The Revival of Kaon Flavour Physics

Andrzej J. Buras
(Technical University Munich, TUM-IAS)

Bari, June 2016

Overture

B Physics Anomalies

$$
\begin{aligned}
& \text { 1. } \quad \mathbf{R}_{\mathrm{D}^{(1)}}=\frac{\operatorname{Br}\left(\mathrm{B} \rightarrow \mathrm{D}^{(1)} \tau \nu_{\tau}\right)}{\operatorname{Br}\left(\mathrm{B} \rightarrow \mathrm{D}^{(1)} \mu v_{\mu}\right)} \\
& \text { (3.5-4б) BaBar, LHCb, Belle }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Br}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)_{\mathrm{SM}}=(3.65 \pm 0.23) \cdot 10^{-9} \\
& \text { CMS +LHCb }\left(2.8_{-0.6}^{+0.7}\right) \cdot 10^{-9} ; \text { ATLAS }\left(0.9_{-0.9}^{+1.1}\right) \cdot 10^{-9}
\end{aligned}
$$

B Physics Anomalies

Many papers:

Violation of lepton flavour universality
New flavour violating interactions:
Z', Leptoquarks, Vector-like quarks, General 2HDM, U(2), .. ${ }^{\prime}$, \mathbf{H}^{+}, \ldots

But no particular signs of new sources of CP-violation!
Here: Anomaly in CP-violation in K-physics ($\varepsilon^{\prime} / \varepsilon$)

$$
\begin{aligned}
& \varepsilon^{\prime}=\mathrm{CP} \text {-violation in Decay }\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi \pi\right) \\
& \varepsilon=\mathrm{CP} \text {-violation in } \mathrm{K}^{0}-\overline{\mathrm{K}}^{0} \text { Mixing }
\end{aligned}
$$

B-Physics Flavour Anomalies

750 GeV Resonance

Kaon Flavour Physics

Plan for next 25 min

Highlights from 331, LHT, Vector-Like Quark Models

Section 1 $\varepsilon^{\prime} / \varepsilon$ strikes back

2015 Anatomy of $\varepsilon / \varepsilon$: 1507.06345

AJB

AJB

Martin Gorbahn

Matthias Jamin

Large N news 1507.06326

FSI
1603.05686

$\varepsilon^{\prime} / \varepsilon$ strikes back (CP-Violation in $\left.\mathrm{K}_{\mathrm{L}} \rightarrow \pi \pi\right)$

New results on hadronic matrix elements of QCD penguin $\left(B_{6}\right)$ and electroweak penguin $\left(B_{8}\right)$ operators

Large \mathbf{N} approach
to QCD

$: B_{6}<B_{8}<1$

AJB + Gérard (1507.06326)

Confirmed by Lattice QCD

Anatomy of

 $\varepsilon^{\prime} / \varepsilon$ in the Standard Model
:

$$
\left(\varepsilon^{\prime} / \varepsilon\right)=(1.9 \pm 4.5) \cdot 10^{-4} \quad \begin{aligned}
& \text { Jäger, Jamin } \\
& (1507.06345)
\end{aligned}
$$

$$
\left(\varepsilon^{\prime} / \varepsilon\right)=(6.0 \pm 2.4) \cdot 10^{-4} \text { for } B_{6}=B_{8}=0.76
$$

$\left(\varepsilon^{\prime} / \varepsilon\right)_{\text {exp }}=(16.6 \pm 2.3) \cdot 10^{-4}$	Possible
New Physics	$\quad(8.6 \pm 3.2) \cdot 10^{-4}$ for $B_{6}=B_{8}=1.0$

Z' general (AJB, Buttazzo, Knegjens, 1507.08672)
Littlest Higgs Model (Blanke, AJB, Recksiegel, 1507.06316)
331 Models (AJB, De Fazio, 1512.02869,1604.02344)
New Strategy (AJB, 1601.00005)
Vector-like Quarks (Bobeth, AJB, Celis, Jung, 1606.xxxx)

Loop Induced FCNC Processes

(B_{6})

(B_{8})

Four dominant contributions to $\varepsilon^{\prime} / \varepsilon$ in the SM
AJB, Jamin, Lautenbacher (1993); AJB, Gorbahn, Jäger, Jamin (2015)

Assumes that ReA_{0} and ReA_{2} ($\Delta I=1 / 2$ Rule) fully described by SM (includes isospin breaking corrections)

$$
\text { Why } B_{6}^{(1 / 2)}<B_{8}^{(3 / 2)}<1 \text { ? }
$$

and not $\quad B_{6}^{(1 / 2)}>1, \quad B_{8}^{(3 / 2)}<1 \quad \begin{gathered}\text { (Pallante, Pich... } \\ \text { 2000) }\end{gathered} \quad$ FSI

Answer in Large N (Dual QCD) Approach
 AJB + Gérard (1507.06326)

Before 2015 it was wrongly assumed that

$$
B_{6}^{(1 / 2)}=B_{8}^{(3 / 2)}=1 \text { at } \mu \approx 0(1 \mathrm{GeV})
$$

But $\begin{aligned} B_{6}^{(1 / 2)}=B_{8}^{(3 / 2)}=1 & \text { is large N prediction } \\ & \text { for } \mu=m_{\pi} \text { not } \mu=0(1 \mathrm{GeV})\end{aligned}$
Meson evolution $\mathrm{m}_{\pi} \rightarrow \mu=0(1 \mathrm{GeV})$ suppresses $B_{6}^{(1 / 2)}$ and $B_{8}^{(3 / 2)}$ below 1 and $B_{6}^{(1 / 2)}$ stronger than $B_{8}^{(3 / 2)}$ in accordance with quark evolution for $\mu>1 \mathrm{GeV}$

FSI in $\mathrm{K} \rightarrow \pi \pi$

AJB, Gérard 1603.05686

Relevant for $\Delta l=1 / 2$ Rule (in agreement with Pallante, Pich,...)
 Less important for $\varepsilon^{\prime} / \varepsilon$ (in variance with Pallante, Pich,...)

