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Introduction: Color flow decomposition
I Multi-parton QCD amplitudes have a complicated structure.

I Factorization of color and kinematic information:
𝒜 =

∑︀
i CiAi .

I Ci = Products of ∈ {copen(qi , g , . . . , g , q̄j̄), cclosed(g , . . . , g)}
(phase space independent)

I “Partial amplitudes”: gauge invariant set of color stripped
diagrams (phase space dependent but independent of the color
flow ). Color ordering

I Color flow basis: SU(N) → U(N)/U(1)

cclosed(g1, . . . , gn) = 𝛿12̄𝛿23̄ . . . 𝛿n1̄

copen(qi , g1, . . . , gn, q̄j̄) = 𝛿iq 1̄𝛿12̄ . . . 𝛿nj̄q

U(1) gluons: Carry no color informations; couple only
between quark lines, not among each others and not to U(N)
gluons.



Introduction:Primite amplitudes

I Color stripped Feynman rules (antysymmetric wrt exchanging
legs)

I Partial amplitudes are in general not cyclic ordered !
I Not-all diagrams in the sub-amplitudes have the same ordering

of the external legs.
I Express partial amplitudes Ai further through cyclic ordered

primitive amplitudes Pj

𝒜n =
∑︁
i

CiAi =
∑︁
i

Ci

∑︁
j

FijPj



Introduction:Examples

I Primitive amplitudes are obtained from gauge invariant set of
diagrams with a fixed cyclic ordering.

I Simple example at tree level
I Gluon Born Amplitude

𝒜tree =

(︂
gs√
2

)︂n−2 ∑︁
P(1,...,n−1)

cclosed(g1, . . . , gn)×A(0)
n (1, 2, . . . , n)

Here A
(0)
n (1, 2, . . . , n) = P

(0)
n (1, 2, . . . , n)

Born amplitude with one quark pair

𝒜tree
n =

(︂
gs√
2

)︂n−2 ∑︁
P(2,...,n−1)

copen(q1, g2, . . . , gn−1, q̄1)×

A(0)
n (q1, 2, . . . , n − 1, q̄1)

Here A
(0)
n (q1, 2, . . . , n − 1, q̄1) = P

(0)
n (q1, 2, . . . , n − 1, q̄1).



Introduction:Multiple quark pairs (tree-level)

I Amplitudes with distinct nq quark pairs

𝒜tree
n =

(︂
gs√
2

)︂n−2 ∑︁
𝜋∈Snq

∑︁
i1,i2,...,inq≥0

i1+i2+···+inq=n

∑︁
𝜎∈Sng

copen(q1, g𝜎1 , . . . , g𝜎i1
, q̄𝜋(1))copen(q2, g𝜎i1+1 , . . . , g𝜎i1+i2

, q̄𝜋(2))

. . . copen(qnq , g𝜎i1+···+inq−1+1 + · · ·+ g𝜎1+...nq
+ q̄𝜋(nq )

)

A0
n(q1, g𝜎1 , . . . , g𝜎i1

, q̄𝜋(1), q2, . . . , g𝜎i1+···+inq
, q̄𝜋(nq)

)

I All distinct colorflow combinations by summing all distinct
permutations of color indices:

I Permutations 𝜋 of nq antiquarks color indices
I Partitions/Distribution of

{︀
i1, . . . , inq

}︀
of ng gluons among nq

open color strings.
I Permutations 𝜎 of external gluon indices.



Primitive amplitudes and cyclicity

Sneak: Each partial amplitude can be associated to a a set {ui} of
r cyclic words! (𝜋 ⇒ {ui} ).
Two cyclic words are connected by a U(1) gluon
→ r − 1 U(1)− gluons.
Shuffles operations U(u1, . . . , ur ) among the r cyclic words yeld
all-cyclic orderings:

A
(0)
n =

(︂
− 1

N

)︂r−1 ∑︁
w∈U(u1,...,ur )

P
(0)
n (w)



Linearity on permutations space

Alphabet A = {ℓi} = {q1, . . . , qnq , q̄1, . . . , q̄nq , g1, . . . , gng }
Word w = ℓ1 . . . ℓn are ordered sequences of n = ng + 2nq letters.
Primitive amplitudes P(w) - Linear operators on the vector space
of cyclic words w:∑︁

w∈𝜆1w1+𝜆2w2

P(w) = 𝜆1P(w1) + 𝜆2P(w2)

