A perturbative approach to the confinement-deconfinement transition

Urko Reinosa*
Based on collaborations with:
Julien Serreau, Matthieu Tissier, Nicolás Wschebor
* Centre de Physique Théorique, Ecole Polytechnique, CNRS, Université Paris-Saclay, Palaiseau, France
26-30 June 2016, Martina Franca, Italy

Motivation

Aim:
Show that various non-trivial aspects of the QCD phase structure can be accessed from perturbative methods.

Here:
Heavy quark limit.

Motivation

Relevant order parameter: Polyakov loop(s)

$$
\begin{aligned}
\ell & \equiv \frac{1}{3}\left\langle\operatorname{tr} \mathcal{P} e^{i g \int_{0}^{\beta} d \tau A_{0}}\right\rangle \propto e^{-\beta F_{\text {quark }}} \\
\bar{\ell} & \equiv \frac{1}{3}\left\langle\operatorname{tr}\left(\mathcal{P} e^{i g \int_{0}^{\beta} d \tau A_{0}}\right)^{\dagger}\right\rangle \propto e^{-\beta F_{\text {antiquark }}}
\end{aligned}
$$

Relevant symmetry: center-symmetry

$$
\text { if unbroken } \Rightarrow \ell=e^{ \pm i 2 \pi / 3} \ell \Rightarrow \ell=0
$$

Motivation

Relevant order parameter: Polyakov loop(s)

$$
\begin{aligned}
\ell & \equiv \frac{1}{3}\left\langle\operatorname{tr} \mathcal{P} e^{i g \int_{0}^{\beta} d \tau A_{0}}\right\rangle \propto e^{-\beta F_{\text {quark }}} \\
\bar{\ell} & \equiv \frac{1}{3}\left\langle\operatorname{tr}\left(\mathcal{P} e^{i g \int_{0}^{\beta} d \tau A_{0}}\right)^{\dagger}\right\rangle \propto e^{-\beta F_{\text {antiquark }}}
\end{aligned}
$$

Relevant symmetry: center-symmetry

$$
\text { if unbroken } \Rightarrow \ell=e^{ \pm i 2 \pi / 3} \ell \Rightarrow \ell=0
$$

\Rightarrow Study the phase diagram from the Polyakov loop effective potential $V(\ell, \bar{\ell})$.
\Rightarrow Work in a gauge that does not break center-symmetry from the start.

Choice of gauge and gauge-fixing completion

One possibility is to consider the Landau-DeWitt gauge: [Abbot (1981); Braun, Pawlowski, Gies (2010)]

$$
S_{\bar{A}}[A, h, c, \bar{c}]=\int_{x}\left\{\frac{1}{4} F_{\mu \nu}^{a} F_{\mu \nu}^{a}+\bar{D}_{\mu} \bar{c}^{a}\left(D_{\mu} c\right)^{a}+i h^{a} \bar{D}_{\mu}\left(A_{\mu}^{a}-\bar{A}_{\mu}^{a}\right)\right\}
$$

where $\bar{D}_{\mu} \varphi^{a} \equiv \partial_{\mu} \varphi^{a}+g f^{a b c} \bar{A}^{b} \varphi^{c}$. Does not break center-symmetry!

However, not a complete gauge-fixing due to the presence of Gribov copies.
Not relevant in the UV, but could become important in the IR:
\rightarrow try to model the effect of Gribov copies with the hope that, once a good (and simple) model is found the rest is a perturbative expansion.

Various models on the market:

- Gribov-Zwanziger and refined Gribov-Zwanziger actions;
- Here: massive extensions of Faddeev-Popov actions.

Massive extension of the Landau-DeWitt gauge

We model the effect of Gribov copies by adding a phenomenological mass term:

$$
\int_{x}\left\{\frac{1}{4} F_{\mu \nu}^{a} F_{\mu \nu}^{a}+\bar{D}_{\mu} \bar{c}^{a}\left(D_{\mu} c\right)^{a}+i h^{a} \bar{D}_{\mu}\left(A_{\mu}^{a}-\bar{A}_{\mu}^{a}\right)+\frac{1}{2} m^{2}\left(A_{\mu}^{a}-\bar{A}_{\mu}^{a}\right)\left(A_{\mu}^{a}-\bar{A}_{\mu}^{a}\right)\right\}
$$

\rightarrow Minimal extension, only one additional parameter.
\rightarrow It is renormalizable.
\rightarrow No IR Landau pole!

Another source of motivation lies on how good the lattice $T=0$ correlators are reproduced. The fit of the lattice results gives $m \simeq 500 \mathrm{MeV}$ in the $\mathrm{SU}(3)$ case.