New application of dual QCD to $\mathrm{K} \rightarrow \pi \mathrm{I}^{+I^{-}}$ (Caluccio-Leskow, D’Ambrosio, Greynat, Nath, 1604.09721)

Section 2

$\varepsilon_{\mathrm{K}} \leftrightarrow \Delta \mathrm{M}_{\mathrm{s}, \mathrm{d}}$ tension in SM and CMFV

Monika Blanke

Universal Unitarity Triangle 2016

(CMFV)
AJB, Gambino, Gorbahn, Jäger, Silvestrini 0007085

Universal Unitarity Triangle 2016

CMFV :	$\bar{\rho}=0.170 \pm 0.013$
$\bar{\eta}=0.333 \pm 0.011$	
UT fit :	$\bar{\rho}=0.137 \pm 0.022$
$\bar{\eta}=0.349 \pm 0.014$	

Tensions between $\Delta M_{d, s}$ and ε_{K}

$$
\mathrm{S}_{1}: \quad\left|\varepsilon_{\mathrm{K}}\right| \leq(1.64 \pm 0.25) \cdot 10^{-3} \quad\left|\varepsilon_{\mathrm{K}}^{\mathrm{exp}}\right|=2.23 \cdot 10^{-3}
$$

$$
S_{2}: \quad \Delta M_{s} \geq(21.1 \pm 1.8) \mathrm{ps}^{-1} \quad\left(\Delta M_{s}\right)^{\exp }=17.56 / \mathrm{ps}
$$

$$
\left.\Delta M_{d} \geq(0.600 \pm 0.064)\right)^{-1} \quad\left(\Delta M_{d}\right)^{\exp }=0.506 / p s
$$

Intermezzo

$\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}$ and $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{\circ} v \bar{v}$ in the Standard Model

1503.02693

Waiting for $\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}$ and $\mathrm{K}_{\mathrm{L}} \rightarrow \pi \nu \bar{v}$

AJB, M. Lautenbacher, G. Ostermaier (9303284)
AJB, F. Schwab, S. Uhlig (0405132)

$\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}$ and $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}$ in the SM

QCD Corrections:
 NLO EW Corrections:

LD Effects:

+ Isospin breaking corrections

NLO Buchalla, AJB; Misiak, Urban (93, 98)
NNLO AJB, Gorbahn, Haisch, Nierste (2005)
Large $\mathrm{m}_{\mathbf{t}}$: Buchalla, AJB
(1997)

Exact NLO (m_{t}): Brod, Gorbahn, Stamou (2010)
" " (m_{c}): Brod, Gorbahn (2008)
Isidori, Mescia, Smith
(2005)

Mescia, Smith

TH uncertainties at the level of 2\% in BR

Unique in Flavour Physics !!

But significant parametric uncertainties

Data

due to $\left|\mathbf{V}_{\mathrm{ub}}\right|,\left|\mathbf{V}_{\mathrm{cb}}\right|, \gamma$

$$
\begin{aligned}
& \operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)=(17.3 \pm 11) \cdot 10^{-11} \\
& \operatorname{Br}\left(\mathrm{~K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}\right) \leq 2.6 \cdot 10^{-8}
\end{aligned}
$$

CKM Uncertainties

AJB, Buttazzo, Girrbach-Noe, Knegjens 1503.02693

$$
\begin{aligned}
& \operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)=(8.39 \pm 0.30) \cdot 10^{-11}\left[\frac{\left|\mathrm{~V}_{\mathrm{cb}}\right|}{0.0407}\right]^{2.8}\left[\frac{\gamma}{73.2^{\circ}}\right]^{0.74} \\
& \operatorname{Br}\left(\mathrm{~K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}\right)=(3.36 \pm 0.05) \cdot 10^{-11}\left[\frac{\left|\mathbf{V}_{\mathrm{ub}}\right|}{3.88 \cdot 10^{-3}}\right]^{2}\left[\frac{\left|\mathbf{V}_{\mathrm{cb}}\right|}{0.0407}\right]^{2}\left[\frac{\sin \gamma}{\sin (73.2)}\right]^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)=(8.39 \pm 0.58) \cdot 10^{-11}\left[\frac{\gamma}{73.2^{\circ}}\right]^{0.81}\left[\frac{\overline{\mathrm{Br}}\left(\mathrm{~B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)}{3.4 \cdot 10^{-9}}\right]^{1.42}\left[\frac{227.7}{\mathrm{~F}_{\mathrm{B}_{\mathrm{s}}}}\right]^{2.84} \\
& \operatorname{Br}\left(\mathrm{~K}^{+} \rightarrow \pi^{+} v \bar{v}\right)=(8.39 \pm 1.11) \cdot 10^{-11}\left[\frac{\left|\varepsilon_{\mathrm{K}}\right|}{2.23 \cdot 10^{-3}}\right]^{1.07}\left[\frac{\gamma}{73.2^{\circ}}\right]^{-0.11}\left[\frac{\mathrm{~V}_{\mathrm{ub}}}{3.88 \cdot 10^{-3}}\right]^{-0.95}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)=(8.4 \pm 1.0) \cdot 10^{-11} \\
& \operatorname{Br}\left(\mathrm{~K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}\right)=(3.4 \pm 0.6) \cdot 10^{-11}
\end{aligned}
$$

Section 3

$$
\begin{gathered}
\varepsilon^{\prime} / \varepsilon, \varepsilon_{\mathrm{K}}, \mathrm{~K} \rightarrow \pi v \overline{\mathrm{v}}, \Delta \mathrm{M}_{\mathrm{K}} \\
\text { beyond } \mathrm{SM}
\end{gathered}
$$

Section 3

$\varepsilon^{\prime} / \varepsilon, \varepsilon_{\mathrm{K}}, \mathrm{K} \rightarrow \pi \nu \bar{v}, \Delta \mathrm{M}_{\mathrm{K}}$

 beyond SM

 beyond SM}

AJB (1601.00005)

What are the implications of NP in $\varepsilon^{\prime} / \varepsilon$ and ε_{K} on $\mathrm{K} \rightarrow \pi \nu \bar{v}$ and $\Delta \mathbf{M}_{\mathrm{K}}$?

