
B2DXFitter: application to Bs → Ds* K

Speaker: Lorenzo Sestini

Bs → Ds* K team: A. Bertolin, A. Dziurda, S. Gallorini, A. Lupato, M. Rotondo,
L. Sestini

LHCb B2OC time-dependent workshop, Padova 10-07-2015

 2

“First observation and measurement of the
branching fraction for the decay Bs → Ds* K.”

LHCb-PAPER-2015-008 out on JHEP last week!

We observed for the first time the Bs → Ds* K decay and we measured the
BR ratio:

One of the distinctive features of the present analysis is the reconstruction of
the decay Ds* → Ds γ in an hadron collider.

 3

The Bs → Ds* K and Bs → Ds* π mass fits

1-dimensional mass fits are performed with the B2DXFitter package:

Thanks to Agnieszka our fit is available in the official package release.

Fit stategy: The signal shape is a Crystal Ball obtained from MC → fitSignal.py

 The background templates are RooKeysPdfs obtained from MC (with
some exceptions...) → prepareWorkspace.py

 In the fit: backgrounds and signal yields, some signal CB parameters
are left free → runMDFitter.py

 4

Bs → Ds* K mass fit specific features:
Combinatorial shape
Describing the combinatorial background in this channel has been quite challenging.

In our approach: the combinatorial shape has been described by a RooKeysPdf, obtained from data
events in the ∆M = M(Ds*) - M(Ds) sideband [185,205] MeV.

Basically in this region we have true Ds + random γ events.

This sideband is far from the ∆M signal region [124,164] MeV, and we took account of possible signal
leaks in the systematics.

 5

Combinatorial shape

In the default fit configuration: the combinatorial is modeled through a gaussian + exponential
shape. Parameters are free in the mass fit.

To perform the mass fit with the RooKeysPdf combinatorial a specific option has been
introduced: --rookeysforcomb

The sideband region can be defined in the python configuration file
(Bs2DsstKConfigForNominalMassFit.py in our case):

The results comparison from the two approaches (gaussian+exponential vs RooKeysPdf)
can be a way to estimate the systematic error associated to the combinatorial describtion.

python runBsDsstKMassFitterOnData.py --merge -m both -o kkpi --dim 1 --configName
Bs2DsstKConfigForNominalMassFit --fileName work_bsdsstk.root --wider -s WS_Mass.root --rookeysforcomb

configdict["CreateRooKeysPdfForCombinatorial"]["All"] =
{"Cut":"FDelta_R<1.0&&FDelta_M>205.&&FDelta_M<245&&((FDsBac_M-FDs_M)<3370||(FDsBac_M-FDs_M)>3440)", "Rho":3.5,
"Mirror":"Both"}

 6

Systematic uncertainties in templates estimation

In the fitter default configuration: background templates are obtained using the one-dimensional
kernel estimation RooKeysPdf.

These are non parametric PDFs.

In principle we should have a large number of MC events to obtain a template with negligible
statistical error (but systematic errors from Data/MC differences still remains).

But it is a common situation that, after selection cuts, the MC sample for our background studies
remains with few events!

How can we estimate the statistical fluctuations in templates estimation ?

How can we take account of these errors in the fit final result ?

 7

The bootstrap technique

The bootstrap technique provides a means to evaluate how much trust our
density estimation.

It is a solid and mathematically proved statistical method. You can find
mathematical proofs in the following documentation:

 Inside the B2OC WG, this is the first analysis where this method has been
used.

The implementation in our code is easy ... but the algorithm can be CPU-time
consuming!

 B. Efron, “Bootstrap methods: another look at the jackknife”, The Annals of
Statistics 7 (1979) 1.

 I. Narsky and F. Porter, “Statistical Analysis Techniques in Particle Physics”,
Wiley-VCH, 2013.

 8

The bootstrap algorithm

The bootstrap algorithm goes as follow:

1) We estimate a RooKeysPdf (p) from a set of n Monte Carlo events {x1 , x2 ... xn }.

2) We extract randomly (uniformly) n events from {x1 , x2 ... xn }, admitting repetitions!

3) In this way we form a new set of events {x*1 , x*2 ... x*n } where the same event
may appears multiple times. This is called the bootstrapped sample.

4) We estimate a RooKeysPdf (p*) from the set {x*1 , x*2 ... x*n }. This is called the
bootstrapped PDF.

5) We repeat the points from 2 to 4 N times to obtain a set of N RooKeysPdf {p*1 ,
p*2 ... p*N }.

6) The distribution of the p* mimics the distribution of p about the real
unknown PDF.

 9

Bootstrap visualization

In order to visualize the statistical error in the template shape we can generate a large
number (N) of bootstrapped PDFs.

Then we plot the 1-σ and 2-σ density bands of the superposition of the N PDFs.

The MC sample events
distribution (bar points)
is overlayed to the band
plot.

1-σ
2-σ

 10

Error propagation

We repeated the fit N times, each time substituting the template p with a bootstrapped PDF
p* obtained as described before.

We plotted the distribution of the N fit results (signal yield):

 The mean of the distribution
is the fit result in the original
configuration.

 The width can be
considered as statistical
error.

 We evaluated errors from
each background separately
and then we added them in
quadrature to estimate the
total error.

 11

A special case: Combinatorial Background

We obtained the combinatorial shape as a RooKeysPdf from the ∆M sideband [185,205]
MeV.

We cannot reduce the statistical error (for the others background we could simply ask
for more MC events).

In this case the bootstrap technique can be a reliable way to estimate the error on the
background modeling.

