Cosmology with Planck: Nucleosynthesis and neutron life-time constraints

Luca Pagano "Sapienza" University of Rome Torino 07-09-2015

Outline

- Big Bang Nucleosynthesis as cosmological probe
 - Big Bang Nucleosynthesis
 - PArthENoPE
 - Astrophysical bounds
- Planck Data
- Results standard BBN (Y_P^{BBN} and y_{DP})
 - Bounds fixing the radiation density
 - Varying N_{eff}
- Planck direct measurement
 - Standard radiation density
- Neutron life-time estimation
- Conclusions

Big Bang Nucleosynthesis

- BBN predicts the primordial abundance of light elements formed in the first minutes after the Big Bang
- Function of the baryon-to-photon density ratio η_b and the relativistic degrees of freedom parameterize as N_{eff}
- Fixing the photon temperature today (T_0=2.7255 K) η_{b} can be related to ω_{b}
- ⁴He, ²H, ³He, ⁷Li nuclei produced
- First part of this talk on the ⁴He and Deuterium abundances expressed respectively as
 - $Y_P^{BBN} = 4n_{He}/n_b$
 - $y_{DP} = 10^5 n_D / n_H$

Big Bang Nucleosynthesis

- BBN calculations based on PArthENoPE code (Pisanti et al.)
- Incorporates nuclear reaction rates, particle masses and fundamental constants
- Y_P^{BBN} and y_{DP} function of (ω_b, N_{eff})
- Theoretical uncertainties:
 - σ(Y_P^{BBN})=0.0003, dominated
 by neutron lifetime
 - σ(y_{DP})=0.04, based on uncertainties in nuclear rates (Serpico et al. 2004)
- Predictions can be confronted with direct measurements and also with CMB data (η_{b} , N_{eff} and Y_{p})

Astrophysical bounds and Planck data

- Several observation data on primordial abundances
- From spectroscopic observations in metal-poor H_{II} regions
 - Y_P^{BBN} = 0.2465±0.0097 by **Aver et al. 2013**
 - Dominated by systematics
- Proto-Solar helium abundance more conservative upper bound
 - Y_P^{BBN} <0.295 at 95% c.l. by Serenelli & Basu 2010
- Deuterium absorption line systems in quasar spectra, very metal-poor Lyman-a system at high redshift:
 - y_{DP}= 2.53±0.04 by Cooke and Pettini 2014
 - More conservative data collection by **locco et al. 2009** y_{DP} = 2.87±0.22
- For Planck we used combination of Temperature and Polarization data including in some analysis also BAO observations
 - lowP: Pixel-based TQU likelihood at large scales
 - Planck TT: Spectra-based temperature likelihood at small scales
 - Planck TT TE EE: Spectra-based temperature and polarization likelihood at small scales
- Bounds on ω_{b} model-dependent but very stable with model extensions to the minimal LCDM.

Planck 2015 results

- Let's start with the radiation density fixed to its standard value N_{eff}=3.046
- Planck 2015 (95%CL)
 Planck TT TE EE+lowP
 - $\omega_{\rm b}$ = 0.02225±0.00031
 - $Y_{P}^{BBN}=0.24667\pm(0.0014) 0.00062$
 - y_{DP}=2.614±(0.058) 0.13
 - Error bars in parentheses reflect only the uncertainty on ω_{b} .
 - The second set includes the theoretical uncertainty on the BBN predictions.
- The theoretical error dominates the total error on Y_P
- On Y_P^{BBN} the Planck prediction is in agreement with Aver et al. measurements
- For y_{DP} the Planck measurement lays in between Cooke et al. and locco et al. results

Results standard BBN

Joint CMB+BBN predictions on N_{eff}

- Relaxing the assumption on N_{eff}
- But stick to the hypothesis that electronic neutrinos have a standard distribution, with a negligible chemical potential
- Assuming standard BBN we can identify the region of N_{eff} ω_b parameter space that is compatible with direct measurement of the primordial Helium and Deuterium abundances

