Hadron Spectroscopy at BESIII

Marco Destefanis

Università degli Studi di Torino e INFN

on behalf of the BESIII Collaboration

QCD@Work 2016

International Workshop on QCD Theory and Experiment

Martina Franca, Italy

June 27-30, 2016

Overview

> Introduction

BEPCII and the BESIII experiment BESIII dataset

Physics highlights Meson spectroscopy Charmonium-like states: XYZ states

Baryon spectroscopy

BEPCII Storage Rings

Beijing Electron-Positron Collider II

The BESIII Spectrometer @ IHEP

BEijing Spectrometer III

e⁺e⁻ collisions

D.M. Asner et al, Physics at BES-III, arXiv:0809.1869v1 [hep-ex] (2008)

BESIII Dataset

- World largest data sample on J/ψ, ψ(25), ψ(3770), V(4260)...
 in e⁺e⁻ collisions
- From light meson spectroscopy to $\Lambda_c \Lambda_c$
- Fine and coarse scan of the accessible energy region

$p\bar{p}$ Near Threshold Enhancement: $J/\psi \rightarrow \gamma p\bar{p}$

Unclear nature: normal meson, ppbound state, multiquark, glueball,...

<u>PWA fit features</u>:

• Mass structure can be described by BW and FSI corrections (PRD 71, 054010 (2005))

• FSI corrections notably improve description

• Different FSI \rightarrow model systematic

Fit components: X(pp), f2(1920), f0(2100), 0++ PHSP

Fit results:

 $J^{PC} = 0^{+-} are \ preferable(by > 6.8\sigma \ better \ than \ other \ assignments)$ $M = 1832^{+19}_{-5}(stat)^{+18}_{-17}(syst) \pm 19(model)MeV$ $\Gamma < 76 \ MeV \ @90\% \ C.L.$ $Br(J/\psi \to \gamma X)Br(X \to p\bar{p}) = 9.0^{+0.4}_{-1.1}(stat)^{+1.5}_{-5.0}(syst) \pm 2.3(mod)x10^{-5}$ ⁶

$p\bar{p}$ Near Threshold Enhancement: $J/\psi \rightarrow \gamma p\bar{p}$

Unclear nature: normal meson, ppbound state, multiquark, glueball,...

PWA fit features:

• Mass structure can be described by BW and FSI corrections (PRD 71, 054010 (2005))

 FSI corrections notably improve description

• Different FSI \rightarrow model systematic

 $5 \times N_{obs}^{UP}(J/\psi \rightarrow \omega X(p\overline{p}))$

 ω sideband fit

0.05

 ω sideband data

nt contribution

0.1

total fit

J/ψ data

80

70

60

50

40

30

20

10

0

0

Events/ (0.01 GeV/c²)

Confirmation of X(1835) in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$

- X(1835) was first observed at BES, and then confirmed at BESII [PRL95,262001(2005)]
- The angular distribution of the radiative photon is consistent with expectations for pseudoscalar
- Two additional structures observed at BESIII
- Nature of X(2120)/X(2370): pseudoscalar glueball? n/n' excited states?

Resonance	$M({\rm MeV}/c^2)$	$\Gamma({\rm MeV}/c^2)$	N _{event}	
$f_1(1510)$	1522.7 ± 5.0	48 ± 11	230 ± 37	>5.7σ
<i>X</i> (1835)	1836.5 ± 3.0	190.1 ± 9.0	4265 ± 131	>20σ
<i>X</i> (2120)	2122.4 ± 6.7	83 ± 16	647 ± 103	>7.2σ
<i>X</i> (2370)	2376.3 ± 8.7	83 ± 17	565 ± 105	>6.4σ
			8	3

