1st B2DXFitters workshop Padova

overview of the B2DXFitters package

Manuel Schiller

CERN

July 9th-10th, 2015

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 1/64 %

introduction

introduction

m B2DXFitters is a rather versatile package
m can do sophisticated mass/PID fits to extract yields/sWeights
see Agnieszka’s talk(s) and her part of the hands-on session
m also does rather complicated time fits
see my talk(s) and my part of the hands-on session
m a lot of effort has gone into making (time) fits fast

m very necessary with ever increasing data sets and fit complexities
m would like to transfer lessons learned to next generation...

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 2/ 64 ‘ﬂé

introduction

outline

m package structure
m start with overview of time fitting part (outline of topics later)

m then hand over quickly to Agnieszka’s “mass fit news” talk
because | run out of time

m we can and will come back to these slides during the hands-on
session, | promise...:)

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 3/ 64 ‘ﬂé

package structure

package structure

package structure

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 4/ 64 ‘ﬂé

package structure

package structure

m important to understand package structure (subdirectories):
B2DXFitters header files for C++ algorithms

cmt used for cmt (building)

data various data files (templates), config files

dict ROOT dictionaries (reflection information)

doc release.notes, other documentation

python reusable python code

scripts fitting (python) scripts

Src C++ sources

standalone standalone build dir (symlinks to src/*.cxx)
tutorial material for hands-on session (feel free to add!)

m looking for RooFit classes: B2DXFitters, src (, standalone)
m looking for reusable parts of fit: python/B2DXFitters

m concrete fit implementations: scripts

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 5/ 64 ‘ﬂé

package structure news for the time fitting part

news for the time fitting part

news for the time fitting part

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 6/ 64 ‘ﬂé

package structure news for the time fitting part

news for the time fitting part

m substantial code refactoring

m reusable parts are now packaged in a reusable manner
m should make it easy to write your own fit

m substantial improvements to documentation of routines
m brand new example scripts as tutorials for the hands-on session
m accompanying slides (O(60)) explaining the “why” and “how”

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 7/ 64 ‘ﬂé

introduction time fit

introduction time fit

PDF structure of the 1fb™" B? — DF K* cFit

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 8/ 64 %

introduction time fit

introduction time fit

m time fits are complicated beasts
(785 pdf components for B — DJ K*)
m did a lot of work to make things a little easier to use

m outline
m philosophy
m in-depth topics:

python and
useful calibration fits RooFit
scripts /

/ tagging

time pdf .
resolution
model

RooBDecay

data set
handling

m Friday: hands-on, getting started with B2DXFitters-time fits

acceptance

splines

M. Schiller (CERN)

overview of the B2DXFitters package July 9th-10th, 2015 9/ 64 %

philosophy

philosophy

philosophy

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 10/ 64 ‘ﬂé

philosophy

philosophy
m time fits should be configurable
m have python dictionaries to configure the fit (high level config)
m time fit itself should consist of building blocks that can be reused
m want easy interoperability for different fits
m flexible on input side (data tuples, templates, ...)
m rigorous on output side (predictable variable names, pdf
structure)
— pdf building should be done by program, not cut and paste!
m conceptually, a fit should look like this:

get mass pdf per mode
masspdfs, yields = {}, {}
for mode in config[’'Modes’]: # ’'Bs2DsK’, 'Bs2DsPi’, ...
masspdfs[mode], yields[mode] = readMassModeFromMDFit(config, ws, mode)
construct time pdfs
timepdfs = { }
for mode in config['Modes’]:
timepdfs[mode] = buildBDecayTimePdf(config, ws, mode, ...)
zip them together
bits = RooArgList()
for mode in config[’Modes’]:
tmp = WS(ws, RooProdPdf(’%s pdf’ % mode, '%s pdf’ % mode,
timepdfs[mode], masspdfs[mode]))
tmp = WS(ws, RooExtendPdf(’ss_epdf’ % mode, '%s_epdf’ % mode,
tmp, yields[mode]))

bits.add(tmp)
totpdf = RooAddPdf(’totpdf’, 'totpdf’, bits)

m will illustrate reusable building blocks on the next few slides
M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 11/ 64 ‘ﬂé

philosophy buildBDecayTimePdf

buildBDecayTimePdf

m most of the hard work is actually done by a single routine:

buildBDecayTimePdf

m let’s have a look at its signature:

def buildBDecayTimePdf (

config, # configuration dictionary

name, # ’‘Signal’, 'DsPi’, ...

ws, # RooWorkspace into which to put the PDF
time, timeerr, qt, qf, mistag, tageff, # potential observables
Gamma, DeltaGamma, DeltaM, # decay parameters

C, D, Dbar, S, Sbar, # CP parameters

timeresmodel = None, # decay time resolution model
acceptance = None, # acceptance function

timeerrpdf = None, # pdf for per event time error
mistagpdf = None, # pdf for per event mistag
mistagobs = None, # real mistag observable

kfactorpdf = None, # distribution k factor smearing
kvar = None, # variable k which to integrate out
aprod = None, # production asymmetry

adet = None, # detection asymmetry

atageff = None # asymmetry in tagging efficiency
):

...

m you can do pretty much anything with it!

m will use hands-on to move from a simple fit (average 7, o) to

something a lot more complicated

m in practise, you’ll need to know what this “magic” routine does
(roughly)