 $\chi^{2}(\omega_{\rm b}, N_{\rm eff}) \equiv \frac{\left[y(\omega_{\rm b}, N_{\rm eff}) - y_{\rm obs}\right]^{2}}{\sigma_{\rm obs}^{2} + \sigma_{\rm theory}^{2}}$

- Planck 2015 (95%CL)
 - Planck TT TE EE+lowP
 - N_{eff}= 2.99±0.40
 - + Aver et al. (2013)
 - N_{eff}= 2.99±0.39
 - + Cooke et al. (2014)
 - N_{eff}= 2.91±0.37
- No improvement adding Helium abundance
- D+Planck(T+P) best estimate of N_{eff}

Results standard BBN

Model-independent bounds on Helium fraction from Planck

- Instead of inferring the primordial helium abundance from BBN codes
- We can measure it directly with *Planck*, using the sensitivity of the redshift of last scattering and of the diffusion damping scale to Y_P
- The primordial Helium mass fraction is a free parameter in recombination
 and Boltzmann codes
- Converting this number in density fraction we can compare the CMB predictions with astrophysical constrains
- Fixing N_{eff}=3.046
 - $Y_{P}^{BBN} = 0.250 \pm 0.041$ 95%CL (Planck TT + lowP)
 - $Y_{P}^{BBN} = 0.254 \pm 0.036 \qquad 95\% CL \quad (Planck TT + lowP + BAO)$
 - $Y_P^{BBN}=0.252\pm0.027$ 95%CL (Planck TT,TE,EE + lowP)
- In the *Planck* TT,TE,EE + lowP case, the helium fraction determined with a standard deviation of 0.013
 - 30% larger than in the data compilation of Aver et al.(2013)

09/07/2015

Model-independent bounds on Helium fraction from Planck

- Instead of inferring the primordial helium abundance from BBN codes
- We can measure it directly with *Planck*, using the sensitivity of the redshift of last scattering and of the diffusion damping scale to Y_P
- The primordial Helium mass fraction is a free parameter in recombination
 and Boltzmann codes
- Converting this number in density fraction we can compare the CMB predictions with astrophysical constrains
- Planck 2013 result: Y_P^{BBN}=0.266 ± 0.042 @ 95%CL (Planck+WP+highL).
- Fixing N_{eff}=3.046
 - $Y_{P}^{BBN}=0.250\pm0.041$ 95%CL (Planck TT + lowP)
 - $Y_{P}^{BBN} = 0.254 \pm 0.036 \qquad 95\% CL \qquad (Planck TT + lowP + BAO)$
 - Y_P^{BBN}=0.252±0.027 95%CL (Planck TT,TE,EE + lowP)
- In the *Planck* TT,TE,EE + lowP case, the helium fraction determined with a standard deviation of 0.013
 - 30% larger than in the data compilation of Aver et al.(2013)

Model-independent bounds on $Y_P - N_{eff}$ =3.046

- Main uncertainty on helium abundance is due to the one on the neutron life-time τ_{n}
- From Particle Data Group:
 - Combining 5 most recent measurements with "bottle method":

 $\tau_n^{\text{bottle}} = (879.6 \pm 0.8) \,[\text{s}]$

Pignol, arXiv:1503.03317.

Combining 2 most recent measurements with "beam method".

 $\tau_n^{\text{beam}} = (888.0 \pm 2.1) \,[\text{s}]$

- Weighted average quoted by the PDG $au_n^{
 m PDG} = (880.3 \pm 1.1) \, [
 m s]$
- Dominated by systematic errors

Olive et al., (PDG), Chin. Phys. C, 38, 090001 (2014).

