Medium effects on heavy-flavour observables in high-energy nuclear collisions

Andrea Beraudo

INFN - Sezione di Torino

QCD@Work 2016 $\label{eq:cdw} \mbox{Martina Franca, } 27^{\rm th} - 30^{\rm th} \mbox{ June 2016}$

Heavy-ion collisions: exploring the QCD phase-diagram

QCD phases identified through the *order* parameters

- Polyakov loop $\langle L \rangle \sim e^{-\beta \Delta F_Q}$ energy cost to add an isolated color charge
- ullet Chiral condensate $\langle \overline{q}q
 angle \sim$ effective mass of a "dressed" quark in a hadron

Region explored at LHC: high-T/low-density (early universe, $n_B/n_\gamma \sim 10^{-9}$)

- From QGP (color deconfinement, chiral symmetry restored)
- to hadronic phase (confined, chiral symmetry breaking¹)

NB $\langle \overline{q}q \rangle \neq 0$ responsible for most of the baryonic mass of the universe: only ~ 35 MeV of the proton mass from $m_{u/d} \neq 0$

¹V. Koch, Aspects of chiral symmetry, Int.J.Mod.Phys. **E**6 (1997)

Heavy-ion collisions: a typical event

- Valence quarks of participant nucleons act as sources of strong color fields giving rise to particle production
- Spectator nucleons don't participate to the collision;

Almost all the energy and baryon number carried away by the remnants

Heavy-ion collisions: a typical event

Event display of a Au-Au collision at $\sqrt{s_{\mathrm{NN}}}\!=\!200$ GeV

Heavy-ion collisions: a cartoon of space-time evolution

- Soft probes (low-p_T hadrons): collective behavior of the *medium*;
- Hard probes (high-p_T particles, heavy quarks, quarkonia): produced in hard pQCD processes in the initial stage, allow to perform a tomography of the medium

Hydrodynamic behavior: elliptic flow

 In non-central collisions particle emission is not azimuthally-symmetric!

Hydrodynamic behavior: elliptic flow

- In non-central collisions particle emission is not azimuthally-symmetric!
- The effect can be quantified through the Fourier coefficient v_2

$$\frac{dN}{d\phi} = \frac{N_0}{2\pi} \left(1 + 2v_2 \cos[2(\phi - \psi_{RP})] + \dots \right)$$

$$v_2 \equiv \langle \cos[2(\phi - \psi_{RP})] \rangle$$

• $v_2(p_T) \sim 0.2$ gives a modulation 1.4 vs 0.6 for in-plane vs out-of-plane particle emission!

Elliptic flow: physical interpretation

 Matter behaves like a fluid whose expansion is driven by pressure gradients

$$(\epsilon + P) \frac{dv^i}{dt} = -\frac{\partial P}{\partial x^i}$$
 (Euler equation)

- Spatial anisotropy is converted into momentum anisotropy;
- At freeze-out particles are mostly emitted along the reaction-plane.
- It provides information on the EOS of the produced matter (Hadron Gas vs QGP) through the *speed of sound*: $\vec{\nabla}\vec{P} = \vec{c}_s^2 \vec{\nabla}\vec{\epsilon}$

The medium is opaque: jet-quenching

The nuclear modification factor

$$R_{AA} \equiv rac{\left(dN^h/dp_T
ight)^{AA}}{\left\langle N_{
m coll}
ight
angle \left(dN^h/dp_T
ight)^{pp}}$$

quantifies the suppression of high- p_T hadron spectra

- Hard-photon $R_{AA} \approx 1$
 - supports the Glauber picture (binary-collision scaling);
 - entails that quenching of inclusive hadron spectra is a final state effect due to in-medium energy loss.

The medium is opaque: jet-quenching

The nuclear modification factor

$$R_{AA} \equiv rac{\left(dN^h/dp_T
ight)^{AA}}{\left\langle N_{
m coll}
ight
angle \left(dN^h/dp_T
ight)^{pp}}$$

quantifies the suppression of high- p_T hadron spectra

Hard-photon $R_{AA} \approx 1$

- supports the Glauber picture (binary-collision scaling);
- entails that quenching of inclusive hadron spectra is a final state effect due to in-medium energy loss.

The medium is opaque: jet-quenching

The nuclear modification factor

$$R_{AA} \equiv rac{\left(dN^h/dp_T
ight)^{AA}}{\left\langle N_{
m coll}
ight
angle \left(dN^h/dp_T
ight)^{pp}}$$

quantifies the suppression of high- p_T hadron spectra

Hard-photon $R_{AA} \approx 1$

- supports the Glauber picture (binary-collision scaling);
- entails that quenching of inclusive hadron spectra is a final state effect due to in-medium energy loss.

Di-jet imbalance at LHC: looking at the event display

An important fraction of events display a *huge mismatch* in E_T between the leading jet and its away-side partner

Possible to observe event-by-event, without any analysis!

Di-jet imbalance at LHC: looking at the event display

An important fraction of events display a *huge mismatch* in E_T between the leading jet and its away-side partner

Possible to observe event-by-event, without any analysis!

