

GammaCombo

Matthew Kenzie

CERN
July 9, 2015

Introduction

- Not designed to be a technical talk
- Just some ideas for you guys to think about as analysts
- Instructions for getting the package are available at: http://gammacombo.hepforge.org
- There is an example tutorial
- There are instructions for reproducing standard plots
- There is a quite extensive (~ 40 pages) users manual here: http://gammacombo.hepforge.org/web/HTML/GammaComboManual.pdf

GammaCombo on the web

http://gammacombo.hepforge.org

1. Measuring gamma

(1) Measuring gamma
(2) The GammaCombo framework
(3) How to make a combination

4 Just a little bit of stats
(5) The next γ combo

6 Summary

Measuring gamma

- Look for decays of type $B \rightarrow D h$
- Use the interference between the favoured and suppressed decays

Favoured

Suppressed

LHCb gamma measurement

- The goal is to provide the physics community with a single measurement of CKM angle from measurements made using LHCb
- Subsequently it is better for us if we have one (Gaussian-ish) number

Current result

$B \rightarrow D K$ (robust)	$B \rightarrow D h$ (full)
$\gamma=72.9_{-9.9}^{+9.2 .2}$	$78.9_{-7.4}^{+5.8}$ $72.8_{-1.3}^{+1.9}$

Uncertainty on gamma?

Current precision	$\sim 10^{\circ}$
After Run 2	$\sim 3-4^{\circ}$
After Upgrade	$<1^{\circ}$
Future upgrade	?????
Current indirect (CKM)	$\sim 1-2^{\circ}$
Belle2	$\sim 1-2^{\circ}$
Hard to know without central	
values of other parameters	

Uncertainty on gamma

Something to watch out for

- Adding measurements to a combination can increase the uncertainty
- It can be difficult to estimate the error if you don't know the central values

For example GGSZ analyses (inputs are $x_{ \pm}, y_{ \pm}$which subsequently constrain $r_{B}, \delta_{B}, \gamma$:

2. The GammaCombo framework

(1) Measuring gamma
(2) The GammaCombo framework
(3) How to make a combination

4 Just a little bit of stats
(5) The next γ combo
(6) Summary

The framework in a nutshell

- GammaCombo is a statitical combination package
- hosted on github here
- Each use combination as its own subpackage
- hosted on CERN gitlab here
- Confusingly the one for the Ihcb gamma combination is also called gammacombo

Note: the terminology is confusing. There is a github organization, a gitlab group, the package core and one of the subpackages which ALL have the name "gammacombo"

Some publicity

- GammaCombo is used for many combinations
- You can find many more details at the webpage: http://gammacombo.hepforge.org

Some encouragement

- Your measurement will (nearly) always be useful!

Some more publicity

- Getting more and more users of GammaCombo
- Lots of effort has been put in to make it more user friendly, more flexible and provide "prettier" output
- Webpage with (quite) extensive documentation: gammacombo.hepforge.org
- I plan on adding a bunch of standard statistical tools in there as well (for doing simple things that you can't be bothered to work out on pen/paper)
- Propagating errors
- Combining / comparing sets of measurements
- CLs tools
- Covariance matrix calculations etc.

Contributors are always welcome

It should be fairly easy to pick up the code and use it out of the box
3. How to make a combination
(1) Measuring gamma
(2) The GammaCombo framework
(3) How to make a combination

4 Just a little bit of stats
(5) The next γ combo

6 Summary

Adding a measurement to the combination

- How γ gets constrained depends on the final state and the "type" of analysis (e.g. GGSZ, GLW/ADS, $D_{s}^{+} K$)
- HFAG has a really good page on all of them and the equations that can be used to constrain γ :
http://www.slac.stanford.edu/xorg/hfag/triangle/latest/\#gamma_DCPK
- For example (GLW):

$$
\begin{align*}
& R_{C P}^{ \pm}=1+r_{B}^{2} \pm 2 r_{B} \cos \left(\delta_{B}\right) \cos (\gamma) \tag{1}\\
& A_{C P}^{ \pm}=\frac{ \pm 2 r_{B} \sin \left(\delta_{B}\right) \sin (\gamma)}{R_{C P}^{ \pm}} \tag{2}
\end{align*}
$$

Setting up a constraint

- Build a PDF for each input to the combination
- This gets converted to a likelihood which can be minimised / scanned
- 99% of the inputs to gamma combo are multi-variable Gaussians

$$
\begin{equation*}
P D F=\operatorname{Gaus}_{n D}(o b s, \text { theory }, \text { covMatrix }) \tag{3}
\end{equation*}
$$

where,

$$
\begin{align*}
& \text { obs }=\binom{R_{C P}}{A_{C P}}, \\
& \text { theory }=\binom{1+r_{B}^{2} \pm 2 r_{B} \cos \left(\delta_{B}\right) \cos (\gamma)}{\left(\pm 2 r_{B} \sin \left(\delta_{B}\right) \sin (\gamma)\right) / R_{C P}^{ \pm}}, \\
& \text {covMatrix }=\left(\begin{array}{cc}
\sigma_{R_{C P}}^{2} & \sigma_{R_{C P}} \rho\left(R_{C P}, A_{C P}\right) \sigma_{A_{C} P} \\
\sigma_{A_{C P}} \rho\left(R_{C P}, A_{C P}\right) \sigma_{R_{C P}} & \sigma_{A_{C P}}^{2}
\end{array}\right) \tag{4}
\end{align*}
$$