Strategy

AJB (1601.00005)

$\begin{aligned} & \left(\varepsilon^{\prime} / \varepsilon\right)^{N P}=\kappa_{\varepsilon^{\prime}} \cdot 10^{-3} \\ & 0.5 \leq \kappa_{\varepsilon^{\prime}} \leq 1.5 \end{aligned}$	$\varepsilon_{\kappa}^{\mathrm{NP}}=\kappa_{\varepsilon} \cdot 10^{-3}$ $0.1 \leq \kappa_{\varepsilon} \leq 0.4$	In some models $\mathrm{K}_{\mathrm{L}} \rightarrow \mu^{+} \mu^{-}$ more important than ε_{k}
(Im)	(Im, Re)	
		$\Delta_{\mathrm{L}}^{\text {sd }}(\mathrm{Z}), \Delta_{\mathrm{R}}^{\text {sd }}(\mathrm{Z})$
Re and Im Parts: \mathbf{Z} and \mathbf{Z}^{\prime} Couplings		$\Delta_{L}^{\text {sd }}(\mathbf{Z}), \Delta_{\text {R }}^{\text {sd }}(\mathbf{Z})$

$$
\begin{array}{|cccc|}
\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}, \mathrm{~K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}, \mathrm{~K}_{\mathrm{L}} \rightarrow \mu^{+} \mu^{-}, \Delta \mathbf{M}_{\mathrm{K}} \\
(\mathrm{Re}, \mathrm{Im}) & (\mathrm{Im}) & (\mathrm{Re}) & (\mathrm{Im}, \mathrm{Re}) \\
\hline
\end{array}
$$

Basic Structure of NP Contributions

AJB (1601.00005)

$$
\begin{aligned}
& \left(\varepsilon^{\prime} / \varepsilon\right)^{N P} \rightarrow \operatorname{lm} \quad \varepsilon_{K}^{N P} \rightarrow \operatorname{Im} \cdot \operatorname{Re} \\
& \left(\kappa_{\varepsilon^{\prime}} \geq 0.5\right) \quad\left(\kappa_{\varepsilon} \geq 0.1\right) \\
& \Delta M_{K}^{N P} \sim\left[(\operatorname{Re})^{2}-(\operatorname{lm})^{2}\right]
\end{aligned}
$$

Dominance of $\mathbf{Q}_{6}\left(\mathbf{Q}_{6}^{\prime}\right) \Rightarrow \mathrm{Im} \gg \mathrm{Re} \Rightarrow\left\{\Delta \mathrm{M}_{\mathrm{K}}^{\mathrm{NP}}<\mathbf{0}\right\}$

Dominance of $\mathbf{Q}_{8}\left(\mathbf{Q}_{8}^{\prime}\right) \Rightarrow \operatorname{Re} \gg \mathrm{Im} \Rightarrow\left\{\Delta \mathrm{M}_{\mathrm{K}}^{\mathrm{NP}}>\mathbf{0}\right\}$

Implications for

$$
\begin{array}{r}
\mathbf{R}_{+}^{\bar{v}}=\frac{\operatorname{Br}\left(\mathbf{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)}{\operatorname{Br}\left(\mathbf{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)_{\mathrm{SM}}} \\
(\mathbf{R e}, \mathrm{Im})
\end{array}
$$

$$
\mathbf{R}_{0}^{\mathbf{v}_{0}^{v}=\frac{\operatorname{Br}\left(K_{L} \rightarrow \pi^{0} v \bar{v}\right)}{\operatorname{Br}\left(K_{L} \rightarrow \pi^{0} v \bar{v}\right)_{S M}}} \underset{(\mathrm{Im})}{ }
$$

Lessons on $\varepsilon^{\prime} / \varepsilon, \varepsilon_{\mathrm{K}}, \mathrm{K} \rightarrow \pi v \overline{\mathrm{v}}$: BSM

AJB: 1601.00005

Lesson 1

Do not expect much from MFV (tensions cannot be removed) 1507.08672

We need new source of CP violation!

Lesson 2

Tree-Level Z with LH or RH FCNC currents

 (Anticorrelation of $\varepsilon^{\prime} / \varepsilon$ and $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}$) $\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}$ can be significantly enhanced$$
\begin{array}{|ll|}
\hline \text { LH } & \mathbf{R}_{+}^{v \bar{v}}<2 \\
\text { RH } & \mathbf{R}_{+}^{v \bar{v}}<5.7 \\
\hline
\end{array}
$$

\mathbf{Q}_{8}
\mathbf{Q}_{8}^{\prime}

Only small effects in $\varepsilon_{K}, \Delta \mathbf{M}_{K}$ allowed because of $K_{L} \rightarrow \mu^{+} \mu^{-}$upper bounds

The following plots from Robert Buras

Z with LH or RH Flavour Violating Couplings

Lesson 3

Tree-Level Z with LH + RH FCNC currents $\varepsilon^{\prime} / \varepsilon, \varepsilon_{\mathrm{K}}, \mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}$ and $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}$ can be simultaneously enhanced

Correlation depends on hierarchy between $\operatorname{Re} \Delta_{L, R}$ and $\operatorname{Im} \Delta_{L, R}$