Nucleosynthesis and neutron life-time constraints

- Assuming Standard BBN
- CMB: ω_b, Y_p + BBN: $Y_p(\omega_b, N_{eff}, \tau_n)$

Salvati, Pagano, Consiglio and Melchiorri, Cosmological constraints on the neutron lifetime, in preparation

 \rightarrow constraints on τ_n

Planck and current cosmological data:

Dataset	$Y_{ m p}^{ m BBN}$	$\tau_{\mathbf{n}}\left[\mathbf{s}\right]$
Planck TT	0.254 ± 0.021	$\textbf{918} \pm \textbf{105}$
Planck TT, TE, EE	0.252 ± 0.014	$\textbf{907} \pm \textbf{69}$
Planck $TT, TE, EE + BAO$	0.254 ± 0.013	$\textbf{915} \pm \textbf{63}$
Planck $TT, TE, EE + BAO + lensing$	0.249 ± 0.013	894 ± 63

Future cosmological constraints:

Dataset	$Y_{ m p}^{ m BBN}$	$ au_{n}[s]$
$\fbox{Planck $TT, TE, EE + AdvACT$}$	0.2464 ± 0.0065	$\textbf{879} \pm \textbf{32}$
Planck $TT, TE, EE + CMB-S4$	0.2475 ± 0.0037	884 ± 18
Planck $TT, TE, EE + SPT-3G$	0.2487 ± 0.0091	890 ± 44
COrE	0.2467 ± 0.0023	880 ± 11
CVL	0.2467 ± 0.0011	880.7 ± 5.5
Planck TT, TE, EE + Euclid	0.2521 ± 0.0069	$\textbf{907} \pm \textbf{34}$
COrE + Euclid	0.2467 ± 0.0014	$\textbf{880.3} \pm \textbf{6.7}$

Salvati, Pagano, Consiglio and Melchiorri, Cosmological constraints on the neutron lifetime, in preparation

Cosmic Variance Limited: most accurate precision reached from CMB experiments.

Salvati, Pagano, Consiglio and Melchiorri, Cosmological constraints on the neutron lifetime, in preparation

- CMB measurements + direct astrophysical bounds on Y_p
- For the analysis:
 - select eight primordial He measurements (latest ten years)
 - combine these with Planck data: gaussian likelihood on the input Helium abundance