M. Schiller (CERN) overview of the B2DXFitters package

July 9th-10th, 2015 12/ 64

RooBDecay

RooBDecay

RooBDecay

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 13/ 64 ‘ﬂé

RooBDecay

RooBDecay

m we all know and love RooBDecay:
P(t) ~ e "' (A-cosh(5F) + B-sinh(55)+
C - cos(&™) + D-sin(4™))
m good building block for fast fit:

m analytical time integral (normalisation!)
m analytical convolution with resolution models (gaussian(s))
m physics is usually encoded in A, B, C, D
m however, slows down if
m we have per-event observables (o, n):
need to normalise on every event (e.g.
A,B,C,D — (A, B, C,D)(n, P(n)), so need normalising!)
m we have an acceptance:
can normalise P(t) analytically, but not P(t) - a(t) or
P(t"Y® G(t —t') - a(t)
— will show how these slowdowns can be overcome
M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 14/64 &R

acceptance

acceptance

acceptance

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 15/ 64 ‘ﬂé

acceptance

acceptance

m problem: no analytical normalisation of P(t) - a(t) or
P(t) ® G(t —t') - a(t) in general case
m two solutions:
B approximation: bin a(t)

/dt P(tya(t) = S a(t) [dtP(t)

bin i

m approximation: a(t) piecewise polynomial — splines!
B acceptance becomes part of resolution model:

G(t—t) = Gu(t—t)

m normalisation of convolution integral can be done analytically

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 16 / 64 ‘ﬂé

acceptance splines

splines: introduction

m splines are low order polynomials which approximate the
function on a “subrange”, e.g. p(x) = a+ bx + cx? + dx3
m you have many subranges which compose interval over which
function is to be approximated: py(x), p1(x), ...
m typically, you want
m pi(x;) =Yi
u P;'(Xi) = P;_1(X,')
m pi(xi) = pi_q(xi)

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 17/ 64 ‘ﬂé

acceptance splines

spines: introduction

m idea much clearer with Gerhard’s excellent picture:

o4 ¥
[REI SRS ° .
g
pli
0s
04
02 o
Q
02 <= 2
04 . i i = <
o — ® Piece-wise (cubic) polynomials s
9 basis fens: b0(x)... b8(x) . Parameterized by ‘knots’ (interval boundaries) and values at these knots . —
08 L Il Il L L Il Il Il ~
R o 1 z 3 4 5 6 K . can of course have uniform and non-uniform intervals =, S
e ltcan be proven that a cubic spline is the answer to the question: o Z
o157 amongst all twice differential smooth functions that go through asetof .= T
5°C specified points, which one is the ‘stiffest’ (ie. smallest average 2" ® 5
5 derivative) function? e I
s L |
&1 o
[T~ ; e Splines can be written as a sum over ‘base splines’ -- eg.‘cubic b-splines’. 5_
r . e Forn knots, there are n+2 b-splines. ‘S
05~ g e base splines bi(x) g
[e ONLY depend on the knot definition -
r =}
a e form a partition of unity: E by (a S
[- P
[i 2
L e given an efficiency, can easily create an inefficiency: S)
05 —-
b L | | | | | | | o
E] 0 1 2 3 4 5 6 7 e(z) = zﬂﬂu () (@)
k c
o
=1 —e@) =Y (1 - ax)br(w) >
k =4
80 =
overview of the B2DXFitters package July 9th-10th, 2015 18/ 64 ‘ﬂ“

acceptance splines

1D splines as acceptance

m define knots (x;):

time = RooRealVar('time’, ’time’, 0.2,
myknots = [.2, .4, .6, .8, 1., 2., 3.,
knotbinning = RooBinning(time.getMin(),
for v in myknots:
knotbinning.addBoundary (v)
knotbinning. removeBoundary (time.getMax ())
knotbinning. removeBoundary (time.getMin())

15.)
6., 12.]
time.getMax(), 'knotbinning’)

m define spline coefficients

coefflist = RooArgList ()
for i in xrange(®, len(knots)):
coefflist.addRooRealVar(’SplineAccCoeffsu’ % i, 'SplineAccCoeffsu’ % i, coeffs[il, 0., 2.))

m create the spline, and the resolution model from it

tacc = RooCubicSplineFun(’SplineAcceptance’, ’'SplineAcceptance’, time, 'knotbinning’, coefflist)
fit_resmodel = RooGaussEfficiencyModel(’fit resmodel’, 'fit resmodel’, time, tacc, zero, timeerr, SF, SF)

m that’s it (essentially), can use this
resolution-model-with-acceptance in RooFit classes like
RooDecay, RooBDecay, ...

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 19/ 64 ‘ﬂé

acceptance splines

1D splines for use as acceptance

m there are a couple of stumbling stones (as usual):
m knot intervals must fully cover the fit range, and may not leak
“outside”
m for generation, it’s faster to use a RooEffProd of the
resolution-model-convolved RooBDecay and the spline

— different PDFs for generation and fitting!
(nice cross-check!)

m if you want to generate toys, make sure your spline coefficients are
all smaller than 1

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 20/ 64 ‘ﬂé

acceptance splines

1D splines for use as acceptance

m choose knot positions (more where curvature of acceptance is
high)
m can then fit spline coefficients to control channel/MC/...

m problems:

m overall scale of spline not set:
fix one coefficient to 1

m at large times (low stats), tend
to pick up stat. fluctuations,
but expect uncurved
acceptance
— fix last knot coefficient
from linear extrapolation of
previous two « knot position

a fixed: a=1

fixed: linear
‘from last two
tknots

1|

t

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 21/ 64 ‘ﬂé

acceptance splines

1D splines for use as acceptance

m naturally, this comes canned as a python routine:
from B2DXFitters.acceptanceutils import buildSplineAcceptance
time range e.g. from 0.2 to 15 ps
acc, accnorm = buildSplineAcceptance(ws, time, 'Bs2DsK acceptance’,
[0.5, 1.0, 1.5, 3.0, 6.0, 12.0], # knot positions

[0.,0.5 1.0, 1.0, 1.0, 1.0], # initial coefficients (last two fixed, see last slide)
True) # float spline coefficients in fit

B acc is an acceptance suitable for fitting

m acc_norm is a normalised acceptance suitable for generation
with RooEffProd
(applies overall scaling factor such that a(t) < 1 for all t)