- > PWA of events with $M(K_sK_s) < 1.1 GeV/c2$ and $M(K_sK_s\eta) < 2.8 GeV/c2$
- > Final fit results:
 - the data can be best described with three components: X(1835) \rightarrow f₀(980)n, X(1560) \rightarrow f₀(980)n, and a non-resonant f₀(980)n component
 - J^{PC} of X(1835), X(1560), and non-resonant component are all found to be 0^{-+}

$$\begin{split} M &= 1844 \pm 19 \text{ (stat)} \,\, {}^{+16}_{-25} (\text{syst}) \,\, \text{MeV/c}^2 \ \ \Gamma &= 192 \,\, {}^{+20}_{-17} (\text{stat}) \,\, {}^{+62}_{-43} (\text{syst}) \,\, \text{MeV} \ \ (>&12.9\sigma) \\ & \text{BR} &= (3.31 \,\, {}^{+0.33}_{-0.30} (\text{stat}) \,\, {}^{+1.96}_{-1.29} (\text{syst})) \times 10^{-5} \end{split}$$

 $M = 1565 \pm 8 \text{ (stat)}^{+0}_{-63} \text{(syst)} \text{ MeV/c}^2 \quad \Gamma = 45^{+14}_{-13} \text{(stat)}^{+21}_{-28} \text{(syst)} \text{ MeV} \qquad (>8.9\sigma)$

- $J^{PC} = 1^{++}$ for non-resonant component cannot be excluded
- Consistent with the X(1835) observed in $J/\psi \rightarrow \gamma \pi^{+}\pi^{-}\eta'$

Other BESIII Observations

★ X(1840): J/ ψ → γ3(π⁺π⁻) [PRD88, 091502] ○ X(1870): J/ ψ → ωηπ⁺π⁻ [PRL107, 182001] ▲ X(1835): J/ ψ → γ(ηπ⁺π⁻) [PRL106, 072002] ■ X(1840): J/ ψ → γ(pp̄) [PRL108, 112003] + X(1840): J/ ψ → γ(ωφ) [PRD87, 032008]

X(18??) near proton-antiproton threshold:

- X(1840) is in agreement with X(1835) and X(pp), while its width is significantly different
- Are they the same particles? 10

J/ψ -> γη'π⁺π⁻

arXiv:1603.09653

If the X(1835) is a pp bound state, the $\eta'\pi$ - π + line shape at the pp threshold would be affected by the opening of the X(1835) \rightarrow pp decay mode

- + 1.09×10⁹ J/ ψ events collected in 2012
- Clear peaks of X(1835), X(2120), X(2370), $\eta_c,$ and a structure near 2.6 GeV/c²

Significant distortion of the $\eta'\pi^-\pi^+$ line shape near the $p\overline{p}$ mass threshold

- Three efficiencycorrected Breit-Wigner functions
- Simple BW function fails in describing the η'π⁻π⁺ line shape near the threshold

MODEL 1

Threshold structure caused by the opening of additional decay mode

- Flatté formula for the shape (Phys.Lett.B63, 224)
- An additional BW resonance (X(1920)) is needed (5.7σ)

arXiv:1603.09653

MODEL 2 Interference between two

resonances

- Use coherent sum of two BW amplitudes for the line shape: X(1835) and a narrow resonance called X(1870)
- X(1920) not significant

- Both fits support the existence of one of
 - Broad state with strong coupling to $p\overline{p}$
 - Narrow state just below the pp mass threshold

J/ψ -> ηφπ⁺π⁻

• Study based on 2.25×10^8 J/ ψ events

Unbinned maximum likelihood fit is performed

to the $\varphi f_0(980)$ invariant mass distribution

 $\eta\pi\pi$ mass spectrum recoiling against the φ :

- Fit includes contributions from the $f_1(1285)$ and $\eta(1405)$ signals, the $J/\psi \rightarrow \eta \varphi \pi \pi$ decay, and backgrounds from non- η and non- φ processes
- No evidence of X(1835) and X(1870) states B(J/ψ -> $\phi f_1 \rightarrow \phi \eta \pi \pi$) = (1.20±0.06±0.14) × 10⁻⁴ B(J/ψ -> $\phi \eta$ (1405)-> $\phi \eta \pi \pi$) = (2.01±0.58±0.82) × 10⁻⁵

f_0^* and f_2^* in $J/\psi \rightarrow \gamma \pi^0 \pi^0$

PRD 92, 052003 (2015)