Olive et al. (2004) 0.249 ± 0.009 0.2498 ± 0.0076 896 ± 37 Izotov et al. (2007) 0.2472 ± 0.0012 0.2472 ± 0.0012 883.0 ± 5.8 Peimbert et al. (2007) 0.2477 ± 0.0029 0.2478 ± 0.0029 886 ± 14 Aver et al. (2015) 0.2449 ± 0.0040 0.2455 ± 0.0038 875 ± 19 Izotov et al. (2013) 0.254 ± 0.003 0.2539 ± 0.0029 916 ± 15 Izotov et al. (2014) 0.2551 ± 0.0022 0.2550 ± 0.0022 921 ± 11 Mucciarelli et al. (2014-1) 0.2411 ± 0.004 0.2419 ± 0.0038 857 ± 19 Mucciarelli et al. (2014-2) 0.2521 ± 0.003 0.2521 ± 0.0029 907 ± 14 M12-I14 0.2519 ± 0.0016 0.2479 ± 0.0018 886.7 ± 8.8	Dataset	$Y_{ m p}^{ m data}$	$Y_{ m p}^{ m BBN}$	$ au_{\mathbf{n}}\left[\mathbf{s}\right]$
Izotov et al. (2007) 0.2472 ± 0.0012 0.2472 ± 0.0012 883.0 ± 5.8 Peimbert et al. (2007) 0.2477 ± 0.0029 0.2478 ± 0.0029 886 ± 14 Aver et al. (2015) 0.2449 ± 0.0040 0.2455 ± 0.0038 875 ± 19 Izotov et al. (2013) 0.254 ± 0.003 0.2539 ± 0.0029 916 ± 15 Izotov et al. (2014) 0.2551 ± 0.0022 0.2550 ± 0.0022 921 ± 11 Mucciarelli et al. (2014-1) 0.2411 ± 0.0044 0.2419 ± 0.0038 857 ± 19 Mucciarelli et al. (2014-2) 0.2521 ± 0.003 0.2521 ± 0.0029 907 ± 14 M12-I14 0.2519 ± 0.0016 0.2479 ± 0.0018 886.7 ± 8.8	Olive et al. (2004)	0.249 ± 0.009	0.2498 ± 0.0076	896 ± 37
Peimbert et al. (2007) 0.2477 ± 0.0029 0.2478 ± 0.0029 886 ± 14 Aver et al. (2015) 0.2449 ± 0.0040 0.2455 ± 0.0038 875 ± 19 Izotov et al. (2013) 0.254 ± 0.003 0.2539 ± 0.0029 916 ± 15 Izotov et al. (2014) 0.2551 ± 0.0022 0.2550 ± 0.0022 921 ± 11 Mucciarelli et al. (2014-1) 0.241 ± 0.004 0.2419 ± 0.0038 857 ± 19 Mucciarelli et al. (2014-2) 0.2521 ± 0.003 0.2521 ± 0.0029 907 ± 14 M12-I14 0.2519 ± 0.0016 0.2479 ± 0.0018 886.7 ± 8.8	Izotov et al. (2007)	0.2472 ± 0.0012	0.2472 ± 0.0012	$\textbf{883.0} \pm \textbf{5.8}$
Aver et al. (2015) 0.2449 ± 0.0040 0.2455 ± 0.0038 875 ± 19 Izotov et al. (2013) 0.254 ± 0.003 0.2539 ± 0.0029 916 ± 15 Izotov et al. (2014) 0.2551 ± 0.0022 0.2550 ± 0.0022 921 ± 11 Mucciarelli et al. (2014-1) 0.241 ± 0.004 0.2419 ± 0.0038 857 ± 19 Mucciarelli et al. (2014-2) 0.2521 ± 0.003 0.2521 ± 0.0029 907 ± 14 M12-I14 0.2519 ± 0.0016 0.2519 ± 0.0016 905.7 ± 7.8 M12-P 0.2479 ± 0.0018 0.2479 ± 0.0018 886.7 ± 8.8	Peimbert et al. (2007)	0.2477 ± 0.0029	0.2478 ± 0.0029	886 ± 14
Izotov et al. (2013) 0.254 ± 0.003 0.2539 ± 0.0029 916 ± 15 Izotov et al. (2014) 0.2551 ± 0.0022 0.2550 ± 0.0022 921 ± 11 Mucciarelli et al. (2014-1) 0.241 ± 0.004 0.2419 ± 0.0038 857 ± 19 Mucciarelli et al. (2014-2) 0.2521 ± 0.003 0.2521 ± 0.0029 907 ± 14 M12-I14 0.2519 ± 0.0016 0.2519 ± 0.0016 905.7 ± 7.8 M12-P 0.2479 ± 0.0018 0.2479 ± 0.0018 886.7 ± 8.8	Aver et al. (2015)	0.2449 ± 0.0040	0.2455 ± 0.0038	$\textbf{875} \pm \textbf{19}$
Izotov et al. (2014) 0.2551 ± 0.0022 0.2550 ± 0.0022 921 ± 11 Mucciarelli et al. (2014-1) 0.241 ± 0.004 0.2419 ± 0.0038 857 ± 19 Mucciarelli et al. (2014-2) 0.2521 ± 0.003 0.2521 ± 0.0029 907 ± 14 M12-I14 0.2519 ± 0.0016 0.2519 ± 0.0016 905.7 ± 7.8 M12-P 0.2479 ± 0.0018 0.2479 ± 0.0018 886.7 ± 8.8	Izotov et al. (2013)	0.254 ± 0.003	0.2539 ± 0.0029	$\textbf{916} \pm \textbf{15}$
Mucciarelli et al. (2014-1) 0.241 ± 0.004 0.2419 ± 0.0038 857 ± 19 Mucciarelli et al. (2014-2) 0.2521 ± 0.003 0.2521 ± 0.0029 907 ± 14 M12-I14 0.2519 ± 0.0016 0.2519 ± 0.0016 905.7 ± 7.8 M12-P 0.2479 ± 0.0018 0.2479 ± 0.0018 886.7 ± 8.8	Izotov et al. (2014)	0.2551 ± 0.0022	0.2550 ± 0.0022	$\textbf{921} \pm \textbf{11}$
Mucciarelli et al. (2014-2) 0.2521 ± 0.003 0.2521 ± 0.0029 907 ± 14 M12-I14 0.2519 ± 0.0016 0.2519 ± 0.0016 905.7 ± 7.8 M12-P 0.2479 ± 0.0018 0.2479 ± 0.0018 886.7 ± 8.8	Mucciarelli et al. (2014-1)	0.241 ± 0.004	0.2419 ± 0.0038	$\textbf{857} \pm \textbf{19}$
M12-I14 0.2519 ± 0.0016 0.2519 ± 0.0016 905.7 ± 7.8 M12-P 0.2479 ± 0.0018 0.2479 ± 0.0018 886.7 ± 8.8	Mucciarelli et al. (2014-2)	0.2521 ± 0.003	0.2521 ± 0.0029	$\textbf{907} \pm \textbf{14}$
M12-P 0.2479 ± 0.0018 0.2479 ± 0.0018 886.7 ± 8.8	M12-I14	0.2519 ± 0.0016	0.2519 ± 0.0016	905.7 ± 7.8
	M12-P	0.2479 ± 0.0018	0.2479 ± 0.0018	$\textbf{886.7} \pm \textbf{8.8}$

