck and WMAP
data one has [34]:

V⋆ ≃
3π2

2
AsrM

4
P l ≃ (2× 1016GeV)4

r

r0
= M4

GUT

(

r

r0

)

(2.5)

being MGUT = 2 × 1016 GeV the scale of Grand Unification Theory (GUT) and r0 = 0.12
is the experimental upper bound on the tensor to scalar ratio [34]. It is interesting to note
here that in the case of a substantial contribution of B-modes, as in the case of the BICEP2
claim [21], one finds an inflaton potential height intriguingly near the typical GUT scale. Let
us now assume an inflaton potential of the type:

V (φ) =
M4−β

φ

β
φβ (2.6)

where β = 2/3, 1, 4/3, 2. From the latest Planck observations [34] follows that the quadratic
potential is moderately disfavoured while higher values of β are strongly disfavoured. Values
of β = 2/3, 1, 4/3 are motivated by axion monodromy, which combines chaotic inflation and
natural inflation [35, 36, 37, 38].

From Eqs. (2.5) and (2.6), using the definition of the slow-roll parameter ϵ(φ)

ϵ(φ) =
M2

P l

16π

[

V ′(φ)

V (φ)

]2

=
r

16
, (2.7)
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Figure 2. UHECR flux: proton (dotted green), He (dotted magenta), CNO (dotted blue), MgAlSi
(dotted cyan), Fe (dotted black) from astrophysical sources [51] and proton (green solid), photon (blue
solid) and neutrino (red solid) from the decay of SHDM with a Moore density profile. The total flux
is represented by the black thick solid line. Experimental data are the latest observations of Auger
[28] and TA [31]. All plots are obtained assuming r = 0.05, taking the four different choices of the
inflaton potential: β = 2 upper left panel, β = 4/3 upper right panel, β = 1 lower left panel and
β = 2/3 lower right panel. The corresponding values of the SHDM parameters (MX , τX) are labelled
in the different panels.

The contribution of SHDM decay to the UHECR fluxes starts to be relevant at the high-
est energies (E > 5×1019 eV). Using the model proposed in [51] for UHECR by astrophysical
sources (see also [52, 53] for different models of UHECR composition), in figure 2 we have
plotted the total UHECR flux, highlighting the contribution of the different components:
proton (dotted green), He (dotted magenta), CNO (dotted blue), MgAlSi (dotted cyan), Fe
(dotted black) from astrophysical sources [51] and proton (green solid), photon (blue solid)
and neutrino (red solid) from the decay of SHDM. The latter fluxes where normalized in-
tegrating over the whole sky (0 ! θ < π), with a Moore density profile for SHDM. The
four panels of figure 2 correspond to the four different assumptions on the inflaton potential
discussed in the previous section β = 2/3, 1, 4/3, 2 (as labelled in the figure) and fixing a
reference value of the tensor to scalar ratio r = 0.05, that corresponds to the peak in the
tensor to scalar ratio likelihood curve of the combined analysis of Planck, BICEP2 and Keck
Array [23]. As labelled in the figure, this choice of the inflation parameters corresponds to
a SHDM mass: MX = 4.5 × 1013 GeV in the case of β = 2, MX = 4.3 × 1015 GeV with
β = 4/3, MX = 1.7 × 1016 GeV with β = 1 and MX = 4.7 × 1016 GeV with β = 2/3. The
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Figure 5. Shadowed red areas represent the regions in the plane (r, τX) (or (MX , τX) as labelled in
the upper abscissa of each panel) accessible to the JEM-EUSO experiment, each panel corresponds
to a different choice of the power law index of the inflaton potential (as labelled): upper left panel
β = 2, upper right panel β = 4/3, lower left panel β = 1 and lower right panel β = 2/3.

UHECR fluxes from SHDM a factor of 30 lower than the value determined by the Auger
limits on γ rays at 1019 eV. The latter being the minimum allowed value of τX used in figures
2, 3 and 4. In figure 5 we have considered the tensor to scalar ratio in the range (10−3, 10−1),
as follows from the latest combined analysis of BICEP2, Planck and Keck Array [23]. Only
in the case β = 2 we restricted our computations to the interval 3×10−3 < r < 10−1 because
of our assumptions on the reheating temperature as discussed in the previous section (see
right panel of figure 1). The four panels of figure 5 refer to the four different choices of
the inflaton potential power law index β = 2/3, 1, 4/3, 2 (as labelled in the figure). In each
panel the lower abscissa represents the tensor to scale ratio r while the upper one shows the
corresponding value of the SHDM mass MX that assures ΩX = ΩDM today.

4 Conclusions

The BICEP program represents great progress in the search for primordial B-mode polariza-
tion. This encouraging trend revived the notion that the signal may be higher than previously
expected. However, Plack showed that subtracting foreground contamination by dust is also
more challenging than past estimates. The joint Planck, BICEP2, and Keck Array analysis
[23] set an upper limit on r while mildly pointing towards a non-zero possibility. Given the
large interest in the community and the ability of next generation experiments to surpass
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to inflationary energy scales of HI ⇠ 1014 GeV [5, 6].
These scale would require a value for f

a

which lies several
orders of magnitude above the Planck scale and conse-
quently nullifies the axion scenario in which the PQ is
broken during inflation. We conclude that, if future CMB
polarisation experiments confirm the BICEP2 findings,
the axion scenario in which the PQ symmetry is broken
during inflation will be ruled out, at least in its simplest
form. This conclusion could be circumvented in a more
complicated scenario (see e.g. Ref. [25] for a proposal in
this direction) but we shall not consider this possibility
here.