Z with LH and RH Flavour Violating Couplings

Lesson 4

Correlation between $\varepsilon^{\prime} / \varepsilon, \mathrm{K} \rightarrow \pi v \bar{v}$ in Z^{\prime} scenarios depends on whether QCP Penguin $\left(Q_{6}\right)$ or EWP $\left(Q_{8}\right)$ dominates NP in $\varepsilon^{\prime} / \varepsilon$

Z^{\prime} Scenarios with LH Couplings $\Delta_{L}^{\text {sd }}\left(Z^{\prime}\right)$

 AJB (1601.00005)Dominance of QCD
Penguins $\left(Q_{6}\right)$ in $\varepsilon^{\prime} / \varepsilon$

Dominance of electroweak Penguins $\left(Q_{8}\right)$ in $\varepsilon^{\prime} / \varepsilon$

Pattern for
$\Delta_{\mathrm{R}}^{\mathrm{qa}}(Z) \approx 0(1)$
in $\varepsilon^{\prime} / \varepsilon$

- Strong correlation between K^{+}and K_{L} on the branch parallel to GN bound
- Very large effects in K_{L}, moderate in K^{+}
- $\left(\Delta M_{K}\right)^{N P}<0$ (could be 20\%)
- Both enhanced but anticorrelated

$$
\begin{array}{lll}
\mathbf{K}_{\mathbf{L}} \Uparrow & \mathbf{K}^{+} \Downarrow \text { with } \mathbf{K}_{\varepsilon^{\prime}} \Uparrow \\
& \left(\mathbf{K}^{+} \Uparrow \text { with } \mathbf{K}_{\varepsilon} \Uparrow\right) \quad \text { Only }(20-40) \% \text { effects }
\end{array}
$$

- $\left(\Delta M_{K}\right)^{N P}>0$ (below 10\%)

$$
\mathbf{M}_{\mathbf{z}}=\mathbf{3} \mathbf{~ T e V}
$$

$\operatorname{QCDP}\left(\mathbf{Q}_{6}\right)$

EWP $\left(Q_{8}\right)$

($R_{\Delta M}^{z}>0$ but small)
(Z)

Section 4

Highlights from 331, LHT, Vector-Like Quark Models

$\varepsilon^{\prime} / \varepsilon+\mathrm{K} \rightarrow \pi v \bar{v}$ beyond SM

AJB

AJB

Monika Blanke

Fulvia de Fazio

Dario Buttazzo

AJB

Z, Z' 331
1404.3824,... 1311.6729

Simplified NP Models 1507.08672

LHT
1507.0631

Most Recent

331 models facing $\Delta \mathbf{M}_{\mathrm{s}, \mathrm{d}} \leftrightarrow \varepsilon_{\mathrm{K}}$ tension
$\varepsilon^{\prime} / \varepsilon, B_{s} \rightarrow \mu^{+} \mu^{-}$,
$B \rightarrow K^{*} \mu^{+} \mu^{-}$

Model with Vektor-like Quarks

331 Models Facing ε '/ ε Anomaly

AJB, De Fazio 1512.02869, 1604.02344

1. $\kappa_{\varepsilon^{\prime}} \leq 0.6$ (only 3 models can reach upper bound)

None of them can explain suppressions of $C_{9}\left(B \rightarrow K\left(K^{*}\right) \mu^{+} \mu^{-}\right)$and $B_{s} \rightarrow \mu^{+} \mu^{-}$ simultaneously. None R_{K}

Small NP effects in $\mathrm{K}^{+} \rightarrow \pi^{+} \nu \bar{v}$ and $K_{L} \rightarrow \pi^{0} v \bar{v}$

Correlations in Favorite 331 Models

(AJB+De Fazio, 1604.02344)

Open Questions to be answered hopefully in this Decade

1.

What is $\operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)$ from NA62?
What is $\operatorname{Br}\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}\right)$ from KOTO?
What is the value of $\kappa_{\varepsilon^{\prime}}$? (Lattice, CKM, NNLO)
What is the value of κ_{ε} ? (CKM, η_{1})
What is $\left(\Delta M_{K}\right)^{s M} ? \quad$ (Lattice)
Does NP contribute to ReA ${ }_{0}$ at 10-20\% level? (Lattice) (see AJB, De Fazio, Girrbach: 1404.3824)
7.

Do $\mathbf{Z}^{\prime}, \mathbf{G}^{\prime}$ or other new particles exist? 750 GeV !?

Exciting Times are just ahead of us !!!

Exciting Times are just ahead of us !!!

Thank You!

Anomalies in Kaon Flavour Physics

Backup

$\varepsilon^{\prime} / \varepsilon$ within SM

$\varepsilon^{\prime} / \varepsilon \sim\left[\frac{\operatorname{ReA}_{2}}{\operatorname{ReA}_{0}} \operatorname{ImC}_{6}\left\langle\mathbf{Q}_{6}\right\rangle_{0}-\operatorname{ImC}_{8}\left\langle\mathbf{Q}_{8}\right\rangle_{2}+\right.$ smaller contributions $]$
$\left\{\begin{array}{lll}\frac{\mathrm{ReA}_{2}}{\operatorname{Re} A_{0}} \approx \frac{1}{22} & \frac{\mathrm{ImC}_{6}}{\mathrm{ImC}_{8}} \approx 90 & \frac{\left\langle\mathrm{Q}_{8}\right\rangle_{2}}{\left\langle\mathrm{Q}_{6}\right\rangle_{0}} \approx 2\end{array}\right\} \Rightarrow$ strong $_{\text {cancellations }}$

$\varepsilon^{\prime} / \varepsilon$ beyond $S M\left(Q_{6}, Q_{8}, Q_{6}^{\prime}, Q_{8}^{\prime}\right)$