Salvati, Pagano, Consiglio and Melchiorri, Cosmological constraints on the neutron lifetime, in preparation

- CMB measurements + direct astrophysical bounds on Y_p
- For the analysis:
 - select eight primordial He measurements (latest ten years)
 - combine these with Planck data: gaussian likelihood on the input Helium abundance

Dataset	$Y_{ m p}^{ m data}$	$Y_{ m p}^{ m BBN}$	$ au_{\mathbf{n}}\left[\mathbf{s}\right]$
Olive et al. (2004)	0.249 ± 0.009	0.2498 ± 0.0076	896 ± 37
Izotov et al. (2007)	0.2472 ± 0.0012	0.2472 ± 0.0012	$\textbf{883.0} \pm \textbf{5.8}$
Peimbert et al. (2007)	0.2477 ± 0.0029	0.2478 ± 0.0029	886 ± 14
Aver et al. (2015)	0.2449 ± 0.0040	0.2455 ± 0.0038	$\textbf{875} \pm \textbf{19}$
Izotov et al. (2013)	0.254 ± 0.003	0.2539 ± 0.0029	$\textbf{916} \pm \textbf{15}$
Izotov et al. (2014)	0.2551 ± 0.0022	0.2550 ± 0.0022	$\textbf{921} \pm \textbf{11}$
Mucciarelli et al. (2014-1)	0.241 ± 0.004	0.2419 ± 0.0038	$\textbf{857} \pm \textbf{19}$
Mucciarelli et al. (2014-2)	0.2521 ± 0.003	0.2521 ± 0.0029	$\textbf{907} \pm \textbf{14}$
M12-I14	0.2519 ± 0.0016	0.2519 ± 0.0016	905.7 ± 7.8
M12-P	0.2479 ± 0.0018	0.2479 ± 0.0018	$\textbf{886.7} \pm \textbf{8.8}$

Conclusions

- Planck 2015 BBN results consistent with the 2013 results
- Errorbars on ω_{b} halved thanks to high-ell polarization measurements
- Assuming Standard BBN:
 - No improvement on the He estimation, dominated by the neutron lifetime uncertainty
 - 30% improvement on primordial deuterium
 - Compatible with locco et al. and Cooke et al. measurements,
 - Standard N_{eff} perfectly consistent
 - Astrophysical priors almost ineffective, modest improvement
- Helium directly from Planck data:
 - Almost at the same level of the direct measurements
- Neutron life-time estimation
 - 60 sec error from current data CMB data, 6 sec reachable with future data
 - Imposing astrophysical priors few seconds error already reached
 - To reach PDG precision better precision on direct measurements needed