Combining measurements

- Each input (measurement / analysis) is summarised with a PDF ${ }^{[i]}$
- Take the product of all the PDFs to make a combined PDF
- Then construct a negative log likelihood function and minimise it
- Profile over all parameters
- This is the so called PROB method (the standard profile likelihood)
- This is cheap and fast
- Also have other statistical methods e.g:

1. Feldman-Cousins
2. Feldman-Counsins (plugin)
3. Feldman-Counsins (BergerBoos)
4. Feldman-Cousins (Cousins-Hyland)

- These are exspensive and slow

For studies and checks we always use the PROB method. PLUGIN used for producing results and final numbers

[^0]
External inputs

- Several measurements need external input
- For example many of the $B \rightarrow$ Dh modes can have D mixing (depending on the final state of the D being studied)
- Use latest charm mixing input from CLEO and HFAG
- $B_{s}^{0} \rightarrow D_{s}^{+} K$ needs input of ϕ_{s}
- Use latest combination of ϕ_{s} from HFAG
- These are constructed in a similar way to the measurement PDFs above

Something to be careful about

We need to make sure our single analysis measurements are independent of external input which GammaCombo will reuse For example: when you do your analysis fit for x make sure you're not constraining some other parameter y if it will then get floated (profiled) in GammaCombo

Note: if you need external input a class for it probably already exists somewhere in the code

Why use Gaussian inputs?

This is a request to all analysts:

Gaussian is best

Try your best to make sure that your output observables are Gaussian
Some reasons why:

- These numbers are nearly always available from the paper alone
- Helps with reproducibility - information is public
- The likelihood is easy to parametrise (n-dimensional Gaussian)
- Minimisation code (scanning parameter space) is effective for Gaussian distributions
- You much less likely to miss minima hidden in parameter space
- The PROB method is much more likely to give good agreement with the PLUGIN method
- It is particulary annoying if you have done all your preliminary studies with the PROB but then you get to the end and realise things are very different with the PLUGIN
- You are more likely to get a Gaussian (or close to Gaussian) outputvalue
- This is of huge importance for people who use our results of γ

What about non-Gaussian inputs

- This of course can be done
- A GammaCombo input PDF can be of any type
- So you could write your own (as long as it inherits from RooAbsPdf)
- Or you could make it from a histogram (RooHistPdf and similar classes)
- Sometimes this is unavoidable - for example CLEO D-mixing input

Non-Gaussian inputs need justification
If it is absolutely essential it can be done

4. Just a little bit of stats

(1) Measuring gamma
(2) The GammaCombo framework
(3) How to make a combination

4 Just a little bit of stats
(5) The next γ combo

6 Summary

Plugin or Prob?

- Prob - This is the standard profile likelihood
- Its fast (even in 2D)
- Plugin - This is an implementation of the Feldman-Cousins plugin method
- Fix nuisance parameter values
- Throw toys from a particular observable value (e.g. γ)
- Compute 1-CL from the toys
- Other methods are available

Method	Notes
Feldman Cousins (full)	Generate in all possible dimensions (don't fix nuis- nace parameters) - guaranteed coverage Generate random nuisance values within the toys in a uniform confidence interval (90\%, 95\%, 99\%)
Cousins-Hyland	Generate random nuisance values within the toys given a Gaussian distribution from the PROB method (used in Higgs a lot)

Plugin or Prob?

- With simple combinaions of Gaussian numbers which are not near boundaries - Рrob is sufficient

- This is not necessarily the case even with nice Gaussian inputs if you hit a physical parameter limit

Plugin or Prob?

Plugin or Prob

For LHCb γ combo we always present results with Plugin We have then before made a further correction for undercoverage if necessary

5. The next γ combo

(1) Measuring gamma
(2) The GammaCombo framework
(3) How to make a combination

4 Just a little bit of stats
(5) The next γ combo

6 Summary

A rough plan

- The current plan is for a CONF note sometime soon (i.e. this summer)
- The future plan is a Run 1 "legacy" paper which summarises all $3 \mathrm{fb}^{-1}$ results from LHCb
- This will be sometime next year (hopefully early next year)
- This depends on who is ready
- If you want to make it in for this combination - get working :) !

6. Summary

(1) Measuring gamma
(2) The GammaCombo framework
(3) How to make a combination

4 Just a little bit of stats
(5) The next γ combo
(6) Summary

Summary

- GammaCombo on the web:
http://gammacombo.hepforge.org
- Contributors are always welcome
- It should be fairly easy to pick up the code and use it out of the box
- Somethings to watch out for:
- Adding measurements to a combination can increase the uncertainty
- It can be difficult to estimate the error if you don't know the central values
- Make sure you are not using a constraint in your fit that GammaCombo will do something different with
- Try to make output observables Gaussian
- Bear in mind the Рrob and Plugin methods can give different results

Thanks for listening!

[^0]: ${ }^{[i]}$ implemented in RooFit so must inherit from RooAbsPdf