— docs in python/B2DXFitters/acceptanceutils.py

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 22/ 64 ‘ﬂé

acceptance splines

spline systematics

m this is always hard, but fortunately not very hard...

m for cubic splines, approximation error will be proportional to
% - h* (h: spline subinterval size)

m no need to calculate that: just try with twice the number of
knots, and get estimate from the difference

m if you’re not stable, you likely have some problem with your
approximation; plot to investigate

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 23/ 64 ‘ﬂé

acceptance binned approximation

binned approximation

m occasionally still useful:

m cross-checks
m in other fits

m two implementations:

m resolution-model based (just like splines - not cubic, but
constant!): same use as splines, but use RooBinnedFun instead of
RooCubicSplineFun

m older implementation based on RooEffHistProd, binning
existing function as fast approximation

time = . # RooRealVar for the time

acc = ... # some acceptance function

binning = RooUniformBinning(timelo, timehi, nbins, "someNameForBinning")
time.setBinning(binning, "someNameForBinning")

binned cc= RooBinnedPdf("name", “title", time, "someNameForBinnig", acc)
finalpdf = RooEffHistProd("name”, "title", pdf wo_acc, binnedacc)

— also useful to avoid numerical integration in e.g. mass fits which
are sculpted by some efficiency/threshold function...

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 24/ 64 ‘ﬂé

DecRateCoeff

DecRateCoeff

DecRateCoeff

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 25/ 64 ‘ﬂé

DecRateCoeff

DecRateCoeff

m very versatile class

m includes the tagging in RooBDecay
m will therefore go slowly through the material
m average mistag
m per-event mistag
m asymmetries
m advanced: combining taggers

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 26/ 64 ‘ﬂé

DecRateCoeff average mistag

DecRateCoeff: basics (1/3)

m in DK, the pdf changes depending on final state charge (qr) and
tagging decision (qr)

m for average mistag w, the coefficient in front of e.g. the cos(Amt) term
is composed from contributions from By and Bj:

Cyr = > Pgr.qlq) C(qi qp)
qi€{B,B}

Etag(cf(w)+ Cr(—w)) qe=+1, g =+1
€rag(—Cr(—) Cf(1 —w)) qr=-1,qr=+1
(1 emg)(&) G =0, gr = +1
- (1- 6tag)(cf Cf) qe =0, g = —1
cag(C(-w) + C(1-) qr=—1,q =
g~ C(1—w) = C(—w)) g = +1. ¢ = —

m make sure you recognise it as the formula we all know and love!
m it has (conceptually) a pdf inside, so it must normalise itself

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 27/ 64 ‘ﬂé

DecRateCoeff average mistag

DecRateCoeff: average mistag

m can play this game for
m CP-odd coefficients (for the sin / cos(Amt) terms):
C enters with sign of g; - gf
m CP-even coefficients (for the sinh / cosh(
C enters without sign

A1) terms):

m constructor:

DecRateCoeff(const char+ name, const char+ title, Flags flags,
RooAbsCategory& qf, RooAbsCategory& qt,
RooAbsReal& Cf, RooAbsReal& Cfbar,
RooAbsReal& tageff, RooAbsReal& eta,
RooAbsReal& aprod, RooAbsRealé& adet,
RooAbsReals atageff);

m flags can be CPEven or CPOdd

m or | Minus to it when you need an overall minus sign in front of C

m if you want to fit C = (Cr +f}—c)/2 and AC = (Cr — Ej—c)/z, or |
AvgDelta

m put asymmetries to RooConstVar("zero", "zero", 0.) if you don’t
need them

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 28/ 64 ‘ﬂé

DecRateCoeff per-event mistag

DecRateCoeff: basics (2/3)

m for (calibrated) per-event mistag w(n), things become a little more

complicated

Cr = Y. Par.qla) P(nlqr) - C(qi. g)
qi€{B,B}

etagP(N)(Cr(1 —w(n)) + Cr(—w(n))) qe=+1, qr = +1
etagP(n)(—Cr(—w(n)) — Cr(1—w(n))) qe=—1,q = +1
(1= etag) U(n)(Cr — C) gt =0, g = +1

¥ (-) UG - C5) G =0, q =1
etagP(n)(C (wm) + C(1-w®)) q=-1,qr=-1
ctagP(n)(—=C;(1 —w(n)) — Cz(—w(n))) qe=+1, gr =1

m U(n) is a uniform distribution (whatever you set the mistag to for
untagged events, you’ll always get the same contribution)

M. Schiller (CERN)

overview of the B2DXFitters package

29/64 ik

July 9th-10th, 2015

DecRateCoeff per-event mistag

DecRateCoeff: per-event mistag

B same game
m constructor:

DecRateCoeff(const chars name, const chars title, Flags flags,
RooAbsCategory& qf, RooAbsCategory& qt,
RooAbsReal& Cf, RooAbsReal& Cfbar,
RooAbsReallValue& etaobs, RooAbsPdf& etapdf,
RooAbsReal& tageff, RooAbsReal& eta,
RooAbsReal& aprod, RooAbsRealé& adet,
RooAbsReal& atageff);

m etaobs is the observable n
m etapdf is P(n)
m eta is the calibrated mistag n.(n) = w(n)

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 30/ 64 ‘ﬂé

DecRateCoeff asymmetries

DecRateCoeff: basics (3/3)

m with asymmetries, this becomes even more complicated:

W €tqg — €tag * (1+ qtatag)

m w(n) = w(n), w(n)

m add factor (1+ giapoq) everywhere
m add factor (1+ graqe) everywhere

m full expression too large (and ugly) for slides, so see

m appendix to 1fb~! D;K ANA note
m doxygen docs for DecRateCoeff (make doxy in standalone)