- Model independent PWA
- Provide a description of the scalar and tensor components of the $\pi^0\pi^0$ system

O++:
 f₀(500), f₀(1370), f₀(1500),
 f₀(1710), and f₀(2020)

• 2++: dominated by f₂(1270)

XYZ States

Below DD threshold: all the states have been observed and described by the cc potential model

Above the threshold: more complex situation • only a few of the predicted states above the threshold have been found

• Many new states have been observed with properties that are not consistent with the expectation for charmonium: X, Y, Z

X states: charmonium-like states with J^{PC}≠1⁻ observed in B decays, proton-proton, and proton-antiproton collisions.

Y states: charmonium-like states with **J**^{PC}=1--; Observed in direct e+e- annihilation or initial state radiation (ISR).

Z states: charmonium-like states carrying electric charge; must contain at least cc and a light qq pair

e⁺e⁻-> π⁺π⁻X(3823) -> γX_{C1,2} @ 4.19-4.60 GeV

PRL 115, 011803 (2015)

Y States Investigation

- The observed charmonium-like states Y(4260), Y(4360), and Y(4660) can not interpreted as conventional charmoniums.
- New decay modes searching and the line shape measurement is useful for understanding the nature of these Y-states.
- > Hadronic transitions (by an η or π^0) to lower charmonia like J/ ψ are regarded as sensitive probes to study the properties of these Y-states.
- Nature of these Y-states: hybrids ? tetraquarks? hadro-charmonium?
 - hadronic molecule?

Y States: e⁺e⁻ -> ηJ/ψ

- The study of hadronic transitions to J/ψ allows to probe their properties
- BESIII analysis: e⁺e⁻->η(π⁰)J/ψ from 3.81 to 4.60 GeV (17 c.m. points)
- Unbinned maximum likelihood fit
- Signal: signal MC shape ⊗
 Gaussian function
- BKG: 2th-order Chebishev

PRD 91, 112005 (2015)

- Cross section peaks around 4.2 GeV
- Different shape if compared to Belle π⁺π⁻J/ψ data
- Different dynamic at work in $e^+e^- \rightarrow \eta J/\psi$ and $e^+e^- \rightarrow \pi^+\pi^-J/\psi$

Belle: PRL99, 182004 BESIII(2012): PRD86, 071101

- y States: e⁺e⁻ -> π⁺π⁻h_c Data samples
 - Data samples:
 - XYZ sample:
 - 17 energy points from 3896 MeV to 4600 MeV
 - total luminosity: 5.26 fb⁻¹
 - R-scan data sample:
 - 62 energy points from 4097 MeV to 4587 MeV
 - total luminosity: 0.51 fb⁻¹
 - Decay channel: $e^+e^- \rightarrow \pi^+\pi^-h_c$, $h_c \rightarrow \gamma \eta_c$, $\eta_c \rightarrow X_i$

$$\begin{split} X_{i} = & \{ pp\text{-bar}, \, \pi^{+}\pi^{-}K^{+}K^{-}, \, \pi^{+}\pi^{-}pp\text{-bar}, \, 2(K^{+}K^{-}), \, 2(\pi^{+}\pi^{-}), \, 3(\pi^{+}\pi^{-}), \\ & 2(\pi^{+}\pi^{-})K^{+}K^{-}, \, K_{S}{}^{0}K^{+}\pi^{-} + \text{c.c.}, \, K_{S}{}^{0}K^{+}\pi^{-}\pi^{+}\pi^{-} + \text{c.c.}, \, K^{+}K^{-}\pi^{0}, \, pp\text{-} \\ & bar\pi^{0}, \, K^{+}K^{-}\eta, \, \pi^{+}\pi^{-}\eta, \, \pi^{+}\pi^{-}\pi^{0}\pi^{0}, \, 2(\pi^{+}\pi^{-})\eta, \, 2(\pi^{+}\pi^{-}\pi^{0}) \, \} \end{split}$$