Reflection identity: P(w) = (−1)nP(wT ), where
wT : w = ℓ1 . . . ℓn → ℓn . . . ℓ1.
Partial reflection, as e.g. P(q1, q̄1, q2, q̄2) = −P(q1, q̄1, q̄2, q2)
(antisymmetry of vertices)



Relations among primitive amplitudes
1. Kleiss-Kuijf relations Given the subwords w1 = ℓ𝛼1 . . . ℓ𝛼j and

w2 = ℓ𝛽1 . . . ℓ𝛽n−2−j
such that

{ℓ1} ∪ {ℓ𝛼1 , . . . , ℓ𝛼j} ∪ {ℓ𝛽1 , . . . , ℓ𝛽n−2−j
} ∪ {ℓn} = {ℓ1, . . . , ℓn}

P
(0)
n (ℓ1, ℓ𝛼1 , . . . ℓ𝛼j ℓnℓ𝛽1 . . . ℓ𝛽n−2−j

) = (−1)n−2−jP
(0)
n (ℓ1(w1⊔⊔wT

2 )ℓn)

Shuffle product

w1 ⊔⊔w2 =
∑︁

shuffles 𝜎

ℓ𝜎(1) . . . ℓ𝜎(r)

I All permutations, which preserve the relative order ℓ1 . . . ℓk
and ℓk+1 . . . ℓr .

I Exclude permutations where crossing of fermions lines cannot
be avoided.

2. Bern-Carrasco-Johansson (BCJ) relations

n−1∑︁
i=2

⎛⎝ n∑︁
j=i+1

2pi · pj

⎞⎠P
(0)
n (ℓ1ℓ3 . . . ℓiℓ2ℓi+1 . . . ℓn−1ℓn) = 0



The amplitude basis

The relations among tree-level primitive QCD amplitudes allow to
express all amplitudes for a given set of external particles in terms
of a set of basis amplitudes. The size of the basis is

Nbasis =

{︃
(n − 3)! nq ∈ {0, 1},
(n − 3)!

2(nq−1)
nq!

nq ≥ 2.

Primitive amplitudes with no crossed fermion lines may be
described by generalised Dyck words. Consider an alphabet
consisting of nq distinct opening brackets “(i” for qi and nq
corresponding closing brackets “)i” for q̄i . A generalised Dyck word
is any word from this alphabet with properly matched brackets.

NDyck =
(2nq)!

(nq + 1)!

is the number of generalized Dyck’s words with length 2nq .



The Amplitude basis

Let us now describe the amplitude basis for the various cases. For
nq = 0 the set of words corresponding to a possible basis is given
by

B = { ℓ1ℓ2...ℓn ∈ P(1, 2, . . . , n) | ℓ1 = g1, ℓn−1 = gn−1, ℓn = gn } ;

for nq = 1

B = { ℓ1ℓ2...ℓn ∈ P(1, 2, . . . , n) | ℓ1 = q1, ℓ2 = g1, ℓn = q̄1 } ;

for nq ≥ 2

B =
{︁
ℓ1ℓ2...ℓn ∈ Dycknq | ℓ1 = q1, ℓ2 ∈ {q2, ..., qnq}, ℓn = q̄1

}︁
.

An arbitrary primitive amplitude Pn(w) with w ∈ P(1, 2, . . . , n) is
a linear combination of primitive amplitudes Pn(wj) with wj ∈ B.



Review of scattering equations
Scattering equations (Cachazo, He, Yuan, 2013) (Naculich 2014)
Momentum configuration space of n external massless particles
(straigthfordwally extended to the massive case)

Φn = {(p1, p2, . . . , pn) ∈ (CM)n|p1+· · ·+pn = 0, p2gj = 0 = p2qj = p2q̄j}

fi (z , p) =
∑︁

j=1,j ̸=i

2pi · pj
zi − zj

= 0 z ∈ (CP1)n

If
∑︀

j ̸=i pi · pj = 0 PSL(2,C ) = SL(2,C )/Z2 invariance

zi →
azi + b

czi + d
ad − bc ̸= 0

n− 3 independent solutions modulo SL(2,C ) have (n− 3)! distinct
solutions
Example: n=4, fix (z1, z2, z3) = (0, 1,∞)

f1 =
2p1 · p2
0− 1

+
2p1 · p3
0−∞

+
2p1 · p4
0− z4

= 0 ⇐⇒ z4 = −p1 · p4
p1 · p2



The CHY representation of tree-level primitive QCD
amplitudes

All tree-level primitive QCD amplitudes have a representation in
the form

Pn (w , p, 𝜀) =
i

(2𝜋i)n−3

∫︁
dnz

Vol(PSL(2,C ))
×

∏︁
′𝛿 (fa (z , p)) Ĉ (w , z) Ê (z , p, 𝜀)

the primed product of delta functions stands for∏︁
′𝛿 (fa (z , p)) = (−1)i+j+k (zi − zj) (zj − zk) (zk − zi )

∏︁
a ̸=i ,j ,k

𝛿 (fa (z , p)) ,

taking into account that only (n − 3) scattering equations are
independent.