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 31/ 64 ‘ﬂé

DecRateCoeff asymmetries

DecRateCoeff: asymmetries

B same game yet again
m constructor:

DecRateCoeff(const char+ name, const char+ title, Flags flags,
RooAbsCategory& qf, RooAbsCategory& qt,
RooAbsReal& Cf, RooAbsReal& Cfbar,
RooAbsReallValue& etaobs, RooAbsPdf& etapdf,

& tageff, & eta,
RooAbsReal& aprod, RooAbsReal& adet,
RooAbsReals atageff);

& etabar,

etaobs is the observable n
etapdf is P(n)
eta is the calibrated mistag n.(n) = w(n) for B

)
etabar is the calibrated mistag 77:(n) = @(n) for B

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 32/ 64 ‘ﬂé

DecRateCoeff combining taggers

DecRateCoeff: extra: combining taggers (1/7)

m in principle, one can write down the fromulae on the past few
slides for more than one tagger
m that would (correctly) combine multiple taggers within
DecRateCoeff
m rewrite in progress, but not ready for production yet

m | had hoped to be faster to avoid what follows, but...

m combining taggers workaround, required steps:

m split into three mutually exclusive taggers (|qt| = 1 for OS, 2 for
SSK, 3 for both OS+SSK)

m calibrate taggers as preprocessing step with average py, p1,
mangle tagging decision (last item)

® run toy to propagate asymmetries and errors on calibration to
calibrated mistag

m fit with six calibrations, one for each tagger and true B flavour

m constrain the various py, p1 according to result of toys

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 33/ 64 ‘ﬂé

DecRateCoeff combining taggers

DecRateCoeff: extra: combining taggers (2/7)

m step 1: tuple preprocessing
B suppose you have a RooDataset with your data somewhere
m use these steps to add two new variables to it:

import MistagCalibration, DLLTagCombiner, TagDLLToTagEta, TagDLLToTagDec, RooArgList

uncalibrated mistags eta 0S, eta SSK, decisions qt_0S, qt SSK; there are part of data set

calibration constants are p0_0S, pl_0S, etaavg 0S, similar for SSK

eta_0Sc = WS(ws, MistagCalibration(’eta 0Sc’, 'eta 0Sc’, eta_0S, p0_0S, pl 0S, etaavg 0S))

eta SSKc = WS(ws, MistagCalibration(’eta SSKc', ‘eta SSKc', eta SSK, p0._SSK, pl SSK, etaavg SSK))
qts = RooArgList(qt_0S, qt_SSK)

etas = RooArglList(eta_0Sc, eta SSKc)

dll = WS(ws, DLLTagCombiner(’dlltag’, 'dlltag’, qts, etas))

eta = WS(ws, TagDLLToTagEta(’'eta’, 'eta’, dll))

qt = WS(ws, TagDLLToTagDec(’qt’, 'qt’, dll, qts))

add to data set

dataset.addColumn(eta)
dataset.addColumn(qt)

m then save the data set to a new workspace

m if you prefer to work with straight tuples, have a look at
TagCombiner.h

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 34/ 64 ‘ﬂé

DecRateCoeff combining taggers

DecRateCoeff: extra: combining taggers (3/7)

m step 2a: work out correction for calibration asymmetries

m in step 1, we apply average correction for B/B
m not correct yet, so correct remaining discrepancy in fit
m use toy to figure out the post-combination calibration
asymmetries (is exact for linear calibration polynomials)
m standalone/taggingtoy/tagcomb.cc contains the code
generates events with correct calibration for B/B, and OS and SSK
(mistag templates from ROOT file, just splot your tuple after mass
fit)
combines using average calibration for OS and SSK
recalibrates output separately for (B, B)x(OS only, SSK only,
0S+SSK)
use to figure out post-combination calibrations, and correlations
m you get six sets of calibration constants, which are all correlated
among each other, see next slide

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 35/ 64 ‘ﬂé

DecRateCoeff combining taggers

DecRateCoeff: extra: combining taggers (4/7)

m step 2b: work out correction for calibration asymmetries
m make tagcomb; ./tagcomb (eventually) prints

[... much output ...]
Total calibration:

B 0S only : eta_c = 0.376730+/-0.004389 + (1.048155+/-0.039917) * (eta - 0.371147) --- correl(p@, pl) -0.111791
B SSK only: eta_c = 0.404896+/-0.011412 + (0.995879+/- 48797) * (eta - 0.414892) - correl(p0, pl) -0.122611
B 0S + SSK: eta c 38363+/-0.005959 + (1.027861+/- 38725) * (eta 0.338493) - correl(p@, pl) -0.874463
Bbar 0S only : eta_c = 0.365517+/-0.004395 + (0.950216+/-0.040072) * (eta - 0.371147) - correl(p@, pl) -0.111883
Bbar SSK only: eta_c = 0.424801+/-0.011414 + (1.004340+/-0.150355) * (eta - 0.414892) - correl(po, pl) -0.123455
Bbar 0S + SSK: eta_c = 0.338781+/-0.006030 + (0.971845+/-0.039962) * (eta - 0.338493) --- correl(p@, pl) -0.878334
Correlations:
0 1 2 3 4 5 6 7 8 9 10 11
0 1.00000 -06.11179 0.00000 ©.00000 0.49565 -0.12126 0.88340 -0.09034 ©0.00000 0.00000 ©.43630 -0.11593
1 -0.11179 1.00000 ©0.00000 0.00000 -0.170672 0.36865 -0.09043 ©0.80830 0.00000 0.00000 -0.13861 0.30321
2 0.00000 0.00000 1.00000 -0.12261 0.65815 -0.54123 0.00000 0.00000 0.93878 -0.12029 0.63338 -0.52537
3 0.00000 0.00000 -0.12261 1.00000 -0.63105 ©.81198 0.00000 0.00000 -0.12244 0.98640 -0.60841 0.78788
4 0.49565 -0.17072 0.65815 -0.63105 1.00000 -0.87446 0.43682 -0.13789 0.62212 -0.62217 0.94027 -0.84147
5 -0.12126 0.36865 -0.54123 ©0.81198 -0.87446 1.00000 -0.10427 0.29779 -0.51403 0.80069 -0.83010 0.95060
6 0.88340 -0.09043 0.00000 ©0.00000 0.43682 -0.10427 1.00000 -0.11188 ©0.00000 0.00000 ©.49475 -0.13419
7 -0.09034 0.80830 0.00000 0.00000 -0.13789 ©.29779 -0.11188 1.00000 0.00000 0.00000 -0.17092 0.37480
8 0.00000 0.00000 0.93878 -0.12244 0.62212 -0.514063 0.00000 0.00000 1.00000 -0.12345 0.67273 -0.55661
9 0.00000 0.00000 -0.12029 ©0.98640 -0.62217 0.80069 0.00000 0.00000 -0.12345 1.00000 -0.61649 0.79852
10 0.43630 -0.13861 0.63338 -0.60841 0.94027 -0.83010 0.49475 -0.17092 0.67273 -0.61649 1.00000 -0.87833
11 -0.11593 0.30321 -0.52537 0.78788 -0.84147 0.95060 -0.13419 ©0.37480 -0.55661 ©.79852 -0.87833 1.00000

