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Aim:

Show that various non-trivial aspects of the

QCD phase structure can be accessed from

perturbative methods.

Here:

Heavy quark limit.
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Relevant order parameter: Polyakov loop(s)

` ≡ 1
3
⟨trP eig ∫ β0 dτ A0⟩∝ e−βFquark

¯̀ ≡ 1
3
⟨tr (P eig ∫ β0 dτ A0)

†
⟩∝ e−βFantiquark

Relevant symmetry: center-symmetry

if unbroken ⇒ ` = e±i2π/3` ⇒ ` = 0
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Relevant order parameter: Polyakov loop(s)

` ≡ 1
3
⟨trP eig ∫ β0 dτ A0⟩∝ e−βFquark

¯̀ ≡ 1
3
⟨tr (P eig ∫ β0 dτ A0)

†
⟩∝ e−βFantiquark

Relevant symmetry: center-symmetry

if unbroken ⇒ ` = e±i2π/3` ⇒ ` = 0

⇒ Study the phase diagram from the Polyakov loop effective potential V(`, ¯̀).

⇒Work in a gauge that does not break center-symmetry from the start.



Choice of gauge and gauge-fixing completion

One possibility is to consider the Landau-DeWitt gauge: [Abbot (1981); Braun, Pawlowski, Gies (2010)]

SĀ[A, h, c, c̄] = ∫
x
{ 1

4
Fa
µνFa

µν + D̄µc̄a(Dµc)a + ihaD̄µ(Aa
µ − Āa

µ)}

where D̄µϕa ≡ ∂µϕa + gf abcĀbϕc. Does not break center-symmetry!

However, not a complete gauge-fixing due to the presence of Gribov copies.
Not relevant in the UV, but could become important in the IR:

→ try to model the effect of Gribov copies with the hope that, once
a good (and simple) model is found the rest is a perturbative expansion.

Various models on the market:

- Gribov-Zwanziger and refined Gribov-Zwanziger actions;

- Here: massive extensions of Faddeev-Popov actions.



Massive extension of the Landau-DeWitt gauge

We model the effect of Gribov copies by adding a phenomenological mass term:

∫
x
{ 1

4
Fa
µνFa

µν + D̄µc̄a(Dµc)a + ihaD̄µ(Aa
µ − Āa

µ)+
1
2

m2(Aa
µ − Āa

µ)(Aa
µ − Āa

µ)}

→ Minimal extension, only one additional parameter.

→ It is renormalizable.

→ No IR Landau pole!

Another source of motivation lies on how good the lattice T = 0 correlators are reproduced.
The fit of the lattice results gives m ≃ 500 MeV in the SU(3) case.
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[M. Tissier, N. Wschebor, PRD84 (2011); M. Peláez, M. Tissier, N. Wschebor PRD88 (2013)]



One-loop Polyakov-loop potential: expression

V1loop(r3, r8) , ra = gβĀ0
a

` = e
−i

r8√
3 +2e

i
r8

2
√

3 cos(r3/2)
3

¯̀= e
i

r8√
3 +2e

−i
r8

2
√

3 cos(r3/2)
3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⇒ V1loop(`, ¯̀) = Vmatter(`, ¯̀) + Vglue(`, ¯̀)



One-loop Polyakov-loop potential: expression

Vmatter(`, ¯̀) = −
T
π2 ∫

∞
0

dq q2 (ln [1 + 3` e−β(ε̃q−µ) + 3¯̀e−2β(ε̃q−µ) + e−3β(ε̃q−µ)]

+ ln [1 + 3¯̀e−β(ε̃q+µ) + 3` e−2β(ε̃q+µ) + e−3β(ε̃q+µ)])

Vglue(`, ¯̀) =
3
2
Wm(`, ¯̀) −

1
2
W0(`, ¯̀) T ≫ m, Vglue ≈W0 vs T ≪ m, Vglue ≈ −

1
2
W0

[confinement scenario à la Braun, Gies & Pawlowski]