 12

Implementation

 We didn't modify the existing package code.

 The method we used is “quick and dirty”, surely it isn't the best way to do
it... Quick: in the sense of coding time, not execution time...

 The bootstrapped sample is obtained by using a ROOT C++ macro,
“bootstrap.C”.

 A bash code runs several time bootstrap.C, the fit preparation python and
the fit itself. Then the fit result is saved in a .txt file.

 At each iteration the bootstrapped sample is deleted, in order to avoid
memory problems.

 We need to use a special configuration file in this procedure.

 13

 bootstrap.C highlights

 Initialize TRandom3 with a saved seed:

 Boostrap cycle:

 Save the last seed:

for (int evt=0; evt<Nentries; evt++) {

 tree->GetEvent((int)rand.Uniform(Nentries)); //extract a random event
 .
 .
 b_tree-> Fill(); //Fill the bootstrapped tree
}

mySeedFile.open(string_seed);
UInt_t seed;
if (mySeedFile.is_open()) mySeedFile >> seed; else seed=65539;
TRandom3 rand(seed);

remove(string_seed);
ofstream outputSeedFile(string_seed);
UInt_t new_seed=rand.GetSeed();
outputSeedFile << new_seed;

 14

Bash code

for i in {1..1000}
do

 rm -f fit_result //Delete the last fit result
 root -l -q -b 'bootstrap.C("/afs/cern.ch/work/a/abertoli/public/DsstrK/bdt_dev/Filter_Bs2DsstK_Bs2DsKst_up.root",
"/afs/cern.ch/work/a/abertoli/public/DsstrK/bdt_dev/Filter_Bs2DsstK_Bs2DsKst_dw.root" , "Filter_Bs2DsstK_Bs2DsKst_up_boot.root" ,
"Filter_Bs2DsstK_Bs2DsKst_dw_boot.root")' //Bootstrap macro

 python prepareBsDsstKMassFitterOnData3D5M.py --configName Bs2DsstKConfigForNominalMassFit --Data --MC --Signal --Comb -s
work_bsdsstk.root //preparation

 python runBsDsstKMassFitterOnData.py --merge -m both -o kkpi --dim 1 --configName Bs2DsstKConfigForNominalMassFit --fileName
work_bsdsstk.root --wider -s WS_Mass.root --rookeysforcomb | tee fit_results //run the fit and save the result

 cat fit_result | grep "nSig_both_kkpi_Evts 1.2000e+03" >> FitResults_Bs2DsKst_boot.txt //take the event yield number and put it into a
.txt file

done

 15

Configuration file

#MC FileName KKPi MD
.
.
.
{"Mode":"Bs2DsKst",
 "FileName":"/afs/cern.ch/user/l/lsestini/cmtuser/Urania_v2r4/PhysFit/B2DXFitters/scripts/Filter_Bs2DsstK_Bs2DsKst_dw_boot.root",
 "TreeName":"tuple;1"}
.
.
.
#MC FileName KKPi MU
.
.
.
{"Mode":"Bs2DsKst",
 "FileName":"/afs/cern.ch/user/l/lsestini/cmtuser/Urania_v2r4/PhysFit/B2DXFitters/scripts/Filter_Bs2DsstK_Bs2DsKst_up_boot.root",
 "TreeName":"tuple;1"}
.
.
.

 In the data file data/config_Bs2DsstK.txt you have simply to substitute your
regular MC sample name with the name of the bootstrapped one:

 16

Execution time

At each iteration the most time is spent in the bootstrap + RooKeysPdfs evaluation + Fit
process.

The Fit time is the same for each bootstrapped background in study. The time for the
bootstrap process and the RooKeysPdfs evaluation depends on how may MC events we
have in the sample.

So more MC events we have more is the CPU time ... but less is the statistical error!

Running the entire algorithm may take several days ... If the MC statistics for one
background sample is really high we can decide to consider its error negligible.

 17

Final thoughts about the bootstrap tecnique

 Density kernel estimation is now common in our analysis.

 It is also common that after the selection cuts our MC samples are statistically limited. This
fact can lead to an error in our measurement.

 With the bootstrap tecnique we can estimate this error on the fit result.

 In this way we have a parameter that can help us to decide if it is necessary to ask for more
MC...

 ... but if we are estimating the PDF on a control data sample we have no way to reduce this
uncertainty.

 The implementation is simple, even without touching the original fit code. It could be nice in
the the future to see it hardcoded in the package

 18

Bs → Ds (→KKππ0) K

 Here in Padova we studied the possibilty to add the Ds →KKππ0 decay channel to the Bs → Ds K analysis.

 We extracted the signal yield with a 3-dimensional fit (Bs mass, Ds mass, bachelor PIDK).

 We have to decide if only 150 events
are worth the effort...

 But we have still to try with the
Stripping21!

 The KKππ0 decay mode mass fit is
available in the official package.

 19

Next steps on Bs → Ds* K and Conclusions

Move on a 2- (or 3-) dimensional mass fit. This should be easy with our current package
version.

Time-dependent analysis: extract the γ measurement.

Need to work on the code to adapt the Bs → Ds K gamma-fitter to our channel.

The overall experience with the B2DXFitter package has been really positive. The code in the
current version is flexible (i.e. adding backgrounds can be done directly in the configuration
files) and can be easily adapted to other decay channels.

We suggest to create something like a twiki page where we can write the informations about all
the different channel-specific features in the fitter (i.e. --rookeysforcomb for Bs → Ds* K).

Backup slides

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20