m this includes contributions from combination, stat. and syst.

errors
m corresponding tables exist earlier in the output for
m combination only m combination + syst. error

m combination + stat. error m (total error)
M. Schiller (CER overview of the B2DXFitters package July 9th-10th, 2015

DecRateCoeff combining taggers

DecRateCoeff: extra: combining taggers (5/7)

m step 2b: work out tagging efficiency asymmetries post
combination

m splitting OS and SSK taggers into OS only, SSK only and OS+SSK
changes the tagging efficiencies and asymmetries for the three
“new taggers”

m look at standalone/taggingtoy/eps.c to see how to calculate it

> make eps; ./eps

Combining tagging efficiencies (signal):

0S: eps = 0.387000+/-0.003000 Delta eps = -0.001970+/-0.601260
SSK: eps = 0.477000+/-0.003000 Delta eps = 0.000220+/-0.000040

0S only: eps=0.202401+/-0.001952 a=-0.002756+/-0.001628
SSK only: eps=0.292401+/-0.002330 a= 0.001837+/-0.001029
0S+SSK: eps=0.184599+/-0.001843 a=-0.002315+/-0.001629

Correlation:
1.00000000e+00 -9.63105978e-01 2.49481592e-01 1.01449534e-02 7.02032244e-03 1.02339761e-02
9.63105978e-01 1.00000000e+00 2.03354154e-02 -8.05565545e-03 -5.77788479%e-03 -8.17299797e-03
2.49481592e-01 2.03354154e-02 1.00000000e+00 8.98034829%e-03 5.01061453e-03 8.88495266e-03
1.01449534e-02 -8.05565545e-03 8.98034829e-03 1.00000000e+00 -9.99652998e-01 9.98788285e-01
7.02032244e-03 -5.77788479e-03 5.01061453e-03 -9.99652998e-01 1.00000000e+00 -9.97590361e-01
1.02339764e-02 -8.17299794e-03 8.88495268e-03 9.98788284e-01 -9.97590361e-01 1.00000000e+00

m correlation matrix ordered (605, €SSK €0S+SSK» A0S, ASSK » a05+55,<)

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 37/ 64 %

DecRateCoeff combining taggers

DecRateCoeff: extra: combining taggers (6/7)

m step 3: set up fit

m get mistag templates for the three taggers (OS only, SSK only,
OS+SSK) from the data added in step 1

m use constants for six calibrations from step 2a

m use tagging efficiencies and asymmetries from step 2b

m set up constraints for calibration constants (12D) and tagging
efficiencies and asymmetries (6D), see next slide

m then, use this DecRateCoeff constructor:

DecRateCoeff(const charx name, const char+ title, Flags flags,
RooAbsCategory& qf, RooAbsCategory& qt,
RooAbsReal& Cf, RooAbsReal& Cfbar,
RooAbsReallValue& etaobs, RooArgList& etapdfs,
RooArgList& tageffs, RooArglListé& etas, RooArgList& etabars,
RooAbsReal& aprod, RooAbsRealé& adet,
RooArgListé& atageffs);

m same as before, RooArgLists are ordered OS only, SSK only,
OS+SSK

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 38/ 64 ‘ﬂé

DecRateCoeff combining taggers

DecRateCoeff: extra: combining taggers (7/7)

m what remains is to show how to construct the 6D or 12D
constraints

m numerially tricky, since cov. matrices damn near singular

m special routine which can recover...

from B2DXFitters.GaussianConstraintBuilder import GaussianConstraintBuilder
cbuilder = GaussianConstraintBuilder(ws, {
‘GammaLb’: 0.006, # constrain GammaLb to within 0.006
constrain S+Sbar, S-Sbar for Bd2DPi from PDG values (name: ['formula’, [params], mean, error])

"Bd2DPi_avgSSbar’: ['0.5%(@0+@1)’, [’Bd2DPi_S’, 'BA2DPi_Sbar’], +0.046, 0.023]
'Bd2DPi difSSbar’: ['@.5+(@®-@l)’, ['Bd2DPi S’, 'BA2DPi Sbar’'], -0.622, .621],
‘multivar_Bs2DsPiTagEffAsyms’: [# name: multivar_something

list of variables

['Bs2DsPi _TagEff@', 'Bs2DsPi_TagEffl’, 'Bs2DsPi_TagEff2’,

'Bs2DsPi_AsymTagEff0’, 'Bs2DsPi_AsymTagEffl’, 'Bs2DsPi_AsymTagEff2’ 1,

errors

0.001952, ©.002330, 0.001843, 0.001628, 0.001029, 0.001629],

correlation matrix (always give full precision - only shortened here to fit on slide!)