Heavy Flavour in the QGP: the conceptual setup

- Description of soft observables based on hydrodynamics, assuming to deal with a system close to local thermal equilibrium (no matter why);
- Description of jet-quenching based on energy-degradation of external probes (high-p_T partons);

Heavy Flavour in the QGP: the conceptual setup

- Description of soft observables based on hydrodynamics, assuming to deal with a system close to local thermal equilibrium (no matter why);
- Description of jet-quenching based on energy-degradation of external probes (high-p_T partons);
- Description of heavy-flavour observables requires to employ/develop a setup (transport theory) allowing to deal with more general situations and in particular to describe how particles would (asymptotically) approach equilibrium.

Heavy Flavour in the QGP: the conceptual setup

- Description of soft observables based on hydrodynamics, assuming to deal with a system close to local thermal equilibrium (no matter why);
- Description of jet-quenching based on energy-degradation of external probes (high-p_T partons);
- Description of heavy-flavour observables requires to employ/develop a setup (transport theory) allowing to deal with more general situations and in particular to describe how particles would (asymptotically) approach equilibrium.

NB At high- p_T the interest in heavy flavor is no longer related to thermalization, but to the study of the mass and color charge dependence of jet-quenching (not addressed in this talk)

• $M \gg \Lambda_{\rm QCD}$: their initial production (as shown!) is well described by pQCD

- M ≫ Λ_{QCD}: their initial production (as shown!) is well described by pQCD
- $M\gg T$: thermal abundance in the plasma would be negligible; final multiplicity in the experiments (expanding fireball with lifetime ~ 10 fm/c) set by the initial hard production

- M ≫ Λ_{QCD}: their initial production (as shown!) is well described by pQCD
- $M\gg T$: thermal abundance in the plasma would be negligible; final multiplicity in the experiments (expanding fireball with lifetime $\sim\!10~{\rm fm/c}$) set by the initial hard production
- $M \gg gT$, with gT being the *typical momentum exchange* in the collisions with the plasma particles: many soft scatterings necessary to change significantly the momentum/trajectory of the quark.

- $M \gg \Lambda_{\rm QCD}$: their initial production (as shown!) is well described by pQCD
- $M\gg T$: thermal abundance in the plasma would be negligible; final multiplicity in the experiments (expanding fireball with lifetime $\sim\!10~{\rm fm/c}$) set by the initial hard production
- $M \gg gT$, with gT being the *typical momentum exchange* in the collisions with the plasma particles: many soft scatterings necessary to change significantly the momentum/trajectory of the quark.

NB for realistic temperatures $g \sim 2$, so that one can wonder whether a charm is really "heavy", at least in the initial stage of the evolution.

A realistic study requires developing a multi-step setup:

• Initial production: $pQCD + possible nuclear effects (nPDFs, <math>k_T$ -broadening) $\longrightarrow QCD$ event generators;

- Initial production: $pQCD + possible nuclear effects (nPDFs, <math>k_T$ -broadening) $\longrightarrow QCD$ event generators;
- Description of the background medium $(T(x), u^{\mu}(x), local \text{ value of } transport coefficients...) <math>\longrightarrow$ hydrodynamics;

- Initial production: $pQCD + possible nuclear effects (nPDFs, <math>k_T$ -broadening) $\longrightarrow QCD$ event generators;
- Description of the background medium $(T(x), u^{\mu}(x), local \text{ value of } transport coefficients...) <math>\longrightarrow$ hydrodynamics;
- Dynamics in the medium
 — transport calculations;

- Initial production: $pQCD + possible nuclear effects (nPDFs, <math>k_T$ -broadening) $\longrightarrow QCD$ event generators;
- Description of the background medium $(T(x), u^{\mu}(x), local \text{ value of } transport coefficients...) <math>\longrightarrow$ hydrodynamics;
- Dynamics in the medium
 — transport calculations;
- Hadronization: not well under control (fragmentation in the vacuum? recombination with light thermal partons?)
 - An item of interest in itself (change of hadrochemistry in AA)
 - However, a source of systematic uncertainty for studies of parton-medium interaction;

- Initial production: $pQCD + possible nuclear effects (nPDFs, <math>k_T$ -broadening) $\longrightarrow QCD$ event generators;
- Description of the background medium $(T(x), u^{\mu}(x), local \text{ value of } transport coefficients...) <math>\longrightarrow$ hydrodynamics;
- Dynamics in the medium → transport calculations;
- Hadronization: not well under control (fragmentation in the vacuum? recombination with light thermal partons?)
 - An item of interest in itself (change of hadrochemistry in AA)
 - However, a source of systematic uncertainty for studies of parton-medium interaction;
- Final decays $(D \to X \nu e, B \to X J/\psi...)$

HQ production: NLO calculation + Parton Shower

- The tool adopted to simulate the initial $Q\overline{Q}$ production (the POWHEG-BOX package) interfaces the output of a NLO event-generator for the hard process with a parton-shower describing the Initial and Final State Radiation and modeling other non-perturbative processes (intrinsic k_T , MPI, hadronizazion)
- This provides a fully exclusive information on the final state

Heavy flavour: experimental observables

- D and B mesons
- Non-prompt J/ψ 's $(B \to J/\psi X)$
- Heavy-flavour electrons, from the decays
 - of charm (e_c)

$$D o X \nu e$$

• of beauty (e_b)

$$B \rightarrow D\nu e$$

$$B \rightarrow D\nu e \rightarrow X\nu e\nu e$$

$$B \rightarrow DY \rightarrow X\nu eY$$

B-tagged jets

HF production in pp collisions: results

- Besides reproducing the inclusive D-meson
- and B-meson p_T -spectra²...

