Cosmology with Planck: Nucleosynthesis and neutron life-time constraints

Luca Pagano
“Sapienza” University of Rome
Torino 07-09-2015
Outline

• Big Bang Nucleosynthesis as cosmological probe
 – Big Bang Nucleosynthesis
 – PArthENoPE
 – Astrophysical bounds

• Planck Data

• Results standard BBN (Y_{PB}^{BBN} and γ_{DP})
 – Bounds fixing the radiation density
 – Varying N_{eff}

• Planck direct measurement
 – Standard radiation density

• Neutron life-time estimation

• Conclusions

Based on:
Planck 2015 results. XIII. Cosmological parameters
Salvati, Pagano, Consiglio and Melchiorri, Cosmological constraints on the neutron lifetime, in preparation
Big Bang Nucleosynthesis

- BBN predicts the primordial abundance of light elements formed in the first minutes after the Big Bang
- Function of the baryon-to-photon density ratio η_b and the relativistic degrees of freedom parameterize as N_{eff}
- Fixing the photon temperature today ($T_0=2.7255$ K) η_b can be related to ω_b
- ^4He, ^2H, ^3He, ^7Li nuclei produced
- First part of this talk on the ^4He and Deuterium abundances expressed respectively as
 - $Y^\text{BBN}_p=4n_{\text{He}}/n_b$
 - $y_{DP}=10^5 n_D/n_H$
Big Bang Nucleosynthesis

- BBN calculations based on PArthENoPE code (Pisanti et al.)
- Incorporates nuclear reaction rates, particle masses and fundamental constants
- Y_P^{BBN} and y_{DP} function of (ω_b, N_{eff})
- Theoretical uncertainties:
 - $\sigma(Y_P^{BBN})=0.0003$, dominated by neutron lifetime
 - $\sigma(y_{DP})=0.04$, based on uncertainties in nuclear rates (Serpico et al. 2004)
- Predictions can be confronted with direct measurements and also with CMB data (η_b, N_{eff} and Y_p)
Astrophysical bounds and Planck data

- Several observation data on primordial abundances
- From spectroscopic observations in metal-poor H\textsubscript{II} regions
 - \(Y_{P}^{BBN}=0.2465\pm0.0097\) by Aver et al. 2013
 - Dominated by systematics
- Proto-Solar helium abundance more conservative upper bound
 - \(Y_{P}^{BBN}<0.295\) at 95% c.l. by Serenelli & Basu 2010
- Deuterium absorption line systems in quasar spectra, very metal-poor Lyman-a system at high redshift:
 - \(y_{DP}=2.53\pm0.04\) by Cooke and Pettini 2014
 - More conservative data collection by Iocco et al. 2009 \(y_{DP}=2.87\pm0.22\)
- For Planck we used combination of Temperature and Polarization data including in some analysis also BAO observations
 - lowP: Pixel-based TQU likelihood at large scales
 - Planck TT: Spectra-based temperature likelihood at small scales
 - Planck TT TE EE: Spectra-based temperature and polarization likelihood at small scales
- Bounds on \(\omega_b\) model-dependent but very stable with model extensions to the minimal LCDM.
Planck 2015 results

• Let’s start with the radiation density fixed to its standard value $N_{\text{eff}} = 3.046$

• Planck 2015 (95%CL)

 Planck TT TE EE+lowP

 - $\omega_b = 0.02225 \pm 0.00031$
 - $Y_{P,\text{BBN}} = 0.24667 \pm (0.0014) 0.00062$
 - $y_{DP} = 2.614 \pm (0.058) 0.13$

 Error bars in parentheses reflect only the uncertainty on ω_b.

 - The second set includes the theoretical uncertainty on the BBN predictions.