There exists however another possible scenario in
which the PQ symmetry is broken after inflation, i.e

f
a

<

✓
HI

2⇡

◆
, (12)

In this second axion cold dark matter scheme, there are
no axion isocurvature perturbations since there are not
axion quantum fluctuations. On the other hand, there
will exist a contribution to the total axion energy den-
sity from axionic string decays. We briefly summarise
these two contributions (misalignment and axionic string
decays) to ⌦

a

h2. The misalignment mechanism will pro-
duce an initial axion number density which reads

na(T1

) ' 1

2
m
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(T
1

)f2
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✓2i (13)

where T
1

is defined as the temperature for which the con-
dition m

a

(T
1

) = 3H(T
1

) is satisfied. The mass-energy
density of axions today related to misalignment produc-
tion is obtained via the product of the ratio of the ini-
tial axion number density to entropy density times the
present entropy density, times the axion mass m

a

, and
reads [26]
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where f̂a = 9.91⇥1016 GeV and f(✓i) is a function related
to anharmonic e↵ects, linked to the fact that Eq. (2) has
been obtained assuming that the potential, Eq. (1), is
harmonic. The value of ✓2i is an average of a uniform
distribution of all possible initial values:

h✓2i f(✓i)i =
1

2⇡

Z ⇡

�⇡

✓2i f(✓i)d✓i . (15)

If we now consider the recent BICEP2 results, the value
of f

a

, which, in this second scenario, should be always
smaller than the inflationary energy scale, will always be
smaller than f̂a and therefore, the misalignment axion
cold dark matter energy density is

⌦
a,mis

h2 = 2.07

✓
f
a

1012 GeV

◆
7/6

. (16)

As previously stated, there will also be a contribution
from axionic string decays, ⌦

a,dec

h2. The total (axion)
cold dark matter density ⌦

a

h2 is the sum of the misalign-
ment and string decay contributions [12]:

⌦
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h2 = 2.07 (1 + ↵
dec

)

✓
f
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1012 GeV
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7/6

, (17)

where ↵
dec

is the ratio ↵
dec

= ⌦
a,dec/⌦a,mis

between the
two contributions.
Following Ref. [26], we consider ↵

dec

= 0.164 so that[40]
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1012GeV
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In the following we will quote our results on ma for the
case ↵

dec

= 0.164. However, the CMB is actually only

sensitive to ⌦
a

h2 / (1 + ↵
dec

)m�7/6
a , therefore limits on

ma for an arbitrary value of ↵
dec

can be obtained from
the ones reported in the following section by means of
the rescaling:

ma �! m0
a

= m
a
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dec
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(1 + 0.164)

�
6/7

. (19)

III. METHOD

The basic ADM scenario analysed here is described by
the following set of parameters:

{!
b

, ✓s, ⌧, ns, log[10
10As], r, ma

} , (20)

where !
b

⌘ ⌦
b

h2 is the physical baryon density, ✓s the
ratio of the sound horizon to the angular diameter dis-
tance at decoupling, ⌧ is the reionization optical depth,
As and ns are, respectively, the amplitude and spectral
index of the primordial spectrum of scalar perturbations,
r is the ratio between the amplitude of the spectra of
tensor and scalar perturbations, and finally m

a

is the
axion mass. The latter sets the density of cold dark mat-
ter ⌦

c

h2 ⌘ ⌦
a

h2 through Eq. (17). All the quantities
characterising the primordial scalar and tensor spectra
(amplitudes, spectral indices, possibly running) are eval-
uated at the pivot wave number k

0

= 0.05Mpc�1. In
the baseline model we assume flatness, purely adiabatic
initial conditions, a total neutrino mass

P
m⌫ = 0.06 eV

and a cosmological constant-like dark energy (w = �1).
We also assume, unless otherwise noted, that the infla-
tion consistency condition nT = �r/8 between the tensor
amplitude and spectral index holds.

Extensions to the baseline model described above are
also explored. We start by considering the e↵ective num-
ber of relativistic degrees of freedom and the sum of
neutrino masses, first separately and then jointly, as ad-
ditional parameters. A model with �N

e↵

sterile mas-
sive neutrino species, characterised by a sterile neutrino
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ratio of the sound horizon to the angular diameter dis-
tance at decoupling, ⌧ is the reionization optical depth,
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Extensions to the baseline model described above are
also explored. We start by considering the e↵ective num-
ber of relativistic degrees of freedom and the sum of
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sive neutrino species, characterised by a sterile neutrino
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Parameter ADM+r ADM+r ADM+r ADM+r ADM+r ADM+r ADM+r ADM+r
+Ne↵ +

P
m⌫ +

P
m⌫+Ne↵ + me↵

s +Ne↵ +w + nt + dns/d ln k
⌦bh

2 0.02204± 0.00028 0.02261± 0.00043 0.02189± 0.00033 0.02245± 0.00047 0.02246± 0.00039 0.02208± 0.00028 0.02211± 0.00029 0.02229± 0.00031
⌦ah