Y States: e+e- -> $\pi^{+}\pi^{-}h_{c}$ fit to the cross section

$$\sigma(m) = \left| B_1(m) \sqrt{\frac{P(m)}{P(M_1)}} + e^{i\phi} B_2(m) \sqrt{\frac{P(m)}{P(M_2)}} \right|^2$$

B_i(m): constant width Breit-Wigner function P(m): 3-body phase space factor \$\phi\$: relative phase between two resonances

significance of two structures assumption over one structure > 10 σ

	M (MeV)	$\Gamma_{ m tot}$ (MeV)	$\Gamma_{\rm ee} extsf{ heta} extsf{ heta}$ (eV)	φ (rad)
Y(4220)	4218.4±4.0±0.9	66.0±9.0±0.4	4.6±4.1±0.8	
Y(4390)	4391.6±6.3±1.0	139.5±16.1±0.6	11.8±9.7±1.9	3.1±1.5±0.2

Observation of a charmonium like structure: Z_c(3900)[±] PRL 110, 252001 (2013)

- 2013: 515 pb⁻¹ @ 4260 MeV
- $e^+e^- \rightarrow \pi^+\pi^- J/\psi$
- Dominant background $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-$
- J/y signal: [3.08,3.12] GeV
- J/ ψ sideband: [3.0,3.06] GeV or [3.14,3.20] GeV
- Structure seen: $Z_c(3900)^{\pm} \rightarrow \pi^{\pm} J/\psi$

Dalitz Plots and 1D Projections

The Z_c(3900) signal

PRL 110, 252001 (2013)

- Couples to $\overline{c}c$
- Has electric charge
- At least 4-quarks
- What is its nature?

- S-wave Breit-Wigner with efficiency correction
- Mass = (3899.0±3.6±4.9) MeV
- Width = (46±10±20) MeV
- > Fraction = $(21.5\pm3.3\pm7.5)\%$

BESIII: $e^+e^- - \pi^+\pi^-J/\psi$ @ 4.26 GeV

BESIII: Z_c Results

Baryonic States

• All ground baryonic states are well estabilished

Good agreement between experimental data and quark model

- $\boldsymbol{\cdot}$ The excited spectrum is much less clear
 - Many more states predicted than observed
- Insight to hadron structure

Chin. Phys. C 38 090001 (2014) 3* states 2.5 2.5 4* states 2.3 2.3 Up to 2.5 GEV: 2.1 2.1 Mass (MeV) 45 N states predicted 1.9 1.9 1.7 1.7 15 estabilished 1.5 1.5 1.3 1.3 10 tentative 1.1 1.1 Ν Δ 0.9 $1/2^{\pm}$ $3/2^{\pm}$ $5/2^{\pm}$ $7/2^{\pm}$ $9/2^{\pm}$ $11/2^{\pm}$ $1/2^{\pm} 3/2^{\pm} 5/2^{\pm} 7/2^{\pm} 9/2^{\pm}$

Missing Resonances

- Many of the predicted resonances were not observed experimentally
- Experimental and theoretical efforts
- Experimentally:

baryon resonances may couple very weakly to single pions

• Theoretically:

the baryon spectrum can be modeled with *fewer effective* degrees of freedom (quark-diquark or Y/Δ -type models)

Missing Resonances

- Many of the predicted resonances were not observed experimentally
- Experimental and theoretical efforts
- Experimentally:

baryon resonances may couple very weakly to single pions

• Theoretically:

the baryon spectrum can be modeled with *fewer effective* degrees of freedom (quark-diquark or Y/Δ -type models)

BESIII: Baryon Production

$\psi(3686) \rightarrow \bar{p}K^{+}\Sigma^{0}$ and $\chi_{cJ} \rightarrow \bar{p}K^{+}\Lambda$

PRD 87, 012007 (2013)