• The theoretical error dominates the total error on Y_P

• On $Y_{P,\text{BBN}}$ the Planck prediction is in agreement with Aver et al. measurements

• For y_{DP} the Planck measurement lays in between Cooke et al. and Iocco et al. results
Results standard BBN

\[
\begin{align*}
Y_{\text{BBN}}^P & \quad 0.25, 0.26 \\
Y_{\text{DP}} & \quad 2.2, 2.6, 3.0, 3.4 \\
\omega_b & \quad 0.018, 0.020, 0.022, 0.024, 0.026 \\
\end{align*}
\]

- Standard BBN
- Aver et al. (2013)
- Planck TT + low P + BAO
- locco et al. (2008)
- Cooke et al. (2014)
Joint CMB+BBN predictions on N_{eff}

- Relaxing the assumption on N_{eff}
- But stick to the hypothesis that electronic neutrinos have a standard distribution, with a negligible chemical potential
- Assuming standard BBN we can identify the region of N_{eff} - ω_b parameter space that is compatible with direct measurement of the primordial Helium and Deuterium abundances
- Planck 2015 (95%CL)
 \[
 \chi^2(\omega_b, N_{\text{eff}}) = \frac{[y(\omega_b, N_{\text{eff}}) - y_{\text{obs}}]^2}{\sigma^2_{\text{obs}} + \sigma^2_{\text{theory}}}
 \]
 - $N_{\text{eff}} = 2.99 \pm 0.40$
 - Aver et al. (2013)
 - $N_{\text{eff}} = 2.99 \pm 0.39$
 - Cooke et al. (2014)
 - $N_{\text{eff}} = 2.91 \pm 0.37$

- No improvement adding Helium abundance
- D+Planck(T+P) best estimate of N_{eff}
Results standard BBN

Nucleosynthesis and neutron life-time constraints 09/07/2015
Model-independent bounds on Helium fraction from Planck

- Instead of inferring the primordial helium abundance from BBN codes
- We can measure it directly with Planck, using the sensitivity of the redshift of last scattering and of the diffusion damping scale to Y_P
- The primordial Helium mass fraction is a free parameter in recombination and Boltzmann codes
- Converting this number in density fraction we can compare the CMB predictions with astrophysical constrains
- Fixing $N_{\text{eff}}=3.046$
 - $Y_P^{BBN}=0.250\pm0.041$ 95%CL (Planck TT + lowP)
 - $Y_P^{BBN}=0.254\pm0.036$ 95%CL (Planck TT + lowP + BAO)
 - $Y_P^{BBN}=0.252\pm0.027$ 95%CL (Planck TT,TE,EE + lowP)
- In the Planck TT,TE,EE + lowP case, the helium fraction determined with a standard deviation of 0.013
 - 30% larger than in the data compilation of Aver et al.(2013)
Model-independent bounds on Helium fraction from Planck

- Instead of inferring the primordial helium abundance from BBN codes
- We can measure it directly with Planck, using the sensitivity of the redshift of last scattering and of the diffusion damping scale to Y_P
- The primordial Helium mass fraction is a free parameter in recombination and Boltzmann codes
- Converting this number in density fraction we can compare the CMB predictions with astrophysical constrains
- Planck 2013 result: $Y_P^{BBN} = 0.266 \pm 0.042$ @ 95%CL (Planck+WP+highL).
- Fixing $N_{\text{eff}}=3.046$
 - $Y_P^{BBN} = 0.250 \pm 0.041$ 95%CL (Planck TT + lowP)
 - $Y_P^{BBN} = 0.254 \pm 0.036$ 95%CL (Planck TT + lowP + BAO)
 - $Y_P^{BBN} = 0.252 \pm 0.027$ 95%CL (Planck TT,TE,EE + lowP)
- In the Planck TT,TE,EE + lowP case, the helium fraction determined with a standard deviation of 0.013
 - 30% larger than in the data compilation of Aver et al.(2013)
Model-independent bounds on $Y_P - N_{\text{eff}} = 3.046$
Cosmological constraints on neutron lifetime

- Main uncertainty on helium abundance is due to the one on the neutron life-time τ_n
- From Particle Data Group:
 - Combining 5 most recent measurements with “bottle method”:
 \[
 \tau_n^{\text{bottle}} = (879.6 \pm 0.8) \text{ [s]}
 \]
 - Combining 2 most recent measurements with “beam method”:
 \[
 \tau_n^{\text{beam}} = (888.0 \pm 2.1) \text{ [s]}
 \]
 - Weighted average quoted by the PDG
 \[
 \tau_n^{\text{PDG}} = (880.3 \pm 1.1) \text{ [s]}
 \]
 - Dominated by systematic errors

Nucleosynthesis and neutron life-time constraints
Cosmological constraints on neutron lifetime