1. Generally Q_{8} wins over Q_{6} because $\left(\frac{\mathrm{ImC}_{6}}{\mathrm{ImC}_{8}}\right)^{\mathrm{NP}} \approx 0(1)$
Q_{6} wins over Q_{8} in the presence of a flavour symmetry forbidding Q_{8}
2. Chromomagnetic operators (not in this talk)

QCD Penguin $\left(Q_{6}\right)$

Electroweak Penguin $\left(\mathbf{Q}_{8}\right)$
(Z)

LHT : Blanke, AJB, Recksiegel (1507.06316)

$$
\begin{array}{ll}
\left(\mathrm{B}_{6}^{(1) 25}\right) \\
\left(\mathrm{B}_{6}^{(1 / 2)}=1.0, \quad \mathrm{~B}_{8}^{(3 / 2)}=1.0\right) & \text { Large } \mathrm{N} \text { bound) } \\
\left(\mathrm{B}_{6}^{(1 / 2)}=0.75, \quad \mathrm{~B}_{8}^{(3 / 2)}=0.76\right) \\
\left(\mathrm{B}_{6}^{(1 / 2)}=0.57, \quad \mathrm{~B}_{8}^{(3 / 2)}=0.76\right)
\end{array}
$$

Supersymmetric Explanation of $\varepsilon^{\prime} / \varepsilon$ and ε_{K}

Teppei Kitahara

Ulrich Nierste

$\varepsilon^{\prime} / \varepsilon$ anomaly can be explained in the MSSM with squark masses above 3 TeV being consistent with ε_{K} without finetuning of CP phases or other parameters.

2018 Vision

$$
\operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)=(18.0 \pm 2.0) \cdot 10^{-11}
$$

$$
\kappa_{\varepsilon^{\prime}} \approx 1.0
$$

Would point : $\quad \mathbf{Z}$ with LH + RH couplings towards

$$
\begin{aligned}
& Z^{\prime}(\text { QCDP }) \text { with } Z^{\prime} q \bar{q} \approx 0(1) \\
& Z^{\prime}(\text { EWP }) \text { with } Z^{\prime} q \bar{q} \approx 10^{-2}
\end{aligned}
$$

$\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}$ and $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}$ in MFV and $\mathrm{U}(2)^{3}$
AJB + Fleischer (MFV)
Modified Z : Constrained MFV

AJB, Buttazzo, Knegjens: hep-ph-1507.08672

New Physics Explanations of Anomalies

Andreas Crivellin, 1605.02934

Can we reach Zeptouniverse through Quark Flavour Physics?

AJB, Buttazzo, Girrbach-Noe, Knegjens, 1407.0728

If only left-handed or only right-handed couplings present in NP

If both LH and RH present but $\mathrm{g}_{\mathrm{L}}^{\mathrm{i}} \ll \mathrm{g}_{\mathrm{R}}^{\mathrm{ij}}$ or $\mathrm{g}_{\mathrm{L}}^{\mathrm{i}} \gg \mathrm{g}_{\mathrm{R}}^{\mathrm{ij}}$

Only with K rare Decays $B_{s} \sim 15 \mathrm{TeV}, B_{d} \sim 15 \mathrm{TeV}$
$\mathrm{K} \rightarrow \pi \overline{\mathrm{v}}: \Lambda_{\mathrm{NP}}^{\max } \simeq 2000 \mathrm{TeV}$
$B_{\mathrm{d}} \quad: \Lambda_{\mathrm{NP}}^{\max } \simeq 160 \mathrm{TeV}$
$B_{\text {s }} \quad: \Lambda_{\mathrm{NP}}^{\max } \simeq \mathbf{1 6 0} \mathbf{~ T e V}$

Yes we can !!

Heavy Z' at Work

AJB, Buttazzo, Girrbach-Noe, Knegjens, 1407.0728

ε_{K} constraint

General discussion: Blanke 0904.2528

No ε_{K} constraint

Can we reach Zeptouniverse through S and P

AJB, Buttazzo, Girrbach-Noe, Knegjens, 1407.0728

$$
\begin{aligned}
& \mathrm{S}: \approx 350 \mathrm{TeV} \\
& \mathrm{P}: \approx 700 \mathrm{TeV}
\end{aligned}
$$

Pseudoscalars more powerful than scalars because of the interference with SM contribution

Similar to $\mathbf{K} \rightarrow \pi v \bar{v}(\mathbf{Z})$: No tuning neccessary to reach Zeptouniverse

$$
S=H^{\circ} \quad P=A^{\circ}
$$

RBC-UK QCD

$$
\varepsilon^{\prime} / \varepsilon=(1.4 \pm 7.0) \cdot 10^{-4}
$$

$$
\left(\frac{\operatorname{Re} A_{0}}{\operatorname{Re} A_{2}}\right)=31.0 \pm 6.6
$$

$$
\left(\varepsilon^{\prime} / \varepsilon\right)_{\mathrm{exp}}=(16.6 \pm 2.3) \cdot 10^{-4}
$$

$$
\left(\frac{\operatorname{Re} A_{0}}{\operatorname{Re} A_{2}}\right)_{\text {exp }}=22.4
$$

Large \mathbf{N}

$$
\left(\varepsilon^{\prime} / \varepsilon\right)<(8.6 \pm 3.2) \cdot 10^{-4}
$$

$$
\left(\frac{\operatorname{Re} A_{0}}{\operatorname{Re} A_{2}}\right)=16.0 \pm 1.5
$$

Bardeen
AJB
Gérard (1986, 2014)