2 0.1194± 0.0027 0.1280± 0.0054 0.1203± 0.0029 0.1277± 0.0054 0.1275± 0.0055 0.1192± 0.0026 0.1206± 0.0030 0.1198± 0.0027
✓ 1.04127± 0.00064 1.04053± 0.00072 1.04097± 0.00070 1.04039± 0.00073 1.04040± 0.00074 1.04132± 0.00063 1.04117± 0.00063 1.04133± 0.00064
⌧ 0.089± 0.013 0.097± 0.015 0.089± 0.013 0.096± 0.015 0.096± 0.014 0.089± 0.013 0.089± 0.013 0.100± 0.016
ns 0.9614± 0.0075 0.991± 0.018 0.9576± 0.0088 0.985± 0.019 0.982± 0.018 0.9617± 0.0073 0.9615± 0.0074 0.9572± 0.0080

log[1010As] 3.086± 0.025 3.122± 0.033 3.086± 0.025 3.119± 0.033 3.119± 0.032 3.087± 0.024 3.149± 0.026 3.114± 0.031
H0[km/s/Mpc] 67.4± 1.2 73.2± 3.5 64.5± 3.3 70.4± 4.7 70.2± 3.4 84± 10 67.0± 1.2 67.5± 1.2

r < 0.12 < 0.19 < 0.13 < 0.19 < 0.18 < 0.13 < 0.93 < 0.23
ma(µeV ) 81.5± 1.6 76.8± 2.8 81.0± 1.6 77.0± 2.7 77.1± 2.9 81.6± 1.5 80.8± 1.7 81.3± 1.6

Ne↵ (3.046) 3.79± 0.41 (3.046) 3.71± 0.41 3.72± 0.37 (3.046) (3.046) (3.046)P
m⌫(eV ) (0.06) (0.06) < 0.97 < 0.83 (0.06) (0.06) (0.06) (0.06)
w (�1) (�1) (�1) (�1) (�1) �1.50± 0.31 (�1) (�1)

me↵
s (eV ) (0) (0) (0) (0) < 0.87 < (0) (0) (0)
nt (0) (0) (0) (0) (0) (0) 2.19± 0.87 (0)

dns/d ln k (0) (0) (0) (0) (0) (0) (0) �0.022± 0.011

TABLE I: Constraints at 68% confidence level on cosmological parameters from our analysis for Planck+WP, except for the
upper bounds on the neutrino mass and on the tensor-to-scalar ratio, which refer to 95% CL upper limits.

Parameter ADM+r ADM+r ADM+r ADM+r ADM+r ADM+r ADM+r ADM+r
+Ne↵ +

P
m⌫ +

P
m⌫+Ne↵ + me↵

s +Ne↵ +w + nt + dns/d ln k
⌦bh

2 0.02202± 0.00028 0.02285± 0.00043 0.02193± 0.00032 0.02276± 0.00046 0.02272± 0.0043 0.02207± 0.00028 0.02202± 0.00029 0.02234± 0.00031
⌦ah

2 0.1186± 0.0026 0.1313± 0.0057 0.1191± 0.0028 0.1312± 0.0059 0.1257± 0.0015 0.1183± 0.0025 0.1192± 0.0026 0.1193± 0.0027
✓ 1.04138± 0.00063 1.04032± 0.00071 1.04118± 0.00067 1.04023± 0.00073 1.04020± 0.00075 1.04143± 0.00062 1.04129± 0.00065 1.04141± 0.00064
⌧ 0.089± 0.013 0.101± 0.015 0.090± 0.013 0.101± 0.015 0.104± 0.016 0.090± 0.013 0.089± 0.013 0.104± 0.016
ns 0.9649± 0.0074 1.0057± 0.0173 0.9628± 0.0083 1.0032± 0.0184 1.004± 0.0175 0.9654± 0.0073 0.9611± 0.0074 0.1004± 0.0150

log[1010As] 3.084± 0.025 3.136± 0.034 3.085± 0.025 3.135± 0.034 3.134± 0.033 3.085± 0.025 3.149± 0.025 3.123± 0.031
H0[km/s/Mpc] 67.7± 1.2 76.0± 3.6 65.9± 2.8 74.5± 4.3 73.6± 3.9 87.1± 9.1 67.5± 1.2 67.7± 1.2

r 0.166± 0.036 0.180± 0.037 0.168± 0.035 0.183± 0.038 0.183± 0.038 0.168± 0.035 0.172± 0.047 0.194± 0.040
ma(µeV ) 82.0± 1.5 75.3± 2.8 81.6± 1.6 75.3± 2.8 75.3± 2.9 82.1± 1.5 81.6± 1.5 81.5± 1.6

Ne↵ (3.046) 4.13± 0.43 (3.046) 4.08.± 0.44 4.08± 0.42 (3.046) (3.046) (3.046)P
m⌫(eV ) (0.06) (0.06) < 0.78 < 0.58 (0.06) (0.06) (0.06) (0.06)
w (�1) (�1) (�1) (�1) (�1) �1.57± 0.26 (�1) (�1)

me↵
s (eV ) (0) (0) (0) (0) < 0.63 < (0) (0) (0)
nt (0) (0) (0) (0) (0) (0) 1.66± 0.51 (0)

dns/d ln k (0) (0) (0) (0) (0) (0) (0) �0.0278± 0.0099

TABLE II: Constraints at 68% confidence level on cosmological parameters from our analysis for Planck+WP+BICEP2, except
for the bounds on the neutrino mass, which refer to 95% CL upper limits.

existing correlation between N
e↵

and ⌦
a

h2 (that is, the
cold dark matter energy density) when considering only
CMB data, since it is possible to increase both to leave
the redshift of matter-radiation equality unchanged. This
e↵ect can be clearly noticed from the results depicted in
Tabs. I and II, where the value of ⌦

a

h2 is about ⇠ 2�
larger than the value found in the minimal scenario with
no extra dark radiation species. The error on the ⌦

a

h2

cosmological parameter is also larger. Given that ⌦
a

h2

is inversely proportional to m
a

, this results in an an-
ticorrelation between N

e↵

and m
a

. The large degener-
acy between N

e↵

and ⌦
c

h2 ⌘ ⌦
a

h2 also drives the large
value of H

0

found in this case. The degeneracy is partly
broken by the inclusion of BAO information: when the
BAO data sets are considered, both H

0

and N
e↵

are
closer to their ADM+r values, being H

0

= 71.7 ± 1.9
and N

e↵

= 3.69± 0.30 respectively.