- Assuming Standard BBN
- CMB: ω_b, Y_p + BBN: $Y_p(\omega_b, N_{\text{eff}}, \tau_n)$ \Rightarrow constraints on τ_n
- Affects the damping tail
- We fit for ΛCDM + τ_n

$Y_p^{\text{BBN}}(\omega_b, \Delta N_{\text{eff}}, \tau_n) = \left[0.2311 + 0.9502 \cdot \omega_b - 11.27 \cdot \omega_b^2 + \right.$
$\left. + \Delta N_{\text{eff}} \cdot (0.01356 + 0.008581 \cdot \omega_b - 0.1810 \cdot \omega_b^2) + \right.$
$\left. + (\Delta N_{\text{eff}})^2 \cdot (-0.0009795 - 0.001370 \cdot \omega_b + 0.01746 \cdot \omega_b^2) \right] \cdot \left(\frac{\tau_n}{880.3} \right)^{0.728}$
Cosmological constraints on neutron lifetime

Salvati, Pagano, Consiglio and Melchiorri, Cosmological constraints on the neutron lifetime, in preparation

Planck and current cosmological data:

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Y_{p}^{BBN}</th>
<th>τ_n [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planck TT</td>
<td>0.254 ± 0.021</td>
<td>918 ± 105</td>
</tr>
<tr>
<td>Planck TT, TE, EE</td>
<td>0.252 ± 0.014</td>
<td>907 ± 69</td>
</tr>
<tr>
<td>Planck $TT, TE, EE + BAO$</td>
<td>0.254 ± 0.013</td>
<td>915 ± 63</td>
</tr>
<tr>
<td>Planck $TT, TE, EE + BAO +$</td>
<td>0.249 ± 0.013</td>
<td>894 ± 63</td>
</tr>
</tbody>
</table>

Future cosmological constraints:

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Y_{p}^{BBN}</th>
<th>τ_n [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planck $TT, TE, EE + AdvACT$</td>
<td>0.2464 ± 0.0065</td>
<td>879 ± 32</td>
</tr>
<tr>
<td>Planck $TT, TE, EE + CMB-S4$</td>
<td>0.2475 ± 0.0037</td>
<td>884 ± 18</td>
</tr>
<tr>
<td>Planck $TT, TE, EE + SPT-3G$</td>
<td>0.2487 ± 0.0091</td>
<td>890 ± 44</td>
</tr>
<tr>
<td>COre</td>
<td>0.2467 ± 0.0023</td>
<td>880 ± 11</td>
</tr>
<tr>
<td>CVL</td>
<td>0.2467 ± 0.0011</td>
<td>880.7 ± 5.5</td>
</tr>
<tr>
<td>Planck $TT, TE, EE + Euclid$</td>
<td>0.2521 ± 0.0069</td>
<td>907 ± 34</td>
</tr>
<tr>
<td>COre + Euclid</td>
<td>0.2467 ± 0.0014</td>
<td>880.3 ± 6.7</td>
</tr>
</tbody>
</table>

Cosmic Variance Limited: most accurate precision reached from CMB experiments.
Cosmological constraints on neutron lifetime

- CMB measurements + direct astrophysical bounds on Y_p
- For the analysis:
 - select **eight primordial He measurements** (latest ten years)
 - combine these with Planck data: **gaussian likelihood on the input Helium abundance**