BESII

1.22

1.2

100

80

60

40

20

1.16

Events /2 MeV/c²

Σ0

1.18

 $M(\gamma\Lambda)$ (GeV/c²)

- $\psi(3686) \rightarrow \overline{p}K^{+}\Sigma^{0}$: first measurement
- X_{cJ} -> pK⁺Λ: BR improvement
- X_{c0} -> pK⁺A: anomalous enhancement close to threshold
- Possible reasons:
 - quasi bound dibaryon state
 - final state interactions

ψ(3686) -> ΛΣ̄±π[∓]

- BR first measurements: B($\psi(3686) \rightarrow \Lambda \overline{\Sigma}^{+} \pi^{-} + cc$) = (1.40±0.03±0.13)×10⁻⁴ B($\psi(3686) \rightarrow \Lambda \overline{\Sigma}^{-} \pi^{+} + cc$) = (1.54±0.04±0.13)×10⁻⁴ $Q_{\Lambda \overline{\Sigma}^{-} \pi^{+}} = \frac{\mathcal{B}(\psi(3686) \rightarrow \Lambda \overline{\Sigma}^{-} \pi^{+})}{\mathcal{B}(J/\psi \rightarrow \Lambda \overline{\Sigma}^{-} \pi^{+})} = (9.3 \pm 1.2)\%$
- PWA used to determine detection efficiency
- Includes 16 possible intermediate excited states with at least two stars according to the PDG, with parameters fixed to world averages

PRD 88, 112007 (2013)

ψ(3686) -> (γ)K[∓]ΛΞ[±]

- $\Xi(1690)$ and $\Xi(1820)$ observed in M(KA)
- Both are well established states
- Resonance parameters consistent with PDG

	$\Xi(1690)^{-}$	$\Xi(1820)^{-}$
$M(\text{MeV}/c^2)$	$1687.7 \pm 3.8 \pm 1.0$	$1826.7 \pm 5.5 \pm 1.6$
$\Gamma(MeV)$	$27.1 \pm 10.0 \pm 2.7$	$54.4 \pm 15.7 \pm 4.2$
Event yields	74.4 ± 21.2	136.2 ± 33.4
Significance(σ)	4.9	6.2
Efficiency(%)	32.8	26.1
$\mathcal{B}(10^{-6})$	$5.21 \pm 1.48 \pm 0.57$	$12.03 \pm 2.94 \pm 1.22$
$M_{\rm PDG}({\rm MeV}/c^2)$	1690 ± 10	1823 ± 5
$\Gamma_{\rm PDG}({\rm MeV})$	< 30	24^{+15}_{-10}

Decay	Branching fraction
$\overline{\psi(3686)} \rightarrow K^- \Lambda \bar{\Xi}^+$	$(3.86 \pm 0.27 \pm 0.32) \times 10^{-5}$
$\psi(3686) \to \Xi(1690)^-\bar{\Xi}^+,$	$(5.21 \pm 1.48 \pm 0.57) \times 10^{-6}$
$\Xi(1690)^- \rightarrow K^-\Lambda$	
$\psi(3686) \to \Xi(1820)^-\Xi^+,$	$(12.03 \pm 2.94 \pm 1.22) \times 10^{-6}$
$\Xi(1820)^- \to K^-\Lambda$	
$\psi(3686) \to K^- \Sigma^0 \Xi^+$	$(3.67 \pm 0.33 \pm 0.28) \times 10^{-5}$
$\psi(3686) \rightarrow \gamma \chi_{c0}, \chi_{c0} \rightarrow K^- \Lambda \Xi^+$	$(1.90 \pm 0.30 \pm 0.16) \times 10^{-5}$
$\psi(3686) \to \gamma \chi_{c1}, \chi_{c1} \to K^- \Lambda \Xi^+$	$(1.32 \pm 0.20 \pm 0.12) \times 10^{-5}$
$\psi(3686) \rightarrow \underline{\gamma}\chi_{c2}, \chi_{c2} \rightarrow K^{-}\Lambda\Xi^{+}$	$(1.68 \pm 0.26 \pm 0.15) \times 10^{-3}$
$\chi_{c0} \to K^- \Lambda \Xi^+$	$(1.96 \pm 0.31 \pm 0.16) \times 10^{-4}$
$\chi_{c1} \to K^- \Lambda \Xi^+$	$(1.43 \pm 0.22 \pm 0.12) \times 10^{-4}$
$\chi_{c2} \to K^- \Lambda \Xi^+$	$(1.93 \pm 0.30 \pm 0.15) \times 10^{-4}$