We also consider a model in which the active neutrino
mass is a free parameter. In this case, m

a

= 81.6±1.6µeV
after combining Planck data with WP and BICEP2 mea-
surements, while m

a

= 82.4 ± 1.1µeV when BAO data
sets are also considered. However, in this ⇤CDM plus

massive neutrino scenario, the neutrino mass bounds are
una↵ected when considering tensors and BICEP2 data.
Indeed, the 95% CL bound on the total neutrino mass we
get after considering all the data explored in this paper,P

m⌫ < 0.25 eV, agrees perfectly with the one found
when neither tensors nor BICEP2 data are included in
the analyses [15]. We have also explored here the case
in which the three massive active neutrinos coexist with
�N

e↵

massless species. The numerical results without
BAO data are presented in the fifth column of Tabs. I
and II. The values obtained for the axion mass and for
the number of relativistic degrees of freedom in this sce-
nario are very close to the ones reported above for the
N

e↵

cosmology, finding, from CMB data, evidence for
extra dark radiation species at more than 2�. When
considering the full data set exploited here, including
BAO measurements, the bound on the neutrino mass
becomes less stringent than in the three massive neu-
trino scenario due to the strong

P
m⌫-Ne↵

degeneracy:
we find a 95% CL bound of

P
m⌫ < 0.47 eV from the

combination of Planck data with WP, BICEP2 and BAO
measurements. Notice that, as in the case of the ADM
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FIG. 5: The left panel depicts the 68% and 95% CL allowed regions in the (ma, ⌦ch
2) plane for di↵erent possible data

combinations, when a PCHIP PPS is assumed. The right panel shows the equivalent but in the (ma, �8) plane.

FIG. 6: The left panel depicts the 68% and 95% CL allowed regions in the (ma, ⌦ch
2) plane for di↵erent possible data

combinations, when a power-law PPS is assumed. The right panel shows the equivalent but in the (ma, �8) plane.

clusters with the bias fixed). The reason for that is
due to the strong degeneracy between ma and

P
m⌫ ,

see Fig. 7, where one can notice that that these two
parameters are negatively correlated: an increase in the
axion mass will increase the amount of the hot dark
matter component. In order to compensate the changes
in both the CMB temperature anisotropies (via the
early ISW e↵ect) and in the power spectrum (via the

suppression at small scales of galaxy clustering), the
contribution to the hot dark matter from the neutrinos
should be reduced. We have shown in Fig. 7 three
possible data combinations. Notice that for the case in
which PSZ cluster measurements (with the bias fixed)
are included the strong degeneracy between ma andP

m⌫ is partially broken, due to the smaller value of �8

preferred by the former data set. However, these results
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due to the strong degeneracy between ma and

P
m⌫ ,

see Fig. 7, where one can notice that that these two
parameters are negatively correlated: an increase in the
axion mass will increase the amount of the hot dark
matter component. In order to compensate the changes
in both the CMB temperature anisotropies (via the
early ISW e↵ect) and in the power spectrum (via the

suppression at small scales of galaxy clustering), the
contribution to the hot dark matter from the neutrinos
should be reduced. We have shown in Fig. 7 three
possible data combinations. Notice that for the case in
which PSZ cluster measurements (with the bias fixed)
are included the strong degeneracy between ma andP

m⌫ is partially broken, due to the smaller value of �8

preferred by the former data set. However, these results

power law PSnon-power law PS

Mass constraints are quite insensitive 
 to the shape of the primordial PS 
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Figure I. The B-L asymmetry produced with the MN-RGE data set of ref. [1] plotted as a function
of td. The horizontal grey band represents the experimental limit, the orange curve depicts the
asymmetry generated via Nj ! H`↵ decays alone, while the purple band includes also the Nj ! �ec↵
decays. The width of the orange and purple bands correspond to a 3% variations in the Nj masses.

intersect the experimentally allowed grey region. Only in the shaded region, corresponding

to values td > 1, which are however theoretically questionable, the upper border of the

purple band touches the grey band. The results for the contributions of the Nj ! `↵H

channel alone are represented by the thick orange line. This corresponds to the situation

in which the � scalar is heavier than N
1,2 (N

3

contributions to leptogenesis remain quite

marginal), that is M
�

>⇠ 2.0 ⇥ 1011GeV, so that N
1,2 decays into ec↵� are kinematically

forbidden. In this case the predicted central value touches the experimental band well

within the region td < 1, while the orange band nicely overlaps with the experimental

band in the full interval 0.3 <⇠ td <⇠ 1. It is also worth noticing that the maximum value

of the Y
�B�L asymmetry obtained in this model coincides rather precisely with the value

obtained from observations. This is a bit intriguing, given that a priori this value could

have been anything.

In summary, we find that the DR RGE fit to the minimal non-supersymmetric SO(10)

model is fully consistent with the requirement that the observed value of the BAU is

produced via leptogenesis, if the two conditions (i) M
�

>⇠ MN2 ' 2.0⇥ 1011GeV and (ii)

0.3 <⇠
h
h⌃†

d⌃di
hH†

dHdi

i
1/2

<⇠ 1 are satisfied.

