A VARIATIONAL CHARACTERIZATON OF HIGGS FIELDS ON GLUON BUNDLES

We show that the Lie derivative of gluon fields is parametrized by Higgs fields defined by the kernel of a gauge-natural Jacobi morphism.

Department research project Strutture geometriche e algebriche in fisica matematica e applicazioni 2015 and GNSAGA-INDAM

Framework

- P → X principal bundle with structure group G
 L_k(X) is the bundle of k-frames in X
- $r \leq k$ the gauge-natural prolongation of \mathbf{P} $\mathbf{W}^{(r,k)}\mathbf{P} \doteq J_r\mathbf{P} \times_{\mathbf{X}} L_k(\mathbf{X})$ principal bundle over \mathbf{X} with structure group $\mathbf{W}_n^{(r,k)}\mathbf{G}$ (semidirect product of $GL_k(n)$ on \mathbf{G}_n^r) $GL_k(n)$ group of k-frames in \mathbb{R}^n \mathbf{G}_n^r the space of (r,n)-velocities on \mathbf{G} .
- Let **F** be a manifold and $\zeta : \mathbf{W}_n^{(r,k)} \mathbf{G} \times \mathbf{F} \to \mathbf{F}$ be a left action of $\mathbf{W}_n^{(r,k)} \mathbf{G}$ on **F**.
- associated gauge-natural bundle of order (r, k): $\mathbf{Y}_{\zeta} \doteq \mathbf{W}^{(r,k)} \mathbf{P} \times_{\zeta} \mathbf{F}$.

Main results

- **P** be a principal bundle with structure group **G**, e.g. $SU(3) \times SU(2) \times U(1)$.
- coupling with gravity: structure bundle of the theory is the fibered product $\Sigma = \bar{\Sigma} \times_{\mathbf{X}} \mathbf{P}$, where $\bar{\Sigma}$ be the principal spin bundle with structure group Spin(1,3)..
- Action on a spinor matter manifold $V = \mathbb{C}^k$ $\phi: Spin(1,3) \times SU(3) \times SU(2) \times U(1) \times V$ given by a choice of Dirac matrices for each component of the spinor field.
- corresponding Lagrangian $\lambda = \bar{\psi}(i\gamma_{\mu}D^{\mu} m)\psi \frac{1}{4}(\mathcal{F}_{\mu\nu}\mathcal{F}^{\mu\nu} + \mathcal{F}^{A}_{\mu\nu}\mathcal{F}^{\mu\nu}_{A} + \mathcal{F}^{a}_{\mu\nu}\mathcal{F}^{\mu\nu}_{a})$ The bundle of principal connections on Σ is a gauge-natural bundle associated with the gauge-natural prolongation $W^{(1,1)}\Sigma$.
- ft the Lie algebra of generalized Jacobi vector fields generating associated *canonical* conserved quantities

- responsible of the canonical variational breaking of symmetry and of the generation of Higgs fields
- $\mathfrak h$ the Lie algebra of right-invariant vertical vector fields on $W^{(1,1)}\Sigma$
- The Lie algebra $\mathfrak k$ is characterized as a Lie subalgebra of $\mathfrak h$
- split reductive structure $\mathfrak{h}=\mathfrak{k}\oplus Im\,\mathcal{J}$, $[\mathfrak{k},Im\,\mathcal{J}]=Im\,\mathcal{J}$
- for each $\mathbf{p} \in W^{(1,1)}\Sigma$ denote $\mathcal{S} \doteq \mathfrak{h}_{\mathbf{p}}, \, \mathcal{R} \doteq \mathfrak{k}_{\mathbf{p}} \, \text{and} \, \, \mathcal{V} \doteq \operatorname{Im} \mathcal{J}_{\mathbf{p}}$
- reductive Lie algebra decomposition $S = R \oplus V$, with [R, V] = V.

 \mathcal{S} is the Lie algebra of the Lie group $W_4^{(1,1)}\mathbf{G}$

- There exists an isomorphism between $\mathcal{V} \doteq Im \mathcal{J}_{\mathbf{p}}$ and $T\mathbf{X}$ so that \mathcal{V} turns out to be the image of an horizontal subspace.
 - we caracterize a principal bundle $S \to X$, with dimS = dim S and such that X = S/R, where R is a Lie group of the Lie algebra \mathcal{R} and $\mathcal{R} = T_q S/R$;
- the principal subbundle $S \subset W^{(1,1)}\Sigma$ is then a reduced principal bundle.

(omit now the orders of a gauge-natural prolongation)

- The Lie group $\mathbf R$ of the Lie algebra $\mathcal R$ is in particular a closed subgroup of $W\mathbf G$
- We have the composite fiber bundle $W\Sigma \to W\Sigma/\mathbf{R} \to \mathbf{X}$, $W\Sigma/\mathbf{R} = W\Sigma \times_{W\mathbf{G}} W\mathbf{G}/\mathbf{R} \to \mathbf{X}$ is a gauge-natural bundle functorially associated with $W\Sigma \times W\mathbf{G}/\mathbf{R} \to \mathbf{X}$ by the right action of $W\mathbf{G}$.
- The left action of $W\mathbf{G}$ on $W\mathbf{G}/\mathbf{R}$ is in accordance with the reductive Lie algebra decomposition.

Variational (gluon) Cartan connection

- Definition:
 We call a global section h : X → WΣ/R a gluon gaugenatural Higgs field.
- ω principal connection on $\mathbf{W}\Sigma$; $\bar{\omega}$ principal connection on the principal bundle \mathbf{S} defines the splitting $T_{\mathbf{p}}\mathbf{S} \simeq_{\bar{\omega}} \mathcal{R} \oplus \hat{H}_{\mathbf{p}}, \ \mathbf{p} \in \mathbf{S}$.
- It is defined a principal Cartan connection of type S/\mathcal{R} , such that $\hat{\omega}|_{VS} = \overline{\omega}$.
- It is a connection on $\mathbf{W}\Sigma = \mathbf{S} \times_{\mathbf{R}} W\mathbf{G} \to \mathbf{X}$, thus a Cartan connection on $\mathbf{S} \to \mathbf{X}$ with values in \mathcal{S} , the Lie algebra of the gauge-natural structure group of the theory;
- it splits into the \mathcal{R} -component which is a principal connection form on the \mathcal{R} -manifold S, and the \mathcal{V} -component which is a displacement form
- A gluon gauge-natural Higgs field is therefore a global section of the Cartan horizontal bundle \hat{H}_p , with $\mathbf{p} \in \mathbf{S}$, it is related with the displacement form defined by the \mathcal{V} -component of the Cartan connection $\hat{\omega}$ above.
- Each global section h of $W\Sigma/\mathbf{R} \to \mathbf{X}$ thus defines a vertical covariant differential.
- The Lie derivative of fields is constrained and it is parametrized by gluon Higgs fields *h* characterized by \Re .

M Palese Dept Math Univ Torino, Italy
E Winterroth Dept Math Univ Torino, Italy and
Lepage Research Institute, Czech Republic

http://dx.doi.org/10.1088/1742-6596/411/1/012025

©Picture by Hartwig Winterroth