ψ(3686) -> p<u>p</u>η

- Intermediate state
 N(1535) -> pn is dominant
- No evidence for a pp resonance, indicating that the threshold enhancement in previous results may be explained by interference between the N(1535) and phase space

Mass and width of N(1535)

- $M = 1524 \pm 5^{+10}_{-4} \text{ MeV}/c^2$
- $\blacktriangleright \ \Gamma = 130^{+27+57}_{-24-10} \ {\rm MeV}/c^2$

PDG value:

- M = 1525 to 1545 MeV/ c^2
- $\Gamma = 125$ to 175 MeV/ c^2

PRD 88, 032010 (2013)

$$Q_{p\bar{p}\eta} = \frac{B(\psi(2S) \to p\bar{p}\eta)}{B(J/\psi \to p\bar{p}\eta)} = (3.2 \pm 0.4)\%$$

 $B(\psi(2S) \rightarrow N(1535)\bar{p}) \times B(N(1535) \rightarrow p\eta)$ $= \frac{N_{\text{obs}}}{\varepsilon \cdot N_{\psi(2S)} \cdot B(\eta \rightarrow \gamma\gamma)} = (5.2 \pm 0.3^{+3.2}_{-1.2}) \times 10^{-5}$

34

ψ(3686) -> ppπ⁰

- In photon or meson beam studies, isospin 1/2 and 3/2 resonances are excited, complicating the analysis
- Δ resonances suppressed in charmonium decays to $p\overline{p}\pi^0$, giving a cleaner spectrum
 - Thought to be dominated by two body decays involving N* intermediate states
 - Also consider pp resonances ($\psi(3686) \rightarrow R\pi^0$)
- $\cdot\,$ Seven N* states observed in partial wave analysis
 - Two new resonances, N(2300) with $J^P = 1/2^+$ and N(2570) with $J^P = 5/2^-$
 - Other five consistent with previous results

Resonance	$M(\text{MeV}/c^2)$	$\Gamma(\text{MeV}/c^2)$	ΔS	$\Delta N_{ m dof}$	Sig.
N(1440)	$1390\substack{+11+21\\-21-30}$	$340^{+46+70}_{-40-156}$	72.5	4	11.5σ
N(1520)	$1510\substack{+3+11\\-7-9}$	$115\substack{+20+0\\-15-40}$	19.8	6	5.0σ
N(1535)	$1535\substack{+9+15\\-8-22}$	$120\substack{+20+0\\-20-42}$	49.4	4	9.3 <i>o</i>
N(1650)	1650^{+5+11}_{-5-30}	150^{+21+14}_{-22-50}	82.1	4	12.2σ
N(1720)	$1700\substack{+30+32\\-28-35}$	$450^{+109+149}_{-94-44}$	55.6	6	9.6 <i>o</i>
N(2300)	$2300\substack{+40+109\\-30-0}$	$340\substack{+30+110\\-30-58}$	120.7	4	15.0σ
N(2570)	$2570\substack{+19+34\\-10-10}$	250^{+14+69}_{-24-21}	78.9	6	11.7σ

PRL 110, 022001 (2013)

 $M_{p\pi^0}(GeV/c^2)$

35

2.5

ψ(3686) -> p<u>p</u>a₀(980)