Lattice

$\hat{\mathrm{B}}_{\mathrm{K}}=0.73 \pm 0.02$ ($\hat{B}_{\mathrm{k}} \leq 0.75$)
$B_{6}^{(1 / 2)}=1-0(1 / N)$
$B_{8}^{(3 / 2)}=1-0(1 / N)$
$\frac{\operatorname{Re} A_{0}}{R e A_{2}}=16.0 \pm 1.5$
$\operatorname{Re} \mathrm{A}_{2}$
$B_{8}^{(1 / 2)}=1-0\left(1 / N^{2}\right)$

$$
\begin{array}{|l|}
\text { Exp } \\
22.4 \\
\hline
\end{array}
$$

$$
\left.\begin{array}{|l}
\hat{\mathrm{B}}_{\mathrm{K}}=0.766 \pm 0.010 \text { (FLAG) } \\
\text { (will go down with new results) } \\
\mathrm{B}_{6}^{(1 / 2)}=0.57 \pm 0.19 \\
\mathrm{~B}_{8}^{(3 / 2)}=0.76 \pm 0.05 \\
\frac{\operatorname{Re} A_{0}}{\operatorname{Re}_{2}}=31.0 \pm 6.6 \\
\mathrm{~B}_{8}^{(1 / 2)}=1.0 \pm 0.2
\end{array}\right] \quad \text { RBC-UKQCD }
$$

$$
\begin{aligned}
& B_{8}^{(1 / 2)}=1.0 \\
& \text { / } 2 \text { Rule }
\end{aligned}
$$

Bardeen	
AJB Gérard (1986, $2014)$	Large N
	Approach
	AJB, Gérard (2015)

$\hat{\mathrm{B}}_{\mathrm{K}}=0.73 \pm 0.02$

$$
\left(\hat{B}_{\mathrm{k}} \leq 0.75\right)
$$

$$
\mathbf{B}_{6}^{(1 / 2)} \leq \mathbf{B}_{8}^{(3 / 2)}
$$

$$
B_{8}^{(3 / 2)}=0.80 \pm 0.10
$$

$$
\frac{\operatorname{ReA}_{0}}{\mathrm{Rof}_{0}}=16.0 \pm 1.5
$$

$$
\overline{\operatorname{ReA}}
$$

$$
B_{8}^{(1 / 2)}=1-0\left(1 / N^{2}\right)
$$

$$
\left.\begin{array}{l}
\hat{\mathrm{B}}_{\mathrm{K}}=0.766 \pm 0.010 \text { (FLAG) } \\
(\text { will go down with new results) } \\
\mathrm{B}_{6}^{(1 / 2)}=0.57 \pm 0.19 \\
\mathrm{~B}_{8}^{(3 / 2)}=0.76 \pm 0.05 \\
\frac{\operatorname{Re} A_{0}}{\operatorname{Re}_{2}}=31.0 \pm 6.6 \\
\mathrm{~B}_{8}^{(1 / 2)}=1.0 \pm 0.2
\end{array}\right] \quad \text { RBC-UKQCD }
$$

Exp 22.4

Lattice

$\Delta I=1 / 2$ Rule

Motivations for New Analysis

NA62 in progress: 10\% measurement of

$$
\mathbf{K}^{+} \rightarrow \pi^{+} \nu \bar{v} \text { in } 2018 .
$$

Stress CKM uncertainties in
$\operatorname{Br}\left(\mathbf{K}^{+} \rightarrow \pi^{+} v \bar{v}\right), \operatorname{Br}\left(\mathbf{K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}\right)$
Point out correlation between

$$
\begin{array}{|lll}
\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}, & \mathbf{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-} & \text {and } \gamma \\
\hline \text { (NA62) } & \text { (LHCb+CMS) } & \text { (LHCb) }
\end{array}
$$

Basically no CKM uncertainties

Update correlation between
$\mathrm{K}^{+} \rightarrow \pi^{+} v \overline{\mathrm{v}}, \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \overline{\mathrm{v}}$ and β
(Buchalla, AJB, 94)
(AJB, Fleischer, 00)
Use most recent lattice input for CKM
Provide the present best value in SM

$\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}$ and $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}$ in simplified NP Models

Review Mod. Phys.: AJB, Schwab, Uhlig (2008) (0405132) AJB, Buttazzo, Knegjens: hep-ph-1507.08672

MFV
$\mathbf{2 0 - 3 0 \%}$ effects, strong correlation between K^{+}and $\mathrm{K}_{\mathrm{L}}(\mathrm{Z}, \mathrm{Z})$
$\mathbf{U}(2)^{3}$:
No MFV :
Correlation depends on the presence or absence of ε_{K} constraint, size on $\varepsilon^{\prime} / \varepsilon, \mathrm{K}_{\mathrm{L}} \rightarrow \mu^{+} \mu^{-}$

FCNCs Z :

FCNCs Z' :
Still larger enhancements possible as $\varepsilon^{\prime} / \varepsilon$ constraint can be eliminated in a model independent analysis but not in specific models with known flavour diagonal quark couplings.

More info in BBK
see Rob Knegjens (Moriond) 1505.04928
Enhancements by factors 2-3 over SM still possible ($\varepsilon^{\prime} / \varepsilon$ constraint important)

Different Patterns of Flavour Violation

Z with LH couplings: $\Delta_{L}^{\text {sd }}(Z)$

Q_{8} EWP
AJB (1601.00005)