We present for comparison in Fig. II the results for the MN-noRGE data set. In

this case the spectrum is su�ciently hierarchical (see eq. (5.8)) that leptogenesis is largely

dominated by N
1

dynamics. The contribution of the Nj ! `↵H channels alone, represented

by the thick orange line, remains well below the Y
�B�L experimental band even in the td > 1

region. In this case the e↵ect of the 3% variations in the N ’s mass values is much milder

than in the previous case, and this can be traced to the larger mass hierarchy and to N
1

– 15 –

non-supersymmetric SO(10) GUT 

once the model parameters are fixed in terms of measured low energy observables, the requirement of successful 
leptogenesis can fix the only one remaining high energy parameter. 

which they denote as MN-RGE, the observable are evolved from the high energy scale down

to MZ , integrating out the heavy neutrinos Nj one by one at the appropriate scale. The

outcome of the running is then compared with the experimental data. This is the most

sophisticated approach, and in particular is expected to yield a more reliable fit to the heavy

neutrino masses. This, besides having sizeable e↵ects on the neutrino parameters [32], is a

quite crucial ingredient in leptogenesis. The N spectrum obtained with this procedure is:

{MN1 , MN2 , MN3} = {1.2⇥ 1011, 2.0⇥ 1011, 3.6⇥ 1012} GeV . (5.7)

As regards the numerical values of the set {Ĥ, F, r, rR, s}, they can be found in appendix A

of [1] labeled as MN-RGE and are not recopied here. The main approximation in the DR

analysis is that of neglecting e↵ects of the intermediate scale states on gauge coupling

unification and on the running of the Yukawa matrices, and it is quite hard to estimate the

related uncertainty on the fitted parameters.‡

Since, as said above, the details of the N ’s mass spectrum is one of the most influential

ingredient for the outcome of leptogenesis, we will present our results allowing for a 3%

fluctuation around the central values in eq. (5.7). While we make no claim that this

fluctuation is accounting for the aforementioned theoretical uncertainty, it can still be

illustrative of the sensitivity of the results on changes in the details of the N ’s spectrum.

The second approach followed by DR, that they denote as MN-noRGE, is based on a

direct fit to the low energy neutrino parameters, and to the GUT scale values of the charged

fermion observables, evolved to the high scale ignoring the e↵ects of non-degenerate RH

neutrinos. As it is clearly explained in the DR paper, this second approach cannot be

considered fully consistent, however it provides a second reference point for our study

which allows for an important comparison for the outcome of leptogenesis. The N ’s mass

spectrum for the MN-noRGE case is:

{MN1 , MN2 , MN3} = {1.5⇥ 1010, 7.2⇥ 1011, 5.5⇥ 1012} GeV , (5.8)

while the full set {Ĥ, F, r, rR, s} is again given in appendix A of [1].

Our results for the MN-RGE case are depicted in Fig. I. We compare the value of

Y
�B�L obtained by integrating the BE eqs. (3.22)-(3.26), and plotted as a function of the

vev ratio td =
h
h⌃†

d⌃di
hH†

dHdi

i
1/2

with the experimental value which is derived from eq. (5.6)

via eq. (3.21), and that is represented by the horizontal grey band. The thick purple

line depicts the results for the combined contributions of the Nj ! `↵H and Nj ! ec↵�

channels and the purple band corresponds to a 3% variation in the values of the Nj masses

in eq. (5.7). We see that Y
�B�L keeps growing with increasing values of td, that is with

decreasing values of the f -couplings. The reason is that there is an overall contribution

of the wrong sign from the Nj ! ec↵� channels which is sizeable for small td , while with

decreasing values of the f couplings it becomes less important. All in all, we see that in

the theoretically favoured region td < 1 ( i.e. h⌃†
d⌃di < hH†

dHdi) the purple band fails to

‡
A preliminary tentative in this direction, although in a slightly di↵erent setup, has been done in [33],

where it has been shown that threshold e↵ects at the intermediate scale can produce e↵ects on the fermion

observables at the electroweak scale as large as 30%.

– 14 –
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Figure 1: The (red and orange) lines show the points
where the SM shallow minimum configuration is re-
alized, their thickness being the theoretical error in
the NNLO RGE procedure. Each line corresponds
to a value of ↵3(mz), taken to vary in its 2� range.
The (green) shaded horizontal region corresponds
to the 1� range mt(mt) = 163.3 ± 2.7 GeV [21].
The (pink) shaded vertical regions are the 1 and 2 �
ranges of mH [20]. The (blue) shaded bands are the
1 and 2 � ranges of BICEP2, r = 0.16 +0.06

�0.05 [14]; for
reference, also the value r = 0.01 is displayed.

amount of gravity waves that can be produced:

�2
R =

2

3⇡2

1

r

V (�0)

M4
. (4)

If inflation actually started from a SM shallow
false minimum, then each point in the mt(mt)�
mH plane has to be associated with a specific
value of r. This is done in fig.1 , where the
(blue) shaded bands represents the 1 and 2 �
ranges of BICEP2 measurement r = 0.16 +0.06

�0.05

[14]; for reference, also the value r = 0.01 is dis-
played. Taking into account the theoretical error
in the determination of the position of the false
minimum (the thickness of the red and orange
lines), the position of the (blue) r bands is also
uncertain by about ±0.1 GeV along the vertical
axis.