- + First observation of $J/\psi \rightarrow p\overline{p}a_0(980)$, $a_0(980) \rightarrow \pi^0\eta$
- Applies a chiral unitary coupled channel approach
 - Four-body decays $J/\psi \to N \overline{N} M M$
 - $a_0(980)$ generated through Final State Interactions
 - Provides useful information on dynamics of four-body FSI processes

$$Br(J/\psi \to p\bar{p}a_0(980) \to p\bar{p}\pi^0\eta)$$

$$= (6.8 \pm 1.2 \pm 1.3) \times 10^{-5}$$

$J/\psi(\psi(3686)) -> \Xi^{-}\Xi^{+}$ and $\Sigma(1385)^{+}\overline{\Sigma}(1385)^{+}$

PRD 93, 072003 (2016)

- First observation of $\psi(3686)$ into $\Sigma(1835)$ states
- Single tag method
- BR and angular distribution investigations
- Most precise measurements available

J/ψ(ψ(3686)) -> $\Xi^{-}\overline{\Xi}^{+}$ and $\Sigma(1385)^{+}\overline{\Sigma}(1385)^{+}$

12% rule

Σ(1385)⁻Σ(1385)⁺

26.73%

7.76%

6.68%

Σ(1385)⁺Σ(1385)⁻

PRD 93, 072003 (2016)

Branching Ratios

Mode	$J/\psi ightarrow$			$\psi(3686) \rightarrow$			
	$\Xi^- \bar{\Xi}^+$	$\Sigma(1385)^{-}\bar{\Sigma}(1385)^{+}$	$\Sigma(1385)^+ \bar{\Sigma}(1385)^-$	$\Xi^-\bar{\Xi}^+$	$\Sigma(1385)^{-}\bar{\Sigma}(1385)^{+}$	$\Sigma(1385)^+ \bar{\Sigma}(1385)^-$	
This work	$10.40 \pm 0.06 \pm 0.74$	$10.96 \pm 0.12 \pm 0.71$	$12.58 \pm 0.14 \pm 0.78$	$2.78 \pm 0.05 \pm 0.14$	$0.85 \pm 0.06 \pm 0.06$	$0.84 \pm 0.05 \pm 0.05$	
MarkI [5]	14.00 ± 5.00			< 2.0			
MarkII [6]	$11.40 \pm 0.80 \pm 2.00$	$8.60 \pm 1.80 \pm 2.20$	$10.3 \pm 2.4 \pm 2.5$				
DM2 [7]	$7.00 \pm 0.60 \pm 1.20$	$10.00 \pm 0.40 \pm 2.10$	$11.9 \pm 0.4 \pm 2.5$				
BESII [8,12]	$9.00 \pm 0.30 \pm 1.80$	$12.30 \pm 0.70 \pm 3.00$	$15.0 \pm 0.8 \pm 3.8$	$3.03 \pm 0.40 \pm 0.32$			
CLEO [9]				$2.40 \pm 0.30 \pm 0.20$			
BESI [26]				$0.94 \pm 0.27 \pm 0.15$			
PDG [3]	8.50 ± 1.60	10.30 ± 1.30	10.30 ± 1.30	1.80 ± 0.60			

Angular distributions

Mode	$J/\psi ightarrow$			$\psi(3686) \rightarrow$			
	Ξ-Ξ+	$\Sigma(1385)^{-}\bar{\Sigma}(1385)^{+}$	$\Sigma(1385)^{+}\bar{\Sigma}(1385)^{-}$	Ξ-Ξ+	$\Sigma(1385)^{-}\bar{\Sigma}(1385)^{+}$	$\Sigma(1385)^{+}\bar{\Sigma}(1385)^{-}$	
This work	$0.58 \pm 0.04 \pm 0.08$	$-0.58 \pm 0.05 \pm 0.09$	$-0.49 \pm 0.06 \pm 0.08$	$0.91 \pm 0.13 \pm 0.14$	$0.64 \pm 0.40 \pm 0.27$	$0.35 \pm 0.37 \pm 0.10$	
BESII [8]	$0.35 \pm 0.29 \pm 0.06$	$-0.54 \pm 0.22 \pm 0.10$	$-0.35 \pm 0.25 \pm 0.06$				
MarkIII [6]	0.13 ± 0.55						
Claudson <i>et al.</i> [10]	0.16	0.11	0.11	0.32	0.29	0.29	
Carimalo [11]	0.27	0.20	0.20	0.52	0.50	0.50	

Summary

• Huge statistics

J/ψ, ψ(25), ψ(3770) XYZ studies R scans

• Near future

collect data at higher energies to complete scans higher luminosity expected from BEPCII analyse the full data sample many PWA to be completed

Stay tuned for new results!!