Dataset

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Y_p^{data}</th>
<th>Y_p^{BBN}</th>
<th>τ_n [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olive et al. (2004)</td>
<td>0.249 ± 0.009</td>
<td>0.2498 ± 0.0076</td>
<td>896 ± 37</td>
</tr>
<tr>
<td>Izotov et al. (2007)</td>
<td>0.2472 ± 0.0012</td>
<td>0.2472 ± 0.0012</td>
<td>883.0 ± 5.8</td>
</tr>
<tr>
<td>Peimbert et al. (2007)</td>
<td>0.2477 ± 0.0029</td>
<td>0.2478 ± 0.0029</td>
<td>886 ± 14</td>
</tr>
<tr>
<td>Aver et al. (2015)</td>
<td>0.2449 ± 0.0040</td>
<td>0.2455 ± 0.0038</td>
<td>875 ± 19</td>
</tr>
<tr>
<td>Izotov et al. (2013)</td>
<td>0.254 ± 0.003</td>
<td>0.2539 ± 0.0029</td>
<td>916 ± 15</td>
</tr>
<tr>
<td>Izotov et al. (2014)</td>
<td>0.2551 ± 0.0022</td>
<td>0.2550 ± 0.0022</td>
<td>921 ± 11</td>
</tr>
<tr>
<td>Mucciarelli et al. (2014-1)</td>
<td>0.241 ± 0.004</td>
<td>0.2419 ± 0.0038</td>
<td>857 ± 19</td>
</tr>
<tr>
<td>Mucciarelli et al. (2014-2)</td>
<td>0.2521 ± 0.003</td>
<td>0.2521 ± 0.0029</td>
<td>907 ± 14</td>
</tr>
<tr>
<td>M12-I14</td>
<td>0.2519 ± 0.0016</td>
<td>0.2519 ± 0.0016</td>
<td>905.7 ± 7.8</td>
</tr>
<tr>
<td>M12-P</td>
<td>0.2479 ± 0.0018</td>
<td>0.2479 ± 0.0018</td>
<td>886.7 ± 8.8</td>
</tr>
</tbody>
</table>
Cosmological constraints on neutron lifetime

- CMB measurements + direct astrophysical bounds on Y_p
- For the analysis:
 - select eight primordial He measurements (latest ten years)
 - combine these with Planck data: **gaussian likelihood on the input Helium abundance**

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Y_p^{data}</th>
<th>Y_p^{BBN}</th>
<th>$\tau_n [s]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olive et al. (2004)</td>
<td>0.249 ± 0.009</td>
<td>0.2498 ± 0.0076</td>
<td>896 ± 37</td>
</tr>
<tr>
<td>Izotov et al. (2007)</td>
<td>0.2472 ± 0.0012</td>
<td>0.2472 ± 0.0012</td>
<td>883.0 ± 5.8</td>
</tr>
<tr>
<td>Peimbert et al. (2007)</td>
<td>0.2477 ± 0.0029</td>
<td>0.2478 ± 0.0029</td>
<td>886 ± 14</td>
</tr>
<tr>
<td>Aver et al. (2015)</td>
<td>0.2449 ± 0.0040</td>
<td>0.2455 ± 0.0038</td>
<td>875 ± 19</td>
</tr>
<tr>
<td>Izotov et al. (2013)</td>
<td>0.254 ± 0.003</td>
<td>0.2539 ± 0.0029</td>
<td>916 ± 19</td>
</tr>
<tr>
<td>Izotov et al. (2014)</td>
<td>0.2551 ± 0.0022</td>
<td>0.2550 ± 0.0022</td>
<td>921 ± 11</td>
</tr>
<tr>
<td>Mucciarelli et al. (2014-1)</td>
<td>0.241 ± 0.004</td>
<td>0.2419 ± 0.0038</td>
<td>857 ± 19</td>
</tr>
<tr>
<td>Mucciarelli et al. (2014-2)</td>
<td>0.2521 ± 0.003</td>
<td>0.2521 ± 0.0029</td>
<td>907 ± 14</td>
</tr>
<tr>
<td>M12-I4</td>
<td>0.2519 ± 0.0016</td>
<td>0.2519 ± 0.0016</td>
<td>905.7 ± 7.8</td>
</tr>
<tr>
<td>M12-P</td>
<td>0.2479 ± 0.0018</td>
<td>0.2479 ± 0.0018</td>
<td>886.7 ± 8.8</td>
</tr>
</tbody>
</table>
Conclusions

- Planck 2015 BBN results consistent with the 2013 results
- Errorbars on ω_b halved thanks to high-ell polarization measurements
- Assuming Standard BBN:
 - No improvement on the He estimation, dominated by the neutron lifetime uncertainty
 - 30% improvement on primordial deuterium
 - Compatible with Iocco et al. and Cooke et al. measurements,
 - Standard N_{eff} perfectly consistent
 - Astrophysical priors almost ineffective, modest improvement
- Helium directly from Planck data:
 - Almost at the same level of the direct measurements
- Neutron life-time estimation
 - 60 sec error from current data CMB data, 6 sec reachable with future data
 - Imposing astrophysical priors few seconds error already reached
 - To reach PDG precision better precision on direct measurements needed