e

[1.00000000e+00, -9.63105978e-01, 2.49481592e-01, 1.01449534e-02, 7.02032244e-03, 1.02339764e-02]

[-9.63105978e-01, 1.00000000e+00, 2.03354154e-02, -8.05565545e-03, -5.77788479%e-03, -8.17299794e-03],

[2.49481592e-01, 2.03354154e-02, 1.00000000e+00, 8.98034829e-03, 5.01061453e-03, 8.88495268e-03],

[1.01449534e-02, -8.05565545e-03, 8.98034829e-03, 1.00000000e+00, -9.99652998e-01, 9.98788284e-01]

[7.02032244e-03, -5.77788479e-03, 5.01061453e-03, -9.99652998e-01, 1.00000000e+00, -9.9759036le-01],

[1.02339764e-02, -8.17299794e-03, 8.88495268e-03, 9.98788284e-01, -9.97590361le-01, 1.00000000e+00],],

any other constraints you may have

get RooArgSet for use with fitTo’s RooFit.ExternalConstraints option
constraints = cbuilder.getSetOfConstraints()

m very useful to handle all your constraint needs (config
dictionary!)

M. Schiller (CER overview of the B2DXFitters package July 9th-10th, 2015 39/ 64 %

resolution model

resolution model

resolution model

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 40/ 64 ‘ﬂé

resolution model, k factors

resolution model, k-factors

m three big subtopics:
m obtaining resolution model
m considerations for a fast fit
m k-factors (partially reconstructed/misIDed modes)

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 41/ 64 ‘ﬂé

resolution model, k factors obtaining a resolution model

obtaining a resolution model

m easy, here are examples:

from B2DXFitters.resmodelutils import getResolutionModel

config = {
'DecayTimeResolutionModel’: ’'GaussianWithPEDTE’,
'DecayTimeResolutionBias’ ' # if there is a shift

"DecayTimeResolutionScaleFactor’: 1.15, # usually the errors need a bit of scaling
"Acceptance’: ’Spline’, # has to work closely with spline acceptance classes
"Context’: 'GEN' # or 'FIT’, as the case may be

time is decay time variable, timeerr is decay time error
get spline acceptance from somewhere

acc = #...
resmodel, acc = getResolutionModel(ws, config, time, timeerr, acc)

m when you need an average decay time, use

config = {
’DecayTimeResolutionModel’: {
"sigmas’: [sigma_1, sigma_2, ..., sigma_N]
"fractions’: [f_1, f.2, ..., f-N-1] } # non-recursive, i.e. add up to 100 %

}

B you can use scripts/AvgResModel.py to fit the widths and
fractions from a decay time error distribution

— see docs in python/B2DXFitters/resmodelutils.py

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 42/ 64 ‘ﬂé

resolution model, k factors considerations for a fast fit

considerations for a fast fit (1/2)

m with per-event time errors, we get
P(t) ® G(t — t'|ot) - P(o¢)

— recalculation of normalisation /(o) = [dt P(t') @ G(t — t'|o}) for
every single event!
m despite analytical normalisation of convolution integral:
SLOOOOOW!
m however, /(o¢) varies slowly with o

Io)
(sketch)

Oy

— can tabulate in 100 points, and interpolate in between (fast!)

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 43/ 64 ‘ﬂé

resolution model, k factors considerations for a fast fit

considerations for a fast fit (2/2)

m need to tell RooFit to use the interpolation trick:

from B2DXFitters.timepdfutils import parameteriseResModelIntegrals

config = { # tell how many bins in time error we need for table that’s accurate enough
'NBinsProperTimeError’: 100
}

make it so!
parameteriseResModelIntegrals(config, ws, timeerrpdf, timeerr, resmodel)

m will mostly be handled by buildBDecayTimePdf
— see docs in python/B2DXFitters/timepdfutils.py

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 44/ 64 ‘ﬂé

resolution model, k factors k-factors

k-factors (1/3)

m lifetime is calculated along the lines of t = X5y —)?p\/‘%

m for partially reconstructed and misid’ed modes, we get %
wrong

m idea: take correction factor from MC:

_ (mg,/|P|)true
(mg,/|Pl)reco
m can correct by substitution t — k-t

B decay B decay

2 8000

8000

2 7000

6000 6000 {H

5000

5000 {H
= DFOTOE e 1 A2 a1 s

sooo s000

3000 3000 {14

2000 [2000 [+

1000 1000

plots: Suvayu Al

0

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 45/ 64 ‘ﬂé

resolution model, k factors k-factors

k-factors (2/3)

efactor (mip) - mBresn_Lb2Dsstp kefactor (mip) - mBresn_Bs2DsstPi efactor (m/p) - mBresn_BAZDK efactor (m/p) - mBresn

efactor (m/p) - mBresn_Bs2DsRho factor (mip) - mBresn_Bs2DsPi efactor (mip) - mBresn_Lb2Lck
) =

8

s &

plots: Suvayu

m can now put this into toy generator(s) for DsK
m can also use it in cFit to get the BG description correct:

dr dr

GG T,AT, Am) — /dk P(k) - O (£ kT, kAT, ksm)

dt

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 46 / 64 %

resolution model, k factors k-factors

k-factors (3/3)

m convenient to express k-factor smearing as resolution model:
RooKResModel

m average correction for each event can be precalculated and

from B2DXFitters.timepdfutils import applyKFactorSmearing

config = {
'NBinsTimeKFactor’: 100, # use 100 bins to bin k-factor distributions
}

time - decay time observable

timeresmodel - resolution model (after applying spline acceptance)

kvar - k-factor variable (unobservable!)