Backup Slides

BESIII Detector

BESIII Production of Charmonium(like) states

• 3850 ÷ 4590 MeV: 0.5 fb⁻¹ fine scan

BESIII: Baryon Production

Observation of two structures in

 $e^+e^- \rightarrow \pi^+\pi^-h_c$

Preliminary result for conference

introduction

PDG2014

Vector charmonium like state (*Y*s) above charm threshold:

- relatively narrow
- large coupling to hadronic transition process
- small coupling to open charm process

Introduction

- π⁺π⁻h_c first observed at CLEO-c at 4170 MeV
- Previous measurement up to 4420 MeV shows different line shape of π⁺π⁻ h_c cross section comparing to that of π⁺π⁻ J/ψ
- Resonance around 4230
 MeV in e⁺e⁻→ωχ_{c0} cross section at BESIII

Signals in data (4415 MeV as example)

Number of signal events extracted from $\pi^+\pi^-$ recoil mass spectrum:

- XYZ sample: fit to the mass spectrum
- R-scan sample: calculate by counting the entries in h_c signal region and the entries in

cross section

$$\sigma^{\text{dressed}} = \frac{N^{\text{obs}}}{\mathcal{L}(1+\delta)\sum_{i=1}^{16}\epsilon_i \mathcal{B}(\eta_c \to X_i)\mathcal{B}(h_c \to \gamma \eta_c)}$$

48

Systematic uncertainty

Cross section measurement

- Total: 15.2%-18.0% depending on CM energies
- Luminosity:
- Branching fraction of $h_c \rightarrow \gamma \eta_c : 11.8\%$
- Detection efficiency and branching fraction of η_c : 6.4%-9.1%
 - efficiency: 5.5%-10.8%, depend on the $\eta_{\rm c}$ decay modes and CM energies
- ISR correction factor: 0.1%-2.0%
- Number of signal events extraction: 2.0%-10.0%

Systematic uncertainty

Parameters of the structures

C	Y(4220)			Y(1 (1)		
Sources	$M~({ m MeV}/c^2)$	Γ (MeV) Γ^{el} (eV)	$M~({ m MeV}/c^2)$	Γ (MeV)) Γ^{el} (eV)	ϕ (rad)
CM energy ¹⁽²⁾	0.8(0.1)	-(0.1)	-(0.2)	0.8(0.1)	-(0.2)	-(0.3)	-(0.1)
CM energy spread	0.1	0.3	0.3	0.1	0.1	0.7	0.1
Cross section ^{$1(2)$}	0.1(-)	-(-)	0.2(0.7)	0.6(-)	0.5(-)	0.4(1.7)	0.1(-)
Total	0.9	0.4	0.8	1.0	0.6	1.9	0.2

- CM energy¹: systematic uncertainty of center-of-mass energy measurement
- CM energy²: assumptions made in the center-of-mass energy measurement for R-scan data sample
- Cross section¹: systematic uncertainties of the cross section measurement which are different in each energy point
- Cross section²: systematic uncertainties of the cross section measurement which are common in each energy point

summary

- Cross section of e⁺e⁻→π⁺π⁻h_c has been measured at 79 energy points from 3896 MeV to 4600 MeV
 - The cross section drops in high energy region, likely two resonant structures
 - The significance of the two resonant structures assumption over one structure is larger than 10σ
 - Parameters of the two resonances are different from those of Y(4260), Y(4360), and the $\psi(4415)$