HF production in pp collisions: results

- Besides reproducing the inclusive D-meson
- and B-meson p_T -spectra²...
- ...the POWHEG+PYTHIA setup allows also the comparison with D-h correlation data, which start getting available.

Transport theory: the Boltzmann equation

Time evolution of HQ phase-space distribution $f_Q(t, \mathbf{x}, \mathbf{p})^3$:

$$\frac{d}{dt}f_Q(t,\mathbf{x},\mathbf{p}) = C[f_Q]$$

• Total derivative along particle trajectory

$$\frac{d}{dt} \equiv \frac{\partial}{\partial t} + \mathbf{v} \frac{\partial}{\partial \mathbf{x}} + \mathbf{F} \frac{\partial}{\partial \mathbf{p}}$$

Neglecting **x**-dependence and mean fields: $\partial_t f_Q(t, \mathbf{p}) = C[f_Q]$

Collision integral:

$$C[f_Q] = \int d\mathbf{k} [\underbrace{w(\mathbf{p} + \mathbf{k}, \mathbf{k}) f_Q(\mathbf{p} + \mathbf{k})}_{\text{gain term}} - \underbrace{w(\mathbf{p}, \mathbf{k}) f_Q(\mathbf{p})}_{\text{loss term}}]$$

$$w(\mathbf{p}, \mathbf{k})$$
: HQ transition rate $\mathbf{p} \rightarrow \mathbf{p} - \mathbf{k}$

³For results based on BE see e.g. Catania-group papers (3) (2) (2)

From Boltzmann to Fokker-Planck

Expanding the collision integral for *small momentum exchange*⁴ (Landau)

$$C[f_Q] pprox \int d\mathbf{k} \left[k^i rac{\partial}{\partial p^i} + rac{1}{2} k^i k^j rac{\partial^2}{\partial p^i \partial p^j}
ight] [w(\mathbf{p}, \mathbf{k}) f_Q(t, \mathbf{p})]$$

⁴B. Svetitsky, PRD 37, 2484 (1988)

From Boltzmann to Fokker-Planck

Expanding the collision integral for *small momentum exchange*⁴ (Landau)

$$C[f_Q] pprox \int d\mathbf{k} \left[k^i \frac{\partial}{\partial p^i} + \frac{1}{2} k^i k^j \frac{\partial^2}{\partial p^i \partial p^j} \right] [w(\mathbf{p}, \mathbf{k}) f_Q(t, \mathbf{p})]$$

The Boltzmann equation reduces to the Fokker-Planck equation

$$\frac{\partial}{\partial t} f_Q(t, \mathbf{p}) = \frac{\partial}{\partial p^i} \left\{ A^i(\mathbf{p}) f_Q(t, \mathbf{p}) + \frac{\partial}{\partial p^i} [B^{ij}(\mathbf{p}) f_Q(t, \mathbf{p})] \right\}$$

where (verify!)

$$A^{i}(\mathbf{p}) = \int d\mathbf{k} \, k^{i} w(\mathbf{p}, \mathbf{k}) \longrightarrow \underbrace{A^{i}(\mathbf{p}) = A(\mathbf{p}) \, p^{i}}_{\text{friction}}$$

$$B^{ij}(\mathbf{p}) = \frac{1}{2} \int d\mathbf{k} \, k^i k^j w(\mathbf{p}, \mathbf{k}) \longrightarrow \underline{B^{ij}(\mathbf{p}) = \hat{p}^i \hat{p}^j \underline{B_0(\mathbf{p})} + (\delta^{ij} - \hat{p}^i \hat{p}^j) \underline{B_1(\mathbf{p})}}$$

momentum broadening

⁴B. Svetitsky, PRD 37, 2484 (1988)

From Boltzmann to Fokker-Planck

Expanding the collision integral for *small momentum exchange*⁴ (Landau)

$$C[f_Q] \approx \int d\mathbf{k} \left[k^i \frac{\partial}{\partial p^i} + \frac{1}{2} k^i k^j \frac{\partial^2}{\partial p^i \partial p^j} \right] [w(\mathbf{p}, \mathbf{k}) f_Q(t, \mathbf{p})]$$

The Boltzmann equation reduces to the Fokker-Planck equation

$$\frac{\partial}{\partial t} f_Q(t, \mathbf{p}) = \frac{\partial}{\partial p^i} \left\{ A^i(\mathbf{p}) f_Q(t, \mathbf{p}) + \frac{\partial}{\partial p^i} [B^{ij}(\mathbf{p}) f_Q(t, \mathbf{p})] \right\}$$

where (verify!)