One can see that, given the results from BI-
CEP2, the shallow false minimum is a viable
framework for models of Higgs inflation pro-
vided that: i) the Higgs mass is close to its
upper 1-2 � range, more precisely between 126
and 126.7 GeV, or ii) both ↵3(mZ) and the top
mass mt(mt) are quite small, say respectively
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Figure 2: The (red and orange) lines corresponding
to the quoted value of ↵3(mz) show the points where
the SM false vacuum configuration is realized, their
thickness being the theoretical error in the NNLO
RGE procedure. The (green) shaded horizontal re-
gion corresponds to the 1 and 1 � ranges of the com-
bined measurement by the ATLAS, CDF, CMS, D0
collaborations, mt = 173.34 ± 0.76 GeV [22]. The
(pink) shaded vertical regions are the 1 and 2 �
ranges of mH [20]. The (blue) shaded bands are
the 1 and 2 � ranges of BICEP2, r = 0.16 +0.06

�0.05 [14];
for reference, also the value r = 0.01 is displayed.

close to the lower 1-2 � range (between 0.1162
and 0.1179) and between 160.5 and 161.5 GeV.
Clearly, the smaller is r, the more the three pre-
vious parameters can go in the direction of their
central values. It will thus be important to fur-
ther improve the r measurement in the future.

The same conclusions can be drawn by mak-
ing the analysis using the top pole mass, see fig.
2. As the theoretical error has to include also
the uncertainty due to the matching of the top
yukawa coupling, the thickness of the lines is big-
ger than with the previous method, and turns
out to be about ±0.5 GeV in the vertical axis
(see e.g. [19]). For the sake of clearness, we thus
display only three lines, corresponding the the
central and 2� values of ↵3(mZ). Taking into ac-
count the theoretical error in the determination
of the position of the false minimum (the thick-
ness of the red and orange lines), the position of
the (blue) bands representing the BICEP2 result
is also uncertain by a shift along the vertical axis
of about ±0.5 GeV. The (green) shaded horizon-

The Gravitational Wave Background and Higgs False Vacuum Inflation 
Isabella Masina  

regions consistent with of the hypothesis  

that inflation occurred in a SM shallow 

false vacuum at about 2 × 1016 GeV 
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Figure 5. Matter CFs in redshift space at z = 0 (first column) and ratios between
CFs at di↵erent redshift (second column). The figures in the first, second, third row
are for

P
m⌫ = 0, 0.15, and 0.3 eV, respectively. The data are from our N-body

simulations; the red dashed, and green solid lines are, respectively, for ⇠̄Kaiser
s and for

⇠̄(1)s , defined in eq. (21).

space counterpart ⇠(1).

The real space CF ⇠(1) and its redshift space counterpart ⇠̄(1)s are an optimal tool to

study the dependence of the CF on the neutrino masses. This can be seen from Figure

6, where we show ratios between the CF of a cosmology with massive neutrinos divided

by a cosmology with massless neutrinos (the two cosmologies only di↵er from each other

by the neutrino mass, and by the cold dark matter abundance, in such a way that ⌦
m

is

the same for them). Also in this case, the ratios obtained from ⇠(1) (left column plots)

and ⇠̄(1)s (right column plots) are in excellent agreement with the ratios obtained from

the N-body data.

Actual measurements of the BAO peak involve biased objects. In Figure 7 we study

the agreement between the halo CF ⇠(1)hh (24) and the halo CF obtained from our N-body

matter correlation function

linear theory

nonlinear

nonlinear effects degrade the BAO peak 
usually seen as a “noise” to remove
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simplest approximation of the nonlinear CF, eq. (4), and the Zel’dovich approximation;

in Appendix C we derive the PS in redshift space including the e↵ect of bulk flows.

Finally, in Appendix D, we discuss the dependence of our N-body simulations on mass

and force resolution.

1. Nonlinear evolution of the BAO peak

In full generality, the nonlinear matter PS at redshift z has the following structure

[19, 20]:

P (k, z) = G2(k, z)P lin(k, zin) + PMC(k, z) , (1)

where P lin(k, z) = D2(z)P lin(k, zin) is the linear PS, and zin is some initial redshift

chosen well after decoupling and such that all the relevant scales are still in the linear

regime (it can coincide with the redshift at which we start the N-body simulations,

which in this paper is zin = 99, see Section 2). The nonlinear e↵ects are completely

encoded in the two functions appearing at the RHS: the propagator G(k, z), representing

the cross-correlator between the nonlinear density field at redshift z and the initial one

at zin [19, 21], and the “mode-coupling” term PMC(k, z).

We stress that the above expression is completely general, the only assumption

behind it being that the nonlinear density field, �(k, z), is some “functional” of the

initial density and velocity fields, see Appendix A for details. Then, one can compute

these quantities in any consistent approximation scheme, such as Eulerian or Lagrangian

perturbation theory (PT).

The BAO wiggles of P lin(k, z) are in general smoothed out in PMC(k, z) as its

computation involves momentum integrals in which two or more linear PS evaluated

at di↵erent scales are convolved. Therefore, as we will demonstrate below, the BAO

information is basically confined to the G2(k; z)P lin(k) term which, after Fourier

transform, accounts for approximately all the BAO peak in the CF.

The propagator has been studied thoroughly in the recent literature [21, 22, 23].