One-loop Polyakov-loop potential: expression

$$
\left.\begin{array}{l}
V_{\text {1loop }}\left(r_{3}, r_{8}\right), r_{a}=g \beta \bar{A}_{a}^{0} \\
\ell=\frac{e^{-i \frac{r_{8}}{\sqrt{3}}}+2 e^{i \frac{r_{8}}{2 \sqrt{3}} \cos \left(r_{3} / 2\right)}}{3} \\
\bar{\ell}=\frac{e^{i \frac{r_{8}}{\sqrt{3}}}+2 e^{-i \frac{r_{8}}{2 \sqrt{3}} \cos \left(r_{3} / 2\right)}}{3}
\end{array}\right\} \Rightarrow V_{\text {1loop }}(\ell, \bar{\ell})=V_{\text {matter }}(\ell, \bar{\ell})+V_{\text {glue }}(\ell, \bar{\ell})
$$

One-loop Polyakov-loop potential: expression

$$
\left.\begin{array}{rl}
V_{\text {matter }(\ell, \bar{\ell})=-\frac{T}{\pi^{2}} \int_{0}^{\infty} d q q^{2}(} \ln \left[1+3 \ell e^{-\beta\left(\tilde{\varepsilon}_{q}-\mu\right)}+3 \bar{\ell} e^{-2 \beta\left(\tilde{\varepsilon}_{q}-\mu\right)}+e^{-3 \beta\left(\tilde{\varepsilon}_{q}-\mu\right)}\right] \\
& \left.+\ln \left[1+3 \bar{\ell} e^{-\beta\left(\tilde{\varepsilon}_{q}+\mu\right)}+3 \ell e^{-2 \beta\left(\tilde{\varepsilon}_{q}+\mu\right)}+e^{-3 \beta\left(\tilde{\varepsilon}_{q}+\mu\right)}\right]\right)
\end{array} \quad \begin{array}{rl}
V_{\text {glue }}(\ell, \bar{\ell})=\frac{3}{2} \mathcal{W}_{m}(\ell, \bar{\ell})-\frac{1}{2} \mathcal{W}_{0}(\ell, \bar{\ell}) \quad T \gg m, V_{\text {glue }} \approx \mathcal{W}_{0} \text { vs } T \ll m, V_{\text {glue }} \approx-\frac{1}{2} \mathcal{W}_{0} \\
\text { [confinement scenario a la Braun, Gies \& Pawlowski] }
\end{array}\right] \begin{aligned}
& \mathcal{W}_{m}(\ell, \bar{\ell})=\frac{T}{\pi^{2}} \int_{0}^{\infty} d q q^{2} \ln \left[1+e^{-8 \beta \varepsilon_{q}}-(9 \ell \bar{\ell}-1)\left(e^{-\beta \varepsilon_{q}}+e^{-7 \beta \varepsilon_{q}}\right)\right. \\
&+\left(27 \ell^{3}+27 \bar{\ell}^{3}-27 \ell \bar{\ell}+1\right)\left(e^{-2 \beta \varepsilon_{q}}+e^{-6 \beta \varepsilon_{q}}\right) \\
&-\left(81 \ell^{2} \bar{\ell}^{2}-27 \ell \bar{\ell}+2\right)\left(e^{-3 \beta \varepsilon_{q}}+e^{-5 \beta \varepsilon_{q}}\right) \\
&+\left.\left(162 \ell^{2} \bar{\ell}^{2}-54 \ell^{3}-54 \bar{\ell}^{3}+18 \ell \bar{\ell}-2\right) e^{-4 \beta \varepsilon_{q}}\right]
\end{aligned}
$$

Pure glue case: spontanous breaking of center-symmetry

Pure glue case: order and temperature of the transition

order	lattice	fRG	model at 1-loop	model at 2-loop
$\mathrm{SU}(2)$	2nd	2nd	2nd	2nd
$\mathrm{SU}(3)$	1 st	1st	1st	1st
$\mathrm{SU}(4)$	1 st	1st	1st	1st
$\operatorname{Sp}(2)$	1st	1st	1st	1st

$T_{\mathrm{c}}(\mathrm{MeV})$	lattice	fRG $^{(*)}$	model at 1-loop $^{(* *)}$	model at 2-loop $^{(* * *)}$
$\mathrm{SU}(2)$	295	230	238	284
$\mathrm{SU}(3)$	270	275	185	254

(*) L. Fister and J. M. Pawlowski, Phys.Rev. D88 (2013) 045010.
(**) SU(2) and SU(3): UR, J. Serreau, M. Tissier and N. Wschebor, PLB742 (2015).
$(* * *)$ SU(2): UR, J. Serreau, M. Tissier and N. Wschebor, Phys.Rev. D91 (2015) 045035.
$(* * *)$ SU(3) and beyond: UR, J. Serreau, M. Tissier and N. Wschebor, in preparation.