- Anticorrelation of $\varepsilon^{\prime} / \varepsilon$ and $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}$
- Strong suppression of $\operatorname{Br}\left(K_{L} \rightarrow \pi^{0} v \bar{v}\right)$
- $\operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right) \leq 2 \operatorname{Br}\left(\mathrm{~K}^{+} \rightarrow \pi^{+} v \bar{v}\right)^{\mathrm{sM}}$ $\int \begin{aligned} & \text { No specific } \\ & \text { correlation }\end{aligned}$
- NP effects in $\Delta \mathbf{M}_{K}$ and ε_{K} very small $\quad\left(K_{L} \rightarrow \mu^{+} \mu^{-}\right.$constraint
Z with RH couplings: $\Delta_{R}^{\text {sd }}(\mathbf{Z})$
- Anticorrelation of $\varepsilon^{\prime} / \varepsilon$ and $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}$
- Moderate suppression of $\operatorname{Br}\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}\right)$
- $\operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right) \leq 6 \operatorname{Br}\left(\mathrm{~K}^{+} \rightarrow \pi^{+} v \bar{v}\right)^{\text {SM }}$
- NP effects in $\Delta \mathbf{M}_{\mathrm{K}}$ and ε_{K} very small

Unless
Loop effects important
\mathbf{Q}_{8}. EWP

Z with LH and RH Couplings $\Delta_{L, R}^{\text {sd }}(Z)$

AJB (1601.00005)

New Features

ε_{K} constraint dominates over $\mathrm{K}_{\mathrm{L}} \rightarrow \mu^{+} \mu^{-}$ because of LR operators \rightarrow " ε_{K} anomaly" can be resolved.
Possibility of simultaneous enhancements of

$$
\varepsilon^{\prime} / \varepsilon, \varepsilon_{\mathrm{K}}, \mathrm{~K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}, \mathrm{~K}^{+} \rightarrow \pi^{+} v \overline{\mathrm{v}}
$$

Example 1

$$
\operatorname{Im} \Delta_{\mathrm{L}, \mathrm{R}}<\operatorname{Re} \Delta_{\mathrm{L}, \mathrm{R}}
$$

Example 2
$\operatorname{Im} \Delta_{\mathrm{L}, \mathrm{R}} \gg \operatorname{Re} \Delta_{\mathrm{L}, \mathrm{R}}$

Both $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}$ and $\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}$ enhanced but anticorrelated

$$
\mathbf{K}_{\mathrm{L}} \Uparrow \mathbf{K}^{+} \Downarrow \text { with } \mathbf{K}_{\varepsilon^{-}} \Uparrow
$$

$$
\left(K^{+} \Uparrow \text { with } \kappa_{\varepsilon} \Uparrow\right)
$$

$\mathbf{K}_{\mathrm{L}} \Uparrow \mathbf{K}^{+} \Uparrow$ with $\mathbf{K}_{\varepsilon^{-}} \Uparrow$

NP Effects in $\Delta \mathbf{M}_{K}$ small
(no depencence on κ_{ε})
Correlation between K_{L} and K^{+} On the branch parallel to Grossmann-Nir Bound

What about $\Delta I=1 / 2$ Rule?

$\operatorname{Re} \mathrm{A}_{0}$ ReA_{2}
 ≈ 22.4

Gell-Mann Pais

1986, 2014

Large \mathbf{N} including I/N corredtions

Quark Evolution $1 \mathrm{GeV} \leq \mu \leq \mathrm{M}_{\mathrm{w}}$
: Meson Evolution $0 \leq \mu \leq 1 \mathrm{GeV}$
$\begin{aligned} & \mathrm{C}_{\text {Correct value }}^{\text {of } \operatorname{ReA}_{2}}\end{aligned}\left(\frac{\operatorname{Re} A_{0}}{\operatorname{Re} A_{2}}\right)_{\mathrm{IV}} \approx 16.0 \pm 1.5$
Correct value of ReA_{2}
$\approx 31 \pm 7$
${\operatorname{Re~} A_{2}}_{)_{\text {Lattice }}} \approx 31 \pm 7$

Dominance of currentcurrent operators

AJB
De Fazio
Girrbach-Noe 1404.3824

Z with FCNCs at Work

LHS

Bf)

LRS

AJB, de Fazio, Girrbach-Noe 1404.3824

2 Tensions in $\Delta F=2$ within MFV

$\varepsilon_{\mathrm{K}} \leftrightarrow \Delta \mathrm{M}_{\mathrm{s}, \mathrm{d}}$

$$
\varepsilon_{K} \leftrightarrow S_{\psi K_{s}}
$$

AJB + Girrbach 1306.3755
Similar tension in
Gauged Flavour Models:
AJB, Merlo, Stamou (2011)
*) Can still work within MFV ($\Delta \varepsilon_{K}>0$ in MFV) Blanke + AJB (2006)

Both tensions can only be clarified through improved $\left|\mathbf{V}_{\mathrm{ub}}\right|,\left|\mathbf{V}_{\mathrm{cb}}\right|+$ Lattice Input and improved measurement of $S_{\psi K_{s}}$

Correlations within SM

$$
\mathbf{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}, \mathbf{K}^{+} \rightarrow \pi^{+} v \bar{v}, \gamma
$$

BBGK (2015)

$\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}, \mathrm{~K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}, \boldsymbol{\beta}$
Buchalla, AJB (94)

General Properties

$$
\mathbf{K}^{+} \rightarrow \pi^{+} v \bar{v}
$$

CP-conserving
$\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{\circ} v \bar{v} \quad$ CP-violating
Both sensitive to New Physics (NP)
$\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v} \quad$ bounded by $\mathrm{K}_{\mathrm{L}} \rightarrow \mu^{+} \mu^{-}$
$\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v} \quad$ bounded by $\varepsilon^{\prime} / \varepsilon$
The correlation between $\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}$ and $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}$ depends on the ε_{K} constraint (Blanke 0904.2528)

Can probe scales far above LHC.