kfactorpdf - k-factor distribution for mode

last argument: list of targets { t_i } for substitution t_i -> k * t_i

update timeresmodel to include k-factor smearing
timeresmodel = applyKFactorSmearing(config, ws, time, timeresmodel, kvar, kfactorpdf, [Gamma, DeltaGamma, DeltaM]

m will mostly be handled by buildBDecayTimePdf
— see docs in python/B2DXFitters/timepdfutils.py

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 47 / 64 ‘ﬂé

python, RooFit and ownership

python, RooFit and ownership

python, RooFit
and ownership

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 48 / 64 ‘ﬂé

python, RooFit and ownership

python, RooFit and ownership

m python’s objects are reference-counted
m no need for memory management
m C++/RooFit uses explicit memory management
m need i
m ownership transfer often not clear in ROOT/RooFit
(ownership: which code is responsible for calling delete)
m worse: RooFit clones objects all over the place...

— easy to get confused (or get python/ROOT confused)
m can you spot what’s wrong with that code:

mean = RooRealVar(’mean’, ’mean’, 3.4, -10., 10.)
sigma = RooRealVar(’sigma’, ’'sigma’, 1.0, 0., 5.)
x = RooRealVar(’'x’, 'x’, 0., -10., 10.)

pdf = RooGaussian(’g’, 'g’, x, mean, sigma

ws = RooWorkspace('ws’)
ws.__getattribute__(’import’) (pdf)

get data set from somewhere
pdf.fitTo(dataset)

write pdf with fitted parameters to ROOT file
ws.writeToFile(’fitresult.root’

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 49 / 64 ‘ﬂé

python, RooFit and ownership

python, RooFit and ownership

okay, let’s go through the example slowly
m create variables and pdf - all fine so far...

mean = RooRealVar(’mean’, 'mean’, 3.4, -10., 10.)
sigma = RooRealVar(’sigma’, 'sigma’, 1.0, 0., 5.)
x = RooRealvar(’x’, 'x’, 0., -10., 10.)

pdf = RooGaussian(’g’, 'g’, x, mean, sigma

m create and import into workspace

ws = RooWorkspace('ws’)
ws.__getattribute__(’import’) (pdf)

! pdf, sigma, mean, x are cloned, and only the cloned versions are
in the workspace!

get data set from somewhere
pdf.fitTo(dataset)

! fit happens on original objects, not the ones in workspace

write pdf with fitted parameters to ROOT file
ws.writeToFile(’fitresult.root’)

! wrote cloned objects with workspace — these have the values
before the fit!

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 50/ 64 ‘ﬂé

python, RooFit and ownership

python, RooFit and ownership

m this is a nasty interaction between python and ROOT
m need to be very careful which version of the object we use!

m better: only keep one version around:

from B2DXFitters.WS import WS

ws = RooWorkspace ('ws’)

mean = WS(ws, RooRealVar(’'mean’, 'mean’, 3.4, -10., 10.))
sigma = WS(ws, RooRealVar(’sigma’, 'sigma’, 1.0, 0., 5.))
x = WS(ws, RooRealVar(’'x’, 'x’, 0., -10., 10.))

pdf = WS(ws, RooGaussian(’'g’, 'g’, x, mean, sigma))

get data set from somewhere
pdf.fitTo(dataset)

write pdf with fitted parameters to ROOT file
ws.writeToFile(’fitresult.root’)

m WS(ws, X) imports X into ws, and returns the workspace’s copy
of X

— only one copy of the object around, confusion avoided
m Use WS(ws, X) in python. Always.

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 51/ 64 ‘ﬂé

python, RooFit and ownership

python, RooFit and ownership

m rules of the game (to avoid leaks and crashes):

m call ROOT.SetMemoryPolicy (ROOT.kMemoryStrict) (done by
import B2DXFitters)
m C++ objects created from within python are owned by python
m will be freed when reference count drops to zero
m if C++ is to take ownership, use ROOT.SetOwnership(obj, False)
m objects returned from C++/ROOT routines are not owned by
python
B C++ code must call delete or similar
B things like e.g. pdf.createIntegral(...) which return pointers
to new (unowned) object must then call ROOT.SetOwnership(obj,
True) in python to avoid leaks

m RooWorkspaces own all contained objects

m don’t import what you do not need
m objects that are only needed temporarily belong in a temporary
workspace

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 52/ 64 ‘ﬂé

data set handling
data set handling

data set handling

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 53/ 64 ‘ﬂé

data set handling importing/exporting tuples

data sets: readDataSet (1/2)

m tuples can come from different sources

m should be possible to quickly fit with tuple of a colleague (with
different branch names etc)

m example:

from B2DXFitters.datasetio import readDataSet

seed = 42 # it’s easy to modify the filename depending on the seed number
configdict = {

file to read from

‘DataFileName’: '/some/path/to/file/with/toy %04d.root’ % seed,

data set is in a workspace already

'DataWorkSpaceName’ : 'FitMeToolWS’,
name of data set inside workspace
‘DataSetNames’ ‘combData’ ,

mapping between observables and variable name in data set
"DataSetVarNameMapping’: {

‘sample’: 'sample’, # phipi, kstk, kpipi, pipipi etc
"mass’ : *labe_MassFitConsD_M',

"pidk’: "labl_PIDK’,

"dsmass’: 'lab2_MM',

“time’: "labe_LifetimeFit_ctau’,

"timeerr’: 'lab0_LifetimeFit ctauErr’,

‘mistag’: 'tagOmegaComb’,

"qf’: "labl ID’,

gt " tagDecComb’,

sweights need to be combined from different branches in this

case, only one of the branches is ever set to a non-zero value,

depending on which subsample the event is in

"weight’: (’nSig_both_nonres_Evts_sw+nSig_both_phipi_Evts_sw+’
"nSig_both_kstk_Evts_sw+nSig both_kpipi_ Evts_sw+’
"nSig_both_pipipi Evts_sw’)