Heavy quarks, $\mu=0$: transition

Heavy quarks, $\mu=0$: mass dependence of the transition

Heavy quarks, $\mu=0$: Columbia plot

Heavy quarks, $\mu=0$: comparison to other approaches

N_{f}	$\left(M_{c} / T_{c}\right)^{\text {our model (*) }}$	$\left(M_{c} / T_{c}\right)^{\text {latice ((**) }}$	$\left(M_{c} / T_{c}\right)^{\text {matrix (**) }}$	$\left(M_{c} / T_{c}\right)^{\text {SD (***) }}$
1	6.74	7.22	8.04	1.42
2	7.59	7.91	8.85	1.83
3	8.07	8.32	9.33	2.04

(*) UR, J. Serreau and M. Tissier, PRD92 (2015).
$(* *)$ M. Fromm, J. Langelage, S. Lottini and O. Philipsen, JHEP 1201 (2012) 042.
$(* * *)$ K. Kashiwa, R. D. Pisarski and V. V. Skokov, Phys.Rev. D85 (2012) 114029.
$(* * * *)$ C. S. Fischer, J. Luecker and J. M. Pawlowski, Phys.Rev. D91 (2015) 1, 014024.

Heavy quarks, μ imaginary: Roberge-Weiss transition
$\mu / i T=0$

$$
\mu / i T=\pi
$$

$\mu / i T=\pi / 3$
$\mu / i T=4 \pi / 3$

Heavy quarks, μ imaginary: Roberge-Weiss transition

Heavy quarks, μ imaginary: mass dependence of the transition

Similar structure as in the lattice study of [P. de Forcrand, O. Philipsen, Phys.Rev.Lett. 105 (2010)]

Heavy quarks, μ imaginary: comparison to other approaches

$$
\frac{M_{c}}{T_{c}}=\frac{M_{\text {tric. }}}{T_{\text {tric. }}}+K\left[\left(\frac{\pi}{3}\right)^{2}+\left(\frac{\mu}{T}\right)^{2}\right]^{2 / 5}
$$

	our model $^{(*)}$	lattice $^{(* *)}$	$\mathrm{SD}^{(* * *)}$
K	1.85	1.55	0.98
$\frac{M_{\text {tric. }}}{T_{\text {tric. }}}$	6.15	6.66	0.41

[^0]
Heavy quarks, μ real: "small" sign problem

$\ell \equiv\langle\operatorname{tr} L\rangle, \bar{\ell} \equiv\left\langle\operatorname{tr} L^{\dagger}\right\rangle$ with $\operatorname{tr} L^{\dagger}=(\operatorname{tr} L)^{*}$.
But we not always have $\bar{\ell}=\ell^{*}$:
$\underline{\mu \in i \mathbb{R} \text { : the action is real }}$

$$
\Rightarrow \bar{\ell}=\ell^{*} .
$$

$\mu \in \mathbb{R}$: the action is complex.
One shows that $\ell, \bar{\ell} \in \mathbb{R}$.

Heavy quarks, μ real: "small" sign problem

$\ell \equiv\langle\operatorname{tr} L\rangle, \bar{\ell} \equiv\left\langle\operatorname{tr} L^{\dagger}\right\rangle$ with $\operatorname{tr} L^{\dagger}=(\operatorname{tr} L)^{*}$.
But we not always have $\bar{\ell}=\ell^{*}$:
$\mu \in i \mathbb{R}$: the action is real

$$
\Rightarrow \bar{\ell}=\ell^{*} .
$$

$\mu \in \mathbb{R}$: the action is complex.
One shows that $\ell, \bar{\ell} \in \mathbb{R}$.

Heavy quarks, μ real: "small" sign problem

$\ell \equiv\langle\operatorname{tr} L\rangle, \bar{\ell} \equiv\left\langle\operatorname{tr} L^{\dagger}\right\rangle$ with $\operatorname{tr} L^{\dagger}=(\operatorname{tr} L)^{*}$.
But we not always have $\bar{\ell}=\ell^{*}$:
$\mu \in i \mathbb{R}$: the action is real

$$
\Rightarrow \bar{\ell}=\ell^{*} .
$$

$\mu \in \mathbb{R}$: the action is complex.
One shows that $\ell, \bar{\ell} \in \mathbb{R}$.