Strategy B: use $\varepsilon_{K}, \Delta M_{s}, \Delta M_{d}, S_{\psi K}$

$$
\left|V_{\mathrm{cb}}\right|=(42.4 \pm 1.0) \cdot 10^{-3} \quad\left|V_{\mathrm{ub}}\right|=(\mathbf{3 . 6 1} \pm 0.13) \cdot 10^{-3}
$$

$$
\gamma=(69.5 \pm 5.0)^{\circ} \Rightarrow \underset{\text { (after new lattice results for } \xi \text {) }}{\gamma=(70.8 \pm 2.3)^{\circ}}
$$

$$
\begin{aligned}
& \operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)=(9.1 \pm 0.7) \cdot 10^{-11} \\
& \operatorname{Br}\left(\mathrm{~K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}\right)=(3.0 \pm 0.3) \cdot 10^{-11}
\end{aligned}
$$

UTfit : $\left|\mathbf{V}_{\text {cb }}\right|=(41.7 \pm 0.6) \cdot 10^{-3}$
CKMfitter : $\left|\mathbf{V}_{\text {cb }}\right|=(41.2 \pm 1.0) \cdot 10^{-3}$
$\left|V_{\mathrm{ub}}\right|=(3.63 \pm 0.12) \cdot 10^{-3}$
$\left|V_{\mathrm{ub}}\right|=(3.55 \pm 0.16) \cdot 10^{-3}$

New Bound on $\mathrm{B}_{6}^{(1 / 2)}$ and $\mathrm{B}_{8}^{(3 / 2)}$ from Large \mathbf{N}

AJB + Gérard 1507.06326

$$
\mathbf{B}_{6}^{(1 / 2)} \leq \mathbf{B}_{8}^{(3 / 2)}<1 \quad \square \quad \text { Using BGJJ formula }
$$

$$
\begin{array}{llll}
B_{6}^{(1 / 2)}=1.0 & B_{8}^{(3 / 2)}=1.0 & \Rightarrow & \left(\varepsilon^{\prime} / \varepsilon\right)_{S M}=8.6 \cdot 10^{-4} \\
B_{6}^{(1 / 2)}=0.8 & B_{8}^{(3 / 2)}=0.8 & \Rightarrow & \left(\varepsilon^{\prime} / \varepsilon\right)_{S M}=6.4 \cdot 10^{-4} \\
B_{6}^{(1 / 2)}=0.6 & B_{8}^{(3 / 2)}=0.8 & \Rightarrow & \left(\varepsilon^{\prime} / \varepsilon\right)_{S M}=2.2 \cdot 10^{-4}
\end{array}
$$

For $\operatorname{Im}\left(\mathbf{V}_{\mathbf{t s}} \mathbf{V}_{\mathrm{td}}^{*}\right)=1.4 \cdot 10^{-4}$
Below data but positive
Yet still large uncertainties

$\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}$ versus $\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}$

AJB, Buttazzo, Knegjens, 1507.08672

Error Budgets

Update: 1503.02693

$$
P_{c}=0.404 \pm 0.024
$$

$$
x_{t}=1.481 \pm 0.005_{t h} \pm 0.008_{\text {exp }}
$$

Z^{\prime} outside the reach of the LHC

QCD Penguin

For fixed $\kappa_{\varepsilon^{\prime}}$:
But constraint
$\operatorname{Br}\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}\right), \operatorname{Br}\left(\mathrm{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)$
Independent of $\mathbf{M}_{\mathbf{Z}}$ from $\Delta \mathbf{M}_{\mathrm{K}}$

$Z^{\prime} q^{\prime} \bar{q} \approx 0(1)$

$$
\overline{\mathbf{\kappa}}_{\varepsilon^{\prime}} \equiv\left[\frac{\boldsymbol{\kappa}_{\varepsilon^{\prime}}}{\left.\Delta_{\mathbf{R}}^{\rho \bar{\rho}} \mathbf{Z}^{\prime}\right)}\right]
$$

EWP Penguin : Significant effects in rare decays only for

$$
q \bar{q} Z^{\prime} \approx 0\left(10^{-2}\right)
$$

Using Tree Level Determination of CKM

$$
\begin{aligned}
& \left|V_{\text {ub }}\right|_{\text {excl }}=(\mathbf{3 . 7 2} \pm 0.14) \cdot 10^{-3} \quad\left|V_{\text {cb }}\right|_{\text {excl }}=(\mathbf{3 9 . 3 6} \pm 0.75) \cdot 10^{-3} \\
& V_{\mathrm{ub}}^{\text {lincl }}=(\mathbf{4 . 4 0} \pm \mathbf{0 . 2 5}) \cdot 10^{-3} \quad\left|V_{\mathrm{cb}}\right|_{\text {lincl }}=(\mathbf{4 2 . 2 1} \pm 0.78) \cdot 10^{-3}
\end{aligned}
$$

$$
\left.V_{\mathrm{ub}}\right|_{\text {avg }}=(3.88 \pm 0.29) \cdot 10^{-3} \quad\left|V_{\mathrm{cb}}\right|_{\text {avg }}=(40.7 \pm 1.4) \cdot 10^{-3}
$$

$$
\begin{aligned}
\gamma=(73.2+6.3)^{+}
\end{aligned} \quad \begin{aligned}
& \overline{\mathrm{Br}}\left(\mathrm{~B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right) \\
& \mathrm{Br}\left(\mathrm{~B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)_{\text {exp }}=(3.4 \pm 0.3) \cdot 10^{-9} \\
& =(2.8 \pm 0.7) \cdot 10^{-9}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Br}\left(\mathbf{K}^{+} \rightarrow \pi^{+} v \bar{v}\right)=(8.4 \pm \mathbf{1 . 0}) \cdot 10^{-11} \\
& \operatorname{Br}\left(\mathrm{~K}_{\mathrm{L}} \rightarrow \pi^{0} v \overline{\mathrm{v}}\right)=(3.4 \pm \mathbf{0 . 6}) \cdot 10^{-11}
\end{aligned}
$$

AJB, Buttazzo, Girrbach-Noe, Knegjens 1503.02693