}

}

get observables from workspace ws

obs = RooArgSet()

for obsname in config[’DataSetVarNameMapping’].keys():
obs.add(ws.obj (obsname))

now read the data set

data = readDataSet(configdict, ws, obs)

overview of the B2DXFitters package July 9th-10th, 2015 54/ 64 %

data set handling importing/exporting tuples

data sets: readDataSet (2/2)

m will read data sets from RooWorkspace or flat NTuple

m sanitise input (qf/qt are categories, often people write doubles to
tuple!)

m simple observable names in fit, irrespective of input
(branch names are horrible!)

m simple formula support on input:
m imagine people write final state charge and hasOscillated to
tuple:
st ot atea:
m or s-weights come per D; final state:

‘weight’: ’sw_phipi+sw_kstk+sw_kpipi+sw_pipipi’

— very flexible input routine!

— docs in python/B2DXFitters/datasetio.py

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 55/ 64 ‘ﬂé

data set handling importing/exporting tuples

data sets: writeDataSet (1/2)

m writing data sets to an ntuple is just as easy:

from B2DXFitters.datasetio import writeDataSet

data = # get RooDataSet from somewhere
writeDataSet (data,
' /path/to/some/file. root’,
’datasetnameinrootfile’,

variable mass in data is renamed to bsmass in file, pidk is
uppercased

'mass’: 'bsmass’, # name in data: branch name

"pidk’: 'PIDK’

other observables in data remain "unrenamed"

bl

— docs in python/B2DXFitters/datasetio.py

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 56/ 64 ‘ﬂé

data set handling reading templates

templates: readTemplatelD

m reads from histogram, or RooDataSet or pdf from a workspace

m imports into given workspace, optionally "renaming" pdf
observable

from B2DXFitters.datasetio import readTemplatelD

mistagpdf = readTemplatelD(
'0STagger. root’, # file name

None, # None for plain histogram, or name of workspace
'mistag’, # name of observable in file

"heta0S’, # histogram name in file, or name in workspace
s, # workspace into which to import

ws.obj ('mistag’), # observable to "connect to" in ws

'Mistag_0S_") # prefix for imported pdf

m will read histo heta0S from 0STagger. root
m creates Mistag_0S_Pdf in ws, which depends is mistag

— docs in python/B2DXFitters/datasetio.py

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 57/ 64 ‘ﬂé

tagging calibration
tagging calibration

tagging calibration

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 58/ 64 ‘ﬂé

tagging calibration

tagging calibration

m needless to say, these routines can be used for tagging calibrations,
too
m won’t go into too much detail, but...
m calibrations with per-event mistag are trivial:
m simply use MistagCalibration class, and float py and p;
m calibrations using tagging categories aren’t much more
complicated:
B use getMistagBinBounds to calculate suggestions for category
boundaries
B use getTrueOmegasPerCat in toys to get the “right answer” for the
per-category w; boundaries
B use getEtaPerCat to calculate suggestions for category average
mistags n; (fit starting values)
m use fitPolynomialAnalytically to obtain calibration parameters
after the time fit has run
B TaggingCat and RooBinningPdf classes implement tagging
categories

— see docs in python/B2DXFitters/taggingutits.py

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 59/ 64 ‘ﬂé

useful scripts

useful scripts

useful scripts

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 60 / 64 ‘ﬂé

useful scripts

useful scripts (1/2)

m there are a lot of useful little helpers in B2DXFitters

m would like to introduce some:
m from python/B2DXFitters/utils.py:
B setConstantIfSoConfigured:
takes list of const. parameters, and changes pdf inputs accordingly
B printPDFTermsOnDataSet:
printout of the value of each PDF component for debugging
B configDictFromFile, configDictFromString,
updateConfigDict to implement configuration files
m python/B2DXFitters/TLatexBeautifier.py:
rewrites simple strings like “Bs2DsK” according to simple rules,
suitable as input to TLatex (plots!)

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 61/ 64 ‘ﬂé

useful scripts

useful scripts (2/2)

m and there’s more:

m python/B2DXFitters/FitResult.py:

pretty-print result, optionally blinding it'
m scripts/printFitResult.py:

print a fit result from a file (and unblind, if desired)
m scripts/make_histos.py:

given a set of toy results, plot pulls and residuals

'our blinding strategy is that we solenmly promise to never ever look at data
results before unblinding; RooFit/Minuit output is disabled for data fits, and we
use FitResult for printing (reason: RooFit’s blinding mechanism “unblinds” itself
when the parameter limits are close)
M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 62/ 64 ‘ﬂé

conclusion

conclusion

conclusion

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 63/ 64 ‘ﬂé

conclusion

conclusion

m the B2DXFitters package can do a lot of things
m and it is usually quite performant

m most (if not all) of the really nasty (time) PDF building is
handled by buildBDecayTimePdf

m to use it correctly (or debug it), you still need to have an idea of
what goes on inside
m | hope the black box has just become a little more transparent...

m | hope there was something interesting or useful for everyone!

m feel free to ask me to add whatever you feel is missing from
these slides!

M. Schiller (CERN) overview of the B2DXFitters package July 9th-10th, 2015 64/ 64 ‘ﬂé

	
	Padova

	introduction
	package structure
	news for the time fitting part

	introduction time fit
	philosophy
	buildBDecayTimePdf

	RooBDecay
	acceptance
	splines
	binned approximation

	DecRateCoeff
	average mistag
	per-event mistag
	asymmetries
	combining taggers

	resolution model
	resolution model, k factors
	obtaining a resolution model
	considerations for a fast fit
	k-factors

	python, RooFit and ownership
	data set handling
	importing/exporting tuples
	reading templates

	tagging calibration
	useful scripts
	conclusion