$$A^{i}(\mathbf{p}) = \int d\mathbf{k} \, k^{i} w(\mathbf{p}, \mathbf{k}) \longrightarrow \underbrace{A^{i}(\mathbf{p}) = A(\mathbf{p}) \, p^{i}}_{\text{friction}}$$

$$B^{ij}(\mathbf{p}) = \frac{1}{2} \int d\mathbf{k} \, k^i k^j w(\mathbf{p}, \mathbf{k}) \longrightarrow \underline{B^{ij}(\mathbf{p}) = \hat{p}^i \hat{p}^j B_0(\mathbf{p}) + (\delta^{ij} - \hat{p}^i \hat{p}^j) B_1(\mathbf{p})}$$

momentum broadening

Problem reduced to the evaluation of three transport coefficients

The relativistic Langevin equation

The Fokker-Planck equation can be recast into a form suitable to follow the dynamics of each individual quark: the Langevin equation

$$\frac{\Delta p^{i}}{\Delta t} = -\underbrace{\eta_{D}(p)p^{i}}_{\text{determ.}} + \underbrace{\xi^{i}(t)}_{\text{stochastic}},$$

with the properties of the noise encoded in

$$\langle \xi^{i}(\mathbf{p}_{t})\xi^{j}(\mathbf{p}_{t'})\rangle = b^{ij}(\mathbf{p}_{t})\frac{\delta_{tt'}}{\Delta t} \qquad b^{ij}(\mathbf{p}) \equiv \kappa_{\parallel}(p)\hat{p}^{i}\hat{p}^{j} + \kappa_{\perp}(p)(\delta^{ij} - \hat{p}^{i}\hat{p}^{j})$$

The relativistic Langevin equation

The Fokker-Planck equation can be recast into a form suitable to follow the dynamics of each individual quark: the Langevin equation

$$\frac{\Delta p^{i}}{\Delta t} = -\underbrace{\eta_{D}(p)p^{i}}_{\text{determ.}} + \underbrace{\xi^{i}(t)}_{\text{stochastic}},$$

with the properties of the noise encoded in

$$\langle \xi^{i}(\mathbf{p}_{t})\xi^{j}(\mathbf{p}_{t'})\rangle = b^{ij}(\mathbf{p}_{t})\frac{\delta_{tt'}}{\Lambda t}$$
 $b^{ij}(\mathbf{p}) \equiv \kappa_{\parallel}(p)\hat{p}^{i}\hat{p}^{j} + \kappa_{\perp}(p)(\delta^{ij} - \hat{p}^{i}\hat{p}^{j})$

Transport coefficients to calculate:

- Momentum diffusion $\kappa_{\perp} \equiv \frac{1}{2} \frac{\langle \Delta p_{\perp}^2 \rangle}{\Delta_{\perp}}$ and $\kappa_{\parallel} \equiv \frac{\langle \Delta p_{\parallel}^2 \rangle}{\Delta_{\perp}}$;
- Friction term (dependent on the discretization scheme!)

$$\eta_{\mathcal{D}}^{\mathrm{Ito}}(p) = \frac{\kappa_{\parallel}(p)}{2TE_{p}} - \frac{1}{E_{p}^{2}} \left[(1 - v^{2}) \frac{\partial \kappa_{\parallel}(p)}{\partial v^{2}} + \frac{d - 1}{2} \frac{\kappa_{\parallel}(p) - \kappa_{\perp}(p)}{v^{2}} \right]$$

fixed in order to assure approach to equilibrium (Einstein relation)

A first check: thermalization in a static medium

For $t\gg 1/\eta_D$ one approaches a relativistic Maxwell-Jüttner distribution⁵

$$f_{\mathrm{MJ}}(p) \equiv rac{e^{-E_p/T}}{4\pi M^2 T \; K_2(M/T)}, \qquad ext{with } \int\!\! d^3p \, f_{\mathrm{MJ}}(p) = 1$$

(Test with a sample of c quarks with $p_0 = 2 \text{ GeV/c}$)

⁵A.B., A. De Pace, W.M. Alberico and A. Molinari,:NPA:831, 59 (2009)

The realistic case: expanding fireball

Within our POWLANG setup (POWHEG+LANGevin) the HQ evolution in heavy-ion collisions is simulated as follows

• $Q\overline{Q}$ pairs initially produced with the POWHEG-BOX package (with nPDFs) and distributed in the transverse plane according to $n_{\text{coll}}(\mathbf{x}_{\perp})$ from (optical) Glauber model;

 $^{^6}$ P. Romatschke and U.Romatschke, Phys. Rev. Lett. **99** (2007) 172301 and ECHO-QGP, L. Del Zanna *et al.*, Eur.Phys.J. C73 (2013) 2524.