Wm(`, ¯̀) =
T
π2 ∫

∞
0

dq q2 ln [1 + e−8βεq − (9`¯̀− 1)(e−βεq + e−7βεq)

+ (27`3 + 27¯̀3 − 27`¯̀+ 1)(e−2βεq + e−6βεq)

εq =
√

q2 +m2 − (81`2 ¯̀2 − 27`¯̀+ 2)(e−3βεq + e−5βεq)

+ (162`2 ¯̀2 − 54`3 − 54¯̀3 + 18`¯̀− 2)e−4βεq]

[UR, J. Serreau, M. Tissier, N. Wschebor PLB 742 (2015); UR, J. Serreau, M. Tissier, PRD92 (2015)]



Pure glue case: spontanous breaking of center-symmetry

T/m = 0.34 T/m = 0.35 T/m = 0.36

T/m = 0.37 T/m = 0.38 T/m = 0.39



Pure glue case: order and temperature of the transition

order lattice fRG model at 1-loop model at 2-loop
SU(2) 2nd 2nd 2nd 2nd
SU(3) 1st 1st 1st 1st
SU(4) 1st 1st 1st 1st
Sp(2) 1st 1st 1st 1st

Tc(MeV) lattice fRG(∗) model at 1-loop(∗∗) model at 2-loop(∗∗∗)

SU(2) 295 230 238 284
SU(3) 270 275 185 254

(∗) L. Fister and J. M. Pawlowski, Phys.Rev. D88 (2013) 045010 .
(∗∗) SU(2) and SU(3): UR, J. Serreau, M. Tissier and N. Wschebor, PLB742 (2015).
(∗∗∗) SU(2): UR, J. Serreau, M. Tissier and N. Wschebor, Phys.Rev. D91 (2015) 045035.
(∗∗∗) SU(3) and beyond: UR, J. Serreau, M. Tissier and N. Wschebor, in preparation.



Heavy quarks, µ = 0: transition

T/m = 0.34 T/m = 0.35 T/m = 0.36

T/m = 0.37 T/m = 0.38 T/m = 0.39



Heavy quarks, µ = 0: mass dependence of the transition
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Heavy quarks, µ = 0: Columbia plot
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Heavy quarks, µ = 0: comparison to other approaches

Nf (Mc/Tc)our model (*) (Mc/Tc)lattice (**) (Mc/Tc)matrix (***) (Mc/Tc)SD (****)

1 6.74 7.22 8.04 1.42
2 7.59 7.91 8.85 1.83
3 8.07 8.32 9.33 2.04

(∗) UR, J. Serreau and M. Tissier, PRD92 (2015).

(∗∗) M. Fromm, J. Langelage, S. Lottini and O. Philipsen, JHEP 1201 (2012) 042.

(∗∗∗) K. Kashiwa, R. D. Pisarski and V. V. Skokov, Phys.Rev. D85 (2012) 114029.

(∗∗∗∗) C. S. Fischer, J. Luecker and J. M. Pawlowski, Phys.Rev. D91 (2015) 1, 014024.



Heavy quarks, µ imaginary: Roberge-Weiss transition

µ/iT = 0 µ/iT = π/3 µ/iT = 2π/3

µ/iT = π µ/iT = 4π/3 µ/iT = 5π/3



Heavy quarks, µ imaginary: Roberge-Weiss transition
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Heavy quarks, µ imaginary: mass dependence of the transition

M > Mc(0) ∶  0.36

 0.348

0 π/3 2π/3
µi/T

T/m

M ∈ [Mc(iπ/3),Mc(0)] ∶
 0.36

 0.34

0
µi/T

π/3 2π/3

T/m

M = Mc(iπ/3) ∶

 0.38

 0.36

 0.34

 0.32

µi/T
π/3 2π/30

T/m

Similar structure as in the lattice study of [P. de Forcrand, O. Philipsen, Phys.Rev.Lett. 105 (2010)]



Heavy quarks, µ imaginary: comparison to other approaches
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K 1.85 1.55 0.98
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6.15 6.66 0.41

(∗) UR, J. Serreau and M. Tissier, arXiv:1504.02916.
(∗∗) Fromm et.al., JHEP 1201 (2012) 042.
(∗∗∗) Fischer et.al., Phys.Rev. D91 (2015) 1, 014024.