In Zel’dovich approximation it is given by (see Appendix B)

GZeld(k, z) = e�
k2�2

v(z)
2 , (2)

where �2

v(z) is the 1-dimensional velocity dispersion evaluated in linear theory, namely,

�2

v(z) =
1

3

Z
d3q

(2⇡)3
P lin(q, z)

q2
. (3)

In the following, we will mostly consider the CF obtained in Zel’dovich approximation

by neglecting the mode-coupling part (see eq. (B.7)). Namely, we will study the Fourier

transform of

P (1)(k, z) = e�k2�2
v(z)P lin(k, z) , (4)

and we will show that it gives a very good approximation to the nonlinear matter CF

in the BAO peak region, and in particular to ratios of CF’s for di↵erent redshifts, or
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main nonlinear effect: large scale flows 
simple analytic description!
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Figure 4. Matter CFs in real space. Analogous of Figures 2 (z = 0) and 3 (ratios
between CFs at di↵erent z), but now for massive neutrinos. The figures in the first
row are for

P
m⌫ = 0.15 eV, while those in the second row are for m⌫ = 0.3 eV.

not improve significantly the ratios between CF’s.

Indeed, while the ⇠(1) CF does not perfectly reproduce the N-body CF, it tracks

extremely well how the CF changes with redshift. We see this from Figure 3, where we

show ratios between matter CF (of the same cosmology) computed at di↵erent redshift.

The ratios obtained from ⇠(1) are in excellent agreement with the ratios obtained from

our N-body data, as well as with the FrankenEmu. We also see that, as we just

mentioned, the inclusion of the P
22

term does not provide a significant improvement

on these ratios.

Identical conclusions are obtained in the comparison between ⇠(1) and our N-body

data in the case of massive neutrinos. Notice that FrankenEmu does not provide data

for these cosmologies. We show this in Figure 4, where we present the CF at z = 0, and

the ratio between CFs at di↵erent redshift, in the case of
P

m⌫ = 0.15 eV (first row)

and 0.3 eV (second row). In these cases, we computed the velocity dispersion �2

v using

the linear PS for total matter in eq. (3), that is for �m = ⌦
c

�
c

+ ⌦
b

�
b

+ ⌦⌫�⌫ , as it is

the source of the Poisson equation.

It is natural to ask whether an equivalent agreement takes place also in redshift

space. This is confirmed by Figure 5, where we show the comparison between the

angular-averaged redshift space CF (21) and the one obtained from the N-body data.

The linear correlations functions in real and redshift space are related to each other by

the Kaiser relation (21). Not surprisingly, this also overpredicts the BAO peak. On the

contrary, the CF ⇠̄(1)s shows an equal agreement with the N-body simulations as its real
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Figure 6. Ratio between the z = 0 matter redshift space CFs of two cosmologies
with di↵erent neutrinos masses. The first, second, and third row show the CF forP

m⌫ = 0.15, 0.3, 0.6 eV, respectively, divided by the corresponding CF for massless
neutrinos. The left column shows the ratios in real space. The data are ratios between
our N-body simulations; the red dashed, green solid, and blue solid lines are ratios
between, respectively, ⇠lin, ⇠(1), and ⇠(2), defined in eq. (17). The right column shows
the ratios in redshift space. The red dashed, and green solid lines are, respectively,
⇠̄Kaiser
s and ⇠̄(1)s , defined in eq. (21).

simulations, as described in the previous section. The comparison is less probing than in

the matter case, due to the increased sample variance of the latter (there are fewer halos

than dark matter particles in the simulations). This is particularly true at increasing

redshifts, and for this reason we only show halo data at z = 0, 0.5. The two solid

lines shown in the figure are obtained with either a constant density bias, b (k) = b
10

(green line) or a bias of the type b (k) = b
10

+ b
01

k2 (blue line), times the exponential

suppression due to the bulk flows, see eq. (24). The bias coe�cients are obtained by

redshift dependence neutrino mass dependence
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Measuring the growth of galaxy clusters Antonaldo Diaferio

Figure 1: Current measures of f (z)σ8 at different redshifts. The thick solid (dashed) curve shows the
General Relativity prediction in a ΛCDM model with WMAP9 (Planck) parameters, while the dotted, dot-
dashed, and dot-dot-dashed curves show the DGP, coupled dark energy, and f (R)models, respectively. From
[3].

1. The mass accretion rate of galaxy clusters

In the next decade or two, ongoing and upcoming wide-field imaging and spectroscopic red-
shift surveys (e.g., DES, eBOSS, DESI, PFS, LSST, Euclid, WFIRST) aim to measure the growth
rate of cosmic structure on linear and mildly non-linear scales, up to wave numbers k∼ 0.2hMpc−1,
in the redshift range 0 < z < 2. A quantity that has been commonly measured is f (z)σ8, where
f (z) = d lnD/d lna, a = 1/(1+ z) is the scale factor, D(a) the linear growth factor, and σ8 the
normalization of the power spectrum of the density perturbations. The claimed accuracy of the
growth rate measured, for example, with Euclid is 1% to 2.5% in the redshift range 0< z< 2 [1];
however, current measures of f (z)σ8 based on redshift space distortions up to redshift z= 0.8 are
affected by uncertainties between 10% and 50% [2] (Figure 1). Combining galaxy-galaxy lens-
ing with redshift-space distortions is a promising improvement that, however, is not yet accurate
enough to discriminate among different cosmological models and modified gravity theories [4].

On very non-linear scales, above the wave numbers k ∼ 0.2h Mpc−1, the measurement of the
growth rate of individual dark matter halos has only been attempted on the scales of galaxies: by
combining the number of observed pairs of close or disturbed galaxies with the merger probability
and time scale derived from N-body simulations, we can infer the galaxy-galaxy merger rate [5, 6,
7]. However, current results are inconclusive [5]: in fact, the merger rate of dark matter haloes and
the merger rate of galaxies are related by dissipative processes that are difficult to model [8] and
these two rates do not necessarily coincide [9, 10, 11].