Short-hand notation

Define a n!-dimensional vector Pw with components

Pw = Pn (w , p, 𝜀)

a n!× (n − 3)!-dimensional matrix

M̂wj ≡ J
(︁
z(j), p

)︁
Ĉ
(︁
w , z(j)

)︁
and a (n − 3)!-dimensional vector

Êj ≡ Ê
(︁
z(j), p, 𝜀

)︁
.

The CHY representation amounts to

Pw = i M̂wj Êj ,

where a sum over j is understood.



The Parke-Taylor factor
We label the external particles of a primitive amplitude Pn by 1, ...,
n and the associated complex variables zj occurring in the
scattering equations by z1, ..., zn, such that the complex variable
zj corresponds to particle j .

I We define the standard cyclic factor C (w , z) for
w = ℓ1ℓ2 . . . ℓn by

C (ℓ1ℓ2 . . . ℓn, z) =
1

(zℓ1 − zℓ2) (zℓ2 − zℓ3) . . . (zℓn − zℓ1)

I The standard cyclic factor C (w , z), for z a solution of the
scattering equations, satisfies all the relations of the pure
gluonic primitive tree amplitudes.

I View C (w , z) and Ĉ (w , z) as linear operators on the words
vector space with basis on the permutations P(1, . . . , n)

C (𝜆1w1 + 𝜆2w2, z) = 𝜆1C (w1, z) + 𝜆2C (w2, z) ,

Ĉ (𝜆1w1 + 𝜆2w2, z) = 𝜆1Ĉ (w1, z) + 𝜆2Ĉ (w2, z) .



Definition of the generalized Parke-Taylor factor Ĉ
I For words with the first and the last letter fixed, with no

crossed fermionic lines and standard orientation of the lines

Ĉ (w , z) = C (w , z).

I For words with crossed fermionic lines

Ĉ (w , z) = 0.

I The generalized cyclic factor Ĉ (w , z)for words with
non-standard orientation of the fermionic lines can be
recursively expressed in terms of generalized cyclic factors for
word with standard orientation of the fermionic lines.

I

Ĉ (ℓ1w1ℓnw2, z) = (−1)|w2| Ĉ
(︁
ℓ1

(︁
w1 ⊔⊔wT

2

)︁
ℓn, z

)︁
.

(Kleiss-Kuijf relation)
I

Ĉ (w1ℓ1w2, z) = Ĉ (ℓ1w2w1, z) .

(Cyclic invariance)



On the generalized permutational invariant function Ê

We defined a n!× (n − 3)!-dimensional matrix M̂wj such that

Pw = i M̂wj Êj

by restricting for w ∈ B we get a Nbasis × (n − 3)! matrix.

I For w ∈ B, M̂wj depends on the standard Parke-Taylor factor.

I We first establish that the matrix M̂red
wj has full row rank:

rank M̂red
wj = Nbasis.

If M̂red
wj has full row rank, a right-inverse N̂red

jw exists. The
right-inverse might not be unique.

I Conjecture: the external orderings of a minimal amplitude
basis for nq > 0 remain linearly independent, when viewed as
the external ordering of pure gluonic amplitudes. We have
verified this conjecture for all amplitudes up to 10 points.



Conclusions and discussions

I In most phenomenological applications one usually just wants
the amplitude computed from a given set of external
four-momenta. The best way to do this numerically are
Berends-Giele recursion relations, or
Britto-Cachazo-Feng-Witten recusion relations. This does not
involve the scattering equations.

I Sometimes it is useful to have compact analytical formulae for
the scattering amplitudes. Using spinor techniques this can be
done for every specific helicity configuration and every specific
external ordering. Doing this for every helicity configuration
and every external ordering does not really give you a clue
how the results change as you change the helicity
configuration or the external ordering.

I Here the approach based on the scattering equations is useful:
It gives you a formula, which allows you to switch a single
helicity or to swap the order of two external particles. From
an aestetic point of view this is nice to know.
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