The realistic case: expanding fireball

Within our POWLANG setup (POWHEG+LANGevin) the HQ evolution in heavy-ion collisions is simulated as follows

- QQ pairs initially produced with the POWHEG-BOX package (with nPDFs) and distributed in the transverse plane according to n_{coll}(x_⊥) from (optical) Glauber model;
- update of the HQ momentum and position to be done at each step in the local fluid rest-frame
 - $u^{\mu}(x)$ used to perform the boost to the fluid rest-frame;
 - \bullet T(x) used to set the value of the transport coefficients

with $u^{\mu}(x)$ and T(x) fields taken from the output of hydro codes⁶;

Procedure iterated until hadronization

The Langevin equation provides a link between what is possible to calculate in QCD (transport coefficients) and what one actually measures (final p_T spectra)

Evaluation of transport coefficients:

- Weak-coupling hot-QCD calculations⁷
- Non perturbative approaches
 - Lattice-QCD
 - AdS/CFT correspondence
 - Resonant scattering

Transport coefficients: results

Weak-coupling (beauty shown)

Obtained accounting for $Qq \rightarrow Qq$ and $Qg \rightarrow Qg$ scattering, with resummation of medium effects for soft $(|t| < |t|^*)$ collisions (Hard Thermal Loop approximation)

Lattice QCD $(M = \infty)$

$$\kappa = rac{1}{3} \int_{-\infty}^{+\infty} dt \langle \xi^i(t) \xi^i(0)
angle_{
m HQ}$$

given by *electric-field correlator*, available only for *imaginary times*

From quarks to hadrons

In the presence of a medium, rather then fragmenting like in the vacuum (e.g. $c \to cg \to c\overline{q}q$), HQ's can hadronize by recombining with light thermal partons from the medium.

In-medium hadronization may affect the R_{AA} and v_2 of final D-mesons due to the *collective flow* of light quarks. We tried to estimate the effect through this model interfaced to our POWLANG transport code:

- At $T_{\rm dec}$ c-quarks coupled to light \overline{q} 's from a local thermal distribution, eventually boosted $(u^{\mu}_{\rm fluid} \neq 0)$ to the lab frame;
- Strings are formed and given to PYTHIA 6.4 to simulate their fragmentation and produce the final hadrons $(D + \pi + ...)$

From quarks to hadrons: effect on R_{AA} and v_2

Experimental data display a peak in the R_{AA} and a sizable v_2 one would like to interpret as a signal of charm radial flow and thermalization (green crosses: full thermal equilibrium, decoupling from FO hypersurface)

From quarks to hadrons: effect on R_{AA} and v_2

Experimental data display a peak in the R_{AA} and a sizable v_2 one would like to interpret as a signal of charm radial flow and thermalization (green crosses: full thermal equilibrium, decoupling from FO hypersurface)

However, comparing transport results with/without the boost due to u^{μ}_{fluid} , at least part of the effect might be due to the radial and elliptic flow of the light partons from the medium picked-up at hadronization.

D-meson R_{AA} at RHIC

It is possible to perform a systematic study of different choices of

- Hadronization scheme (left panel)
- Transport coefficients (weak-coupling pQCD+HTL vs non-perturbative I-QCD) and decoupling temperature (right panel)

D-meson R_{AA} at LHC

Experimental data for central (0–20%) Pb-Pb collisions at LHC display a strong quenching, but – at least with the present bins and p_T range – don't show strong signatures of the bump from radial flow predicted by "thermal" and "transport + $Q\bar{q}_{\rm therm}$ -string fragmentation" curves.

D meson R_{AA} : in-plane vs out-of-plane

One can study di R_{AA} in- and out-of-plane in non-central (30–50%) Pb-Pb collisions at LHC:

 Data better described by weak-coupling (pQCD+HTL) transport coefficients;

D meson R_{AA} : in-plane vs out-of-plane

One can study di R_{AA} in- and out-of-plane in non-central (30–50%) Pb-Pb collisions at LHC:

- Data better described by weak-coupling (pQCD+HTL) transport coefficients;
- $Q\overline{q}_{\rm therm}$ -string fragmentation describes data slightly better than in-vacuum independent Fragmentation Functions $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$

D-meson v_2 at LHC

Concerning D-meson v_2 in non-central (30–50%) Pb-Pb collisions:

- ullet $Q\overline{q}_{
 m therm}$ -string fragmentation routine significantly improves our transport model predictions compared to the data;
- HTL curves with a lower decoupling temperature display the best agreement with ALICE data

HF in small systems

(p-Pb and d-Au collisions)

Recent POWLANG results displayed in JHEP 1603 (2016) 123

Hydrodynamic behavior in small systems?

 Long-range rapidity correlations in high-multiplicity p-Pb (and p-p) events: collectiv flow?

Hydrodynamic behavior in small systems?

- Long-range rapidity correlations in high-multiplicity p-Pb (and p-p) events: collectiv flow?
- Evidence of non-vanishing elliptic flow v_2 (and mass ordering) in d-Au and p-Pb.

Hard observables in p-A collisions: no medium effect?

No evidence of medium effects in the nuclear modification factor

neither of jets

Hard observables in p-A collisions: no medium effect?

No evidence of medium effects in the nuclear modification factor

- neither of jets
- nor of charged particles

NB Current *lack of a p-p reference* at the same center-of-mass energy source of systematic uncertainty

Hard and soft probes: different sensitivity to the medium

The quenching of a high-energy parton is described by the pocket formula

$$\langle \Delta E \rangle \sim C_R \alpha_s \hat{q} L^2 \sim T^3 L^2$$

with a strong dependence on the temperature and medium thickness.