Dissipative processes are less relevant during the mass accretion of galaxy clusters, whose
rate could be simply estimated based on the measurement of the amount of mass in the cluster
outskirts. However, this advantage over the galaxy-galaxy merger rate has never been capitalized
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Figure 2: Comparison between our estimate of the mass accretion rate of a sample of M200 = 1014h−1M⊙

clusters and N-body simulations. The shaded area shows the 1σ range around the mean mass accretion rate
estimated with equation (2.1) (thick solid line). The thin solid line is the mean mass accretion rate derived
from the merger trees. Adapted from [18].

with the caustic technique. The caustic technique [20, 21, 22] uses the celestial coordinates and
redshifts of galaxies to estimate the gravitational potential and mass profiles of a cluster from the
central region to radii much larger than the virial radius. The caustic technique (i) does not rely on
the dynamical equilibrium of the cluster; (ii) measures the three-dimensional distribution of mass,
based on the assumption of spherical symmetry; (iii) estimates a mass that is unaffected by the
presence of substructures within the cluster [21, 22] and by structures along the line of sight [23];
(iv) can be applied to clusters at any redshift and it is only limited by the telescope time required to
measure a sufficiently large number of galaxy redshifts. A robust estimate of the cluster mass out
to 3r200 requires ∼ 200 galaxy redshifts [22]. Figure 3 shows how, with this number of redshifts
in the field of view of a cluster, the caustic technique recovers the mass profile up to 4r200 with
no bias (solid squares) and with a 1σ relative uncertainty of 20% (error bars). The required num-
ber of galaxies for such an accurate estimate was demandingly large in the late nineties, when the
technique was designed, but, thanks to the development of multi-fiber spectroscopy, it is a feasible
target nowadays.

The measurement of a cluster mass accretion rate is tightly linked to the estimate of the total
mass of the cluster within its turnaround radius, the so-called ultimate massMu [25]: with the caus-
tic technique, by combining the 50 CIRS clusters [25] with the 58 HeCS clusters [26], we found
Mu/M200 = 1.99±0.11, a measure accurate to 5% [26]. Our measure agrees with the ΛCDM pre-
diction, where Mu/M200 has a log-normal distribution with a peak at mass ratio 2.2 and dispersion
0.38 [27]. The accuracy of this unique estimate of the ultimate mass Mu suggests that we can aim
to measure the mass accretion rate with the caustic technique to a 20% accuracy or better.

In principle, we could also estimate the mass in the outskirts of clusters with weak gravitational
lensing analyses. However, the major source of uncertainty with this approach is the mass projected
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because, in the large and less dense cluster outskirts, (1) cluster galaxies are difficult to distinguish
from foreground and background galaxies, and (2) other probes, e.g. X-ray emission, are below the
sensitivity of current instruments. Moreover, the cluster outskirts are not in dynamical equilibrium
and the usual mass estimation methods based on virial equilibrium are inappropriate.

This observational deficiency clashes with the numerous and detailed studies of the mass
growth of galaxy clusters in N-body simulations based on the identification of their merger trees
[9, 12, 13, 14, 15]. Various laws for the average mass accretion history of dark matter halos
have been proposed: (1) M(z) =M0 exp(−az) where M0/2 is the halo mass at the formation red-
shift of the halo z f = ln2/a [16]; (2) log[M(z)/M0] = −0.301[log(1+ z)/ log(1+ z f )]n [12]; (3)
M(z) =M0(1+ z)b exp(−γz) [13, 17]. The discrepancies between the various relations are due to
different mass and time resolutions and different halo statistics of the N-body simulations used to
infer the relations.

The Caustic group1 in Torino has started a project aiming at estimating the mass accretion
rate of galaxy clusters by measuring the mass of a spherical shell surrounding the cluster and its
infall time. This approach is rather crude when compared with the stochastic aggregation of dark
matter halos in the hierarchical clustering formation models. Nevertheless, our preliminary results
are promising: they suggest that measuring the mass accretion rate of galaxy clusters is actually
feasible and can potentially provide a new observational test of the cosmological and structure
formation models.

2. Cluster mass profiles in the outer regions: the caustic method

If we can measure the mass profile of a cluster beyond its virial radius r200, we can estimate
its instantaneous mass accretion rate as

Ṁ =
M[< r200(1+δs)]−M200

∆t
(1+ z)3/2 (2.1)

where M200 =M(< r200). Equation (2.1) assumes that a shell of proper radii r200 and r200(1+δs)
takes a cosmic time ∆t to fall onto the cluster with constant acceleration −GM200/[(1+δs/2)r200]2

and null initial velocity. We keep ∆t = 0.1 Gyr fixed with redshift and accordingly vary δs =
100H2(z)∆t2, where H(z) is the Hubble parameter. The additional factor (1+ z)3/2 corrects for
the transformation from the cosmic time ∆t to the infall time derived with the proper radii r200 and
r200(1+δs) [18].

Figure 2 shows how this simple recipe compares with the CoDECS N-body simulation [19]
of clusters in a ΛCDM model. The thick line shows the mean Ṁ computed with equation (2.1)
for a sample of clusters with M200 = 1014h−1M⊙ at z = 0, whereas the thin line is the mean mass
accretion rate obtained from the merger trees of the dark matter halos. The mean accretion rate from
the merger trees lie in the region of one standard deviation of our Ṁ (shaded area). In addition, the
mean rate from the merger trees is recovered by the mean of our prescription within 20% in the
redshift range z= [0,1].

The results of Figure 2 show that estimating the mass accretion rate of clusters is indeed fea-
sible if we can measure the cluster mass profile beyond r200. This measurement can be performed
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