Heavy quarks, μ real: "small" sign problem

$$
\ell \equiv\langle\operatorname{tr} L\rangle, \bar{\ell} \equiv\left\langle\operatorname{tr} L^{\dagger}\right\rangle \text { with } \operatorname{tr} L^{\dagger}=(\operatorname{tr} L)^{*} .
$$

But we not always have $\bar{\ell}=\ell^{*}$:
$\mu \in i \mathbb{R}$: the action is real

$$
\Rightarrow \bar{\ell}=\ell^{*} .
$$

$\mu \in \mathbb{R}$: the action is complex.
One shows that $\ell, \bar{\ell} \in \mathbb{R}$.

How to extract the physics from $V(\ell, \bar{\ell})$?
$\underline{\mu \in i \mathbb{R}: \text { a real action implies that the physical point is the absolute minimum of } V\left(\ell, \ell^{*}\right) \text { for } \ell \in \mathbb{C} . . ~ . ~ . ~}$
$\mu \in \mathbb{R}$: with a complex action it is not clear which extremum to choose.

Heavy quarks, μ real: our recipe

At $\mu=0$, it is possible to study $V(\ell, \bar{\ell})$ both for $(\ell, \bar{\ell}) \in\left\{\left(z, z^{*}\right) \mid z \in \mathbb{C}\right\}$ and for $(\ell, \bar{\ell}) \in \mathbb{R} \times \mathbb{R}$.

The minimum in the plane $(\operatorname{Re} \ell, \operatorname{Im} \ell)$ appears as the deepest saddle point in the plane $(\operatorname{Re} \ell, \operatorname{Re} \bar{\ell})$.
For $\mu>0$, we keep on choosing the deepest saddle point.

Heavy quarks, μ real: Columbia plot

As observed on the lattice, the critical line moves towards larger masses as μ is increased:

Heavy quarks, μ real: tricritical scaling

As observed on the lattice, the tricritical scaling survives deep in the $\mu^{2}>0$ region:

Conclusions

Simple one-loop calculations in a model aimed at fixing the Gribov ambiguity account for qualitative and quantitative features of the QCD phase diagram in the heavy quark limit:

* Correct account of the order parameter in the quenched limit;
* Critical line of the Columbia plot at $\mu=0$;
* Roberge-Weiss phase diagram and its mass dependence.

Certain aspects require the inclusion of two-loop corrections:

* value of T_{c};
* consistent thermodynamics.

TODO: [In progress]

* Lower left corner of the Columbia plot? Chiral phase transition?
* Propagators in the Landau-DeWitt gauge [today on the arXiv]. Comparison to Lattice results?
* Our approach is not completely void of problems: how to define the physical space?

Backup

Polyakov loop: 1-loop vs 2-loop

One-loop artefact:

Disappears at two-loop order:

Thermodynamics

One-loop thermodynamics is inconsistent around T_{c} but two-loop thermodynamics is consistent:

However there remain non-exponentially suppressed T^{4} contributions to the pressure as $T \rightarrow 0$.
The same problem appears in many other approaches (GZ, presumably functional RG, ...).

Heavy quarks, μ real: quark and anti-quark free-energies

Having both ℓ and $\bar{\ell}$ real corresponds to an imaginary background $r_{8} \equiv \beta g \bar{A}_{8}^{0} \equiv i \tilde{r}_{8}$!

$$
\ell=\frac{e^{\frac{\tilde{r}_{8}}{\sqrt{3}}}+2 e^{-\frac{\tilde{r}_{8}}{2 \sqrt{3}}} \cos \left(r_{3} / 2\right)}{3} \in \mathbb{R} \quad \bar{\ell}=\frac{e^{-\frac{\tilde{r}_{8}}{\sqrt{3}}}+2 e^{\frac{\tilde{r}_{8}}{2 \sqrt{3}}} \cos \left(r_{3} / 2\right)}{3} \in \mathbb{R}
$$

In line with [H. Nishimura, M. C. Ogilvie, K. Pangeni, Phys.Rev. D90, 045039 (2014)] (saddle-point approximation)

We obtain not only real Polyakov loops, in line with $\ell=e^{-F_{\text {quark }}}$ and $\bar{\ell}=e^{-F_{\text {antiquark }}} \ldots$
... but also $\ell \neq \bar{\ell}$ and $F_{\text {quark }} \neq F_{\text {antiquark }}$, in line with the breaking of C by $\mu \neq 0$:

In other approaches the choice $r_{8}=0$ is made, which leads to $\ell=\bar{\ell}$, so $F_{\text {quark }}=F_{\text {antiquark }}$.

[^0]: (*) UR, J. Serreau and M. Tissier, arXiv:1504.02916.
 (**) Fromm et.al., JHEP 1201 (2012) 042.
 (***) Fischer et.al., Phys.Rev. D91 (2015) 1, 014024.