Hard and soft probes: different sensitivity to the medium

The quenching of a high-energy parton is described by the pocket formula

$$\langle \Delta E \rangle \sim C_R \alpha_s \hat{a} L^2 \sim T^3 L^2$$

with a strong dependence on the temperature and medium thickness. If one believes that also in p-A collisions soft physics is described by hydrodynamics ($\lambda_{\rm mfp} \ll L$), then starting from an entropy-density profile

$$s(x,y) \sim \exp\left[-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2}\right]$$

and employing the Euler equation (for $v \ll 1$) and $Tds = d\epsilon$

$$(\epsilon + P)rac{d}{dt}ec{v} = -ec{
abla}P \qquad \mathop{\longrightarrow}\limits_{ec{
abla}P = c^2ec{
abla}\epsilon} \quad \partial_tec{v} = -c_s^2ec{
abla}\ln s$$

whose solution and mean square value over the transverse plane is

$$v^i = c_s^2 \frac{x'}{\sigma_i^2} t \longrightarrow \overline{v}^{x/y} = c_s^2 \frac{t}{\sigma_{x/y}}$$

The result has a much milder temperature dependence $(c_s^2 \approx 1/3)$ wrt \hat{q} and, although the medium has a $(\approx 3 \text{ times})$ shorter lifetime, radial flow develops earlier, due to the larger pressure gradient

HF in small systems: experimental indications

So far, experimental data don't allow one to draw firm conclusions

- HF electrons in central d-Au collisions at RHIC: R_{AA} $\gtrsim 1$
- D-meson in p-Pb at LHC: $R_{AA} \approx 1$ over a wide p_T -range;

HF in small systems: experimental indications

So far, experimental data don't allow one to draw firm conclusions

- HF electrons in central d-Au collisions at RHIC: $R_{AA} \gtrsim 1$
- D-meson in p-Pb at LHC: $R_{AA} \approx 1$ over a wide p_T -range;
- ullet e-h and μ -h correlations provide *hints* of a double-ridge structure

HF in small systems: experimental indications

So far, experimental data don't allow one to draw firm conclusions

- HF electrons in central d-Au collisions at RHIC: $R_{AA} \gtrsim 1$
- D-meson in p-Pb at LHC: $R_{\rm AA} \approx 1$ over a wide p_T -range;
- ullet e-h and μ -h correlations provide *hints* of a double-ridge structure

Medium modeling: event-by-event hydrodynamics

Event-by-event fluctuations (e.g. in the nucleon positions) modeled by Glauber-MC calculation leads to an initial *eccentricity* (responsible for a non-vanishing elliptic flow)

$$s(\mathbf{x}) = \frac{\mathcal{K}}{2\pi\sigma^2} \sum_{i=1}^{N_{\mathrm{coll}}} \exp\left[-\frac{(\mathbf{x} - \mathbf{x}_i)^2}{2\sigma^2}\right] \quad \longrightarrow \quad \epsilon_2 = \frac{\sqrt{\{y^2 - x^2\}^2 + 4\{xy\}^2}}{\{x^2 + y^2\}}$$

Medium modeling: event-by-event hydrodynamics

Event-by-event fluctuations (e.g. in the nucleon positions) modeled by Glauber-MC calculation leads to an initial *eccentricity* (responsible for a non-vanishing elliptic flow)

$$s(\mathbf{x}) = \frac{K}{2\pi\sigma^2} \sum_{i=1}^{N_{\rm coll}} \exp\left[-\frac{(\mathbf{x} - \mathbf{x}_i)^2}{2\sigma^2}\right] \longrightarrow \epsilon_2 = \frac{\sqrt{\{y^2 - x^2\}^2 + 4\{xy\}^2}}{\{x^2 + y^2\}}$$

One can consider an average background obtained summing all the events of a given centrality class rotated by the event-plane angle ψ_2

Medium modeling: event-by-event hydrodynamics

Event-by-event fluctuations (e.g. in the nucleon positions) modeled by Glauber-MC calculation leads to an initial *eccentricity* (responsible for a non-vanishing elliptic flow)

$$s(\mathbf{x}) = \frac{K}{2\pi\sigma^2} \sum_{i=1}^{N_{\text{coll}}} \exp\left[-\frac{(\mathbf{x} - \mathbf{x}_i)^2}{2\sigma^2}\right] \longrightarrow \epsilon_2 = \frac{\sqrt{\{y^2 - x^2\}^2 + 4\{xy\}^2}}{\{x^2 + y^2\}}$$

One can consider an average background obtained summing all the events of a given centrality class rotated by the event-plane angle ψ_2

Initial and Final-State effects

The final result comes from the interplay of initial and final-state effects:

- nPDF's (shadowing and anti-shadowing)
- *k*_T-broadening in nuclear-matter
- energy-loss in the hot-medium
- in-medium hadronization via recombination ←□ → ←□ → ←≧ → ←≧ →

Transport-model predictions

We display our predictions, with different initializations (source smearing) and transport coefficients (HTL vs IQCD), compared to

- HF-electron R_{dAu} by PHENIX at RHIC (left panel)
- D-mesons R_{pPb} by ALICE at the LHC (right panel)

Non-vanishing elliptic flow?