Heavy quarks, µ real: “small” sign problem

` ≡ ⟨tr L⟩, ¯̀≡ ⟨tr L†⟩ with tr L† = (tr L)∗.

But we not always have ¯̀= `∗:

µ ∈ iR: the action is real
⇒ ¯̀= `∗.

µ ∈ R: the action is complex.
One shows that `, ¯̀∈ R.

Re { = Re {

Im { = - Im {

Re {

Re {
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Heavy quarks, µ real: “small” sign problem

` ≡ ⟨tr L⟩, ¯̀≡ ⟨tr L†⟩ with tr L† = (tr L)∗.

But we not always have ¯̀= `∗:

µ ∈ iR: the action is real
⇒ ¯̀= `∗.

µ ∈ R: the action is complex.
One shows that `, ¯̀∈ R.

Re { = Re {

Im { = - Im {

Re {

Re {

How to extract the physics from V(`, ¯̀)?

µ ∈ iR: a real action implies that the physical point is the absolute minimum of V(`, `∗) for ` ∈ C.

µ ∈ R: with a complex action it is not clear which extremum to choose.



Heavy quarks, µ real: our recipe

At µ = 0, it is possible to study V(`, ¯̀) both for (`, ¯̀) ∈ {(z, z∗)∣z ∈ C} and for (`, ¯̀) ∈ R ×R.

The minimum in the plane (Re `, Im `) appears as the deepest saddle point in the plane (Re `,Re ¯̀).

For µ > 0, we keep on choosing the deepest saddle point.



Heavy quarks, µ real: Columbia plot

As observed on the lattice, the critical line moves towards larger masses as µ is increased:
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Heavy quarks, µ real: tricritical scaling

As observed on the lattice, the tricritical scaling survives deep in the µ2 > 0 region:
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Conclusions

Simple one-loop calculations in a model aimed at fixing the Gribov ambiguity account for
qualitative and quantitative features of the QCD phase diagram in the heavy quark limit:

∗ Correct account of the order parameter in the quenched limit;

∗ Critical line of the Columbia plot at µ = 0;

∗ Roberge-Weiss phase diagram and its mass dependence.

Certain aspects require the inclusion of two-loop corrections:

∗ value of Tc;

∗ consistent thermodynamics.

TODO: [In progress]

∗ Lower left corner of the Columbia plot? Chiral phase transition?

∗ Propagators in the Landau-DeWitt gauge [today on the arXiv]. Comparison to Lattice results?

∗ Our approach is not completely void of problems: how to define the physical space?



Backup



Polyakov loop: 1-loop vs 2-loop

One-loop artefact:

Disappears at two-loop order:



Thermodynamics

One-loop thermodynamics is inconsistent around Tc but two-loop thermodynamics is consistent:

1-loop

2-loop

Tc

0

P

However there remain non-exponentially suppressed T4 contributions to the pressure as T → 0.

The same problem appears in many other approaches (GZ, presumably functional RG, . . . ).



Heavy quarks, µ real: quark and anti-quark free-energies

Having both ` and ¯̀real corresponds to an imaginary background r8 ≡ βgĀ0
8 ≡ ĩr8!

` = e
r̃8√

3 + 2e
− r̃8

2
√

3 cos(r3/2)
3

∈ R ¯̀= e
− r̃8√

3 + 2e
r̃8

2
√

3 cos(r3/2)
3

∈ R

In line with [H. Nishimura, M. C. Ogilvie, K. Pangeni, Phys.Rev. D90, 045039 (2014)] (saddle-point approximation)

We obtain not only real Polyakov loops, in line with ` = e−Fquark and ¯̀= e−Fantiquark ...
... but also ` ≠ ¯̀and Fquark ≠ Fantiquark, in line with the breaking of C by µ ≠ 0:
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In other approaches the choice r8 = 0 is made, which leads to ` = ¯̀, so Fquark = Fantiquark.


