THEORETICAL ASTROPARTICLE PHYSICS PRIN 2012 Project

Report on WP3 - Cosmological Aspects

Convenors: A. Mechiorri, M. Pietroni

- > 40 papers on cosmological aspects
- all RU's involved
- topics covered: CMB, LSS, BBN, Inflation, Leptogenesis, Modified GR, ...

Selected topics

- Constraints on New Physics from Cosmological Observables (decaying DM, axions)
- Primordial Universe (Inflation, Leptogenesis)
- Large Scale Structure of the Universe (BAO's and neutrino masses, galaxy clusters)
- Gravity and New Gravity

Decaying Dark Matter (I)

JCAP 1412 (2014) 12, 028 Strongest model-independent bound on the lifetime of Dark Matter

Benjamin Audren,^a Julien Lesgourgues,^{a,b,c} Gianpiero Mangano,^d Pasquale Dario Serpico,^c and Thomas Tram^a

including data on from Planck, WMAP on lensing, polarisation + BAO's data (Wigglez, BOSS):

 $au_{DM} > 160 \; {
m Gyr} \;\; (95 \% \;\; c.l.)$

(100% of DM decays, relativistic products)

Decaying Dark Matter (III)

JCAP (submitted) arXiv:1504.01319

Super Heavy Dark Matter in light of BICEP2, Planck and Ultra High Energy Cosmic Rays Observations

R. Aloisio^{1,2}, S. Matarrese^{3,1} and A.V. Olinto⁴

Axions

Phys.Rev. D90 (2014) 4, 043534

Axion cold dark matter: status after Planck and BICEP2

Eleonora Di Valentino,¹ Elena Giusarma,¹ Massimiliano Lattanzi,² Alessandro Melchiorri,¹ and Olga Mena³

Axion DM for	$f_{\rm a} < \left(\frac{H_I}{2\pi}\right)$	$\Omega_{\rm a} h^2 = 2.07 \left(1 + \alpha_{\rm dec}\right) \left(\frac{f_{\rm a}}{10^{12} \text{ GeV}}\right)^{7/6}$

Parameter	ADM+r
$\Omega_{ m b}h^2$	0.02204 ± 0.00028
$\Omega_{ m a}h^2$	0.1194 ± 0.0027
θ	1.04127 ± 0.00064
τ	0.089 ± 0.013
n_s	0.9614 ± 0.0075
$log[10^{10}A_s]$	3.086 ± 0.025
$H_0[\rm km/s/Mpc]$	67.4 ± 1.2
r	< 0.12
$m_{ m a}(\mu eV)$	81.5 ± 1.6
$N_{ m eff}$	(3.046)
$\sum m_{\nu}(eV)$	(0.06)
w	(-1)
$m_s^{\text{eff}}(eV)$	(0)
n_t	(0)
$dn_s/d\ln k$	(0)

From Planck + WMAP pol.

Phys.Rev. D91 (2015) 12, 123505

Robustness of cosmological axion mass limits

Eleonora Di Valentino,^{1, 2} Stefano Gariazzo,^{3, 4} Elena Giusarma,⁵ and Olga Mena⁶

Mass constraints are quite insensitive to the shape of the primordial PS

For thermal axions (similar to neutrinos)

Primordial Universe (I)

JHEP 1501 (2015) 111

Leptogenesis in SO(10)

Chee Sheng Fong , Davide Meloni , Aurora Meroni, Enrico Nardi

non-supersymmetric SO(10) GUT

once the model parameters are fixed in terms of measured low energy observables, the requirement of successful leptogenesis can fix the only one remaining high energy parameter.

Primordial Universe (II)

Phys. Rev. D 89 (2014) 12, 123505

The Gravitational Wave Background and Higgs False Vacuum Inflation

Isabella Masina

166 176 LHC: $m_H = 125.9 \pm 0.4$ METASTABILITY 175 165 174 164 $\overline{m}_t(m_t)$ [GeV] m_t [GeV] 1=0.01 173 163 $\alpha_3(m_7) = 0.1230$ 172 162 $\alpha_3(m_7)=0$ BICEP2: 1=0.16+0.06 $\alpha_3(m_7) = 0.1196$ 171 161 170 STABILITY 160 169 12 127.0 125.0 125.5 126.0 126.5 127.5 124.5 m_H [GeV]

regions consistent with of the hypothesis that inflation occurred in a SM shallow false vacuum at about 2×10^{16} GeV

Large Scale Structure (II)

arXiv:1501.01977

THE MASS ACCRETION RATE OF GALAXY CLUSTERS: A MEASURABLE QUANTITY

C. DE BONI^{1,2}, A.L. SERRA³, A. DIAFERIO^{1,2}, C. GIOCOLI^{4,5,6}, AND M. BALDI^{4,5,6}

growth function (large scales)

MAR of clusters (smaller scales)

$$\dot{M} = \frac{M[\langle r_{200}(1+\delta_s)] - M_{200}}{\Delta t} (1+z)^{3/2}$$
$$\Delta t = 0.1 \text{ Gyr} \qquad \delta_s = 100H^2(z)\Delta t^2$$

estimated by the amount of matter in the cluster outskirt

Gravity and New Gravity

arXiv:1506.02003 [astro-ph.CO]

A new approach to the propagation of light-like signals in perturbed cosmological backgrounds

G. Fanizza^{a,b}, M. Gasperini^a, G. Marozzi^b, G. Veneziano^c

new method to compute the deflection of light rays in a perturbed FLRW geometry.

Phys.Rev. D90 (2014) 084003

FRW Cosmological Perturbations in Massive Bigravity

D. Comelli ^{a,b} M. Crisostomi ^{c,d,e} and L. Pilo ^{d,f}

Cosmological perturbations of FRW solutions in ghost free massive bigravity