We also predict a non-vanishing v_2 of charmed hadrons, arising mainly from the elliptic flow inherited from the light thermal partons

Future perspectives

A number of experimental challenges or theoretical questions remain to be answered:

- Charm measurements down to $p_T \rightarrow 0$: flow/thermalization and total cross-section (of relevance for charmonium supression!)
- D_s and Λ_c measurements: change in hadrochemistry and total cross-section
- Beauty measurements in AA via exclusive hadronic decays: better probe, due to $M \gg \Lambda_{\rm QCD}$, T (initial production and Langevin dynamics under better control)
- Charm in p-A collisions: which relevance for high-energy atmospheric muons/neutrinos (Auger and IceCube experiments)?
 Possible initial/final-state nuclear effects?

Back-up material

Transport coefficients: perturbative evaluation

It's the stage where the various models differ!

We account for the effect of $2 \rightarrow 2$ collisions in the medium

Intermediate cutoff $|t|^* \sim m_D^{2.8}$ separating the contributions of

- hard collisions $(|t| > |t|^*)$: kinetic pQCD calculation
- soft collisions ($|t| < |t|^*$): Hard Thermal Loop approximation (resummation of medium effects)

⁸Similar strategy for the evaluation of dE/dx in S. Peigne and A. Peshier, Phys.Rev.D77:114017 (2008).

Transport coefficients $\kappa_{T/L}(p)$: hard contribution

$$\kappa_T^{g/q(\text{hard})} = \frac{1}{2} \frac{1}{2E} \int_k \frac{n_{B/F}(k)}{2k} \int_{k'} \frac{1 \pm n_{B/F}(k')}{2k'} \int_{p'} \frac{1}{2E'} \theta(|t| - |t|^*) \times (2\pi)^4 \delta^{(4)}(P + K - P' - K') \left| \overline{\mathcal{M}}_{g/q}(s, t) \right|^2 q_T^2$$

$$\kappa_{L}^{g/q(\text{hard})} = \frac{1}{2E} \int_{k} \frac{n_{B/F}(k)}{2k} \int_{k'} \frac{1 \pm n_{B/F}(k')}{2k'} \int_{p'} \frac{1}{2E'} \theta(|t| - |t|^{*}) \times$$

$$\times (2\pi)^{4} \delta^{(4)}(P + K - P' - K') \left| \overline{\mathcal{M}}_{g/q}(s, t) \right|^{2} q_{L}^{2}$$

where:
$$(|t| \equiv q^2 - \omega^2)$$

Transport coefficients $\kappa_{T/L}(p)$: soft contribution

When the exchanged 4-momentum is **soft** the t-channel gluon feels the presence of the medium **and requires resummation**.

Transport coefficients $\kappa_{T/L}(p)$: soft contribution

When the exchanged 4-momentum is **soft** the t-channel gluon feels the presence of the medium **and requires resummation**.

The *blob* represents the *dressed gluon propagator*, which has longitudinal and transverse components:

$$\Delta_L(z,q) = \frac{-1}{q^2 + \Pi_L(z,q)}, \quad \Delta_T(z,q) = \frac{-1}{z^2 - q^2 - \Pi_T(z,q)},$$

where medium effects are embedded in the HTL gluon self-energy.

One consider the non-relativistic limit of the Langevin equation:

$$rac{dp^i}{dt} = -\eta_D p^i + \xi^i(t), \quad ext{with} \quad \langle \xi^i(t) \xi^j(t')
angle = \delta^{ij} \delta(t-t') \kappa$$

Hence, in the $p \rightarrow 0$ limit:

$$\kappa = \frac{1}{3} \int_{-\infty}^{+\infty} dt \langle \xi^i(t) \xi^i(0) \rangle_{\mathrm{HQ}} \approx \frac{1}{3} \int_{-\infty}^{+\infty} dt \underbrace{\langle F^i(t) F^i(0) \rangle_{\mathrm{HQ}}}_{\equiv D^{>}(t)},$$

One consider the non-relativistic limit of the Langevin equation:

$$\frac{dp^i}{dt} = -\eta_D p^i + \xi^i(t), \quad \text{with} \quad \langle \xi^i(t) \xi^j(t') \rangle = \delta^{ij} \delta(t - t') \kappa$$

Hence, in the $p \rightarrow 0$ limit:

$$\kappa = \frac{1}{3} \int_{-\infty}^{+\infty} dt \langle \xi^i(t) \xi^i(0) \rangle_{\mathrm{HQ}} \approx \frac{1}{3} \int_{-\infty}^{+\infty} dt \underbrace{\langle F^i(t) F^i(0) \rangle_{\mathrm{HQ}}}_{\equiv D^>(t)},$$

In the static limit the force is due to the color-electric field:

$$\mathbf{F}(t) = g \int d\mathbf{x} Q^{\dagger}(t,\mathbf{x}) t^a Q(t,\mathbf{x}) \mathbf{E}^a(t,\mathbf{x})$$

One consider the non-relativistic limit of the Langevin equation:

$$rac{dp^i}{dt} = -\eta_D p^i + \xi^i(t), \quad ext{with} \quad \langle \xi^i(t) \xi^j(t')
angle = \delta^{ij} \delta(t-t') \kappa$$

Hence, in the $p \rightarrow 0$ limit:

$$\kappa = \frac{1}{3} \int_{-\infty}^{+\infty} dt \langle \xi^i(t) \xi^i(0) \rangle_{\mathrm{HQ}} \approx \frac{1}{3} \int_{-\infty}^{+\infty} dt \underbrace{\langle F^i(t) F^i(0) \rangle_{\mathrm{HQ}}}_{\equiv D^>(t)},$$

In the static limit the force is due to the color-electric field:

$$\mathbf{F}(t) = g \int d\mathbf{x} Q^{\dagger}(t,\mathbf{x}) t^a Q(t,\mathbf{x}) \mathbf{E}^a(t,\mathbf{x})$$

In a thermal ensemble $\sigma(\omega) \equiv D^{>}(\omega) - D^{<}(\omega) = (1 - e^{-\beta\omega})D^{>}(\omega)$ and

$$\kappa \equiv \lim_{\omega \to 0} \frac{D^{>}(\omega)}{3} = \lim_{\omega \to 0} \frac{1}{3} \frac{\sigma(\omega)}{1 - e^{-\beta \omega}} \sim \frac{1}{3} \frac{T}{\omega} \sigma(\omega)$$

The spectral function $\sigma(\omega)$ has to be reconstructed starting from the *euclidean* electric-field correlator

$$D_{E}(\tau) = -\frac{\langle \operatorname{Re}\operatorname{Tr}[\textit{U}(\beta,\tau)\textit{gE}^{\textit{i}}(\tau,\textbf{0})\textit{U}(\tau,0)\textit{gE}^{\textit{i}}(\textbf{0},\textbf{0})] \rangle}{\langle \operatorname{Re}\operatorname{Tr}[\textit{U}(\beta,\textbf{0})] \rangle}$$

according to

$$D_{E}(\tau) = \int_{0}^{+\infty} \frac{d\omega}{2\pi} \frac{\cosh(\tau - \beta/2)}{\sinh(\beta\omega/2)} \sigma(\omega)$$

The spectral function $\sigma(\omega)$ has to be reconstructed starting from the *euclidean* electric-field correlator

$$D_E(\tau) = -\frac{\langle \operatorname{Re}\operatorname{Tr}[U(\beta,\tau)gE^i(\tau,\boldsymbol{0})U(\tau,0)gE^i(\boldsymbol{0},\boldsymbol{0})]\rangle}{\langle \operatorname{Re}\operatorname{Tr}[U(\beta,\boldsymbol{0})]\rangle}$$

according to

$$D_{E}(\tau) = \int_{0}^{+\infty} \frac{d\omega}{2\pi} \frac{\cosh(\tau - \beta/2)}{\sinh(\beta\omega/2)} \sigma(\omega)$$

One gets (arXiv:1409.3724)

$$\kappa/T^3 \approx 2.4(6)$$
 (quenched QCD, cont.lim.)

 \sim 3-5 times larger then the perturbative result (W.M. Alberico *et al*, EPJC 73 (2013) 2481). Challenge: approaching the continuum limit in full QCD (see Kaczmarek talk at QM14)!

The spectral function $\sigma(\omega)$ has to be reconstructed starting from the *euclidean electric-field correlator*

$$D_E(\tau) = -\frac{\langle \operatorname{Re}\operatorname{Tr}[U(\beta,\tau)gE^i(\tau,\mathbf{0})U(\tau,0)gE^i(0,\mathbf{0})]\rangle}{\langle \operatorname{Re}\operatorname{Tr}[U(\beta,0)]\rangle}$$

according to

$$D_{E}(\tau) = \int_{0}^{+\infty} \frac{d\omega}{2\pi} \frac{\cosh(\tau - \beta/2)}{\sinh(\beta\omega/2)} \sigma(\omega)$$

One gets (arXiv:1409.3724)

$$\kappa/T^3 \approx 2.4(6)$$
 (quenched QCD, cont.lim.)

~3-5 times larger then the perturbative result (W.M. Alberico *et al*, EPJC 73 (2013) 2481). Challenge: approaching the continuum limit in full QCD (see Kaczmarek talk at QM14)!

The spectral function $\sigma(\omega)$ has to be reconstructed starting from the *euclidean* electric-field correlator

$$D_E(\tau) = -\frac{\langle \operatorname{Re}\operatorname{Tr}[U(\beta,\tau)gE^i(\tau,\boldsymbol{0})U(\tau,0)gE^i(\boldsymbol{0},\boldsymbol{0})]\rangle}{\langle \operatorname{Re}\operatorname{Tr}[U(\beta,\boldsymbol{0})]\rangle}$$

according to

$$D_{E}(\tau) = \int_{0}^{+\infty} \frac{d\omega}{2\pi} \frac{\cosh(\tau - \beta/2)}{\sinh(\beta\omega/2)} \sigma(\omega)$$

One gets (arXiv:1409.3724)

$$\kappa/T^3 \approx 2.4(6)$$
 (quenched QCD, cont.lim.)

 \sim 3-5 times larger then the perturbative result (W.M. Alberico *et al*, EPJC 73 (2013) 2481). Challenge: approaching the continuum limit in full QCD (see Kaczmarek talk at QM14)!

