Janus-Facedness of the Pion: Analytic Instantaneous Bethe-Salpeter Models

Wolfgang Lucha

Institute for High Energy Physics, Austrian Academy of Sciences, Vienna, Austria

Goldstonic quark-antiquark bound states

Within quantum chromodynamics, the pions or, as a matter of fact, all light pseudoscalar mesons must be interpretable as both quark-antiquark bound states and almost massless (pseudo) Goldstone bosons of the spontaneously - and to a minor degree even explicitly - broken chiral symmetries of QCD.

Relativistic quantum field theory describes bound states by Bethe-Salpeter amplitudes $\Phi(p)$ controlled by some homogeneous Bethe-Salpeter equation defined, for two bound particles of individual and relative momenta $p_{1,2}$ and p, by their propagators $S\left(p_{1,2}\right)$ and an integral kernel $K(p, q)$ encompassing their interactions, suppressing dependences on the total momentum $p_{1}+p_{2}$:

$$
\Phi(p)=\frac{\mathrm{i}}{(2 \pi)^{4}} S_{1}\left(p_{1}\right) \int \mathrm{d}^{4} q K(p, q) \Phi(q) S_{2}\left(-p_{2}\right)
$$

Suitably adapted inversion techniques [1] allow us to retrieve the underlying interactions analytically in form of a (configuration-space) central potential $V(r), r \equiv|\boldsymbol{x}|$, from presumed solutions to the Bethe-Salpeter equation [2].

By that, we are put in a position to construct exact analytic Bethe-Salpeter solutions for all massless pseudoscalar mesons [3] in the sense of establishing rigorous analytic relationships between interactions and resulting solutions: all analytic findings [4] may then be confronted with numerical outcomes [5].

Crucial simplifying-assumptions sequence

1. Assuming, for any involved quark, both instantaneous interactions and free propagation with a mass dubbed constituent, simplifies the BetheSalpeter equation to a bound-state equation for the Salpeter amplitude

$$
\phi(\boldsymbol{p}) \propto \int \mathrm{d} p_{0} \Phi(p)
$$

For a spin- $\frac{1}{2}$ fermion and a spin- $\frac{1}{2}$ antifermion of equal masses m bound to a spin-singlet state (which is the case for, e.g., pseudoscalar mesons), this wave function involves only two independent components, $\varphi_{1,2}(\boldsymbol{p})$:

$$
\begin{array}{r}
\phi(\boldsymbol{p})= \\
{\left[\varphi_{1}(\boldsymbol{p}) \frac{\gamma_{0}(\boldsymbol{\gamma} \cdot \boldsymbol{p}+m)}{E(p)}+\varphi_{2}(\boldsymbol{p})\right] \gamma_{5}} \\
E(p) \equiv \sqrt{\boldsymbol{p}^{2}+m^{2}}, \quad p \equiv|\boldsymbol{p}|
\end{array}
$$

2. Upon assuming the quark interactions in the kernel to respect spherical and Fierz symmetries, the bound-state equation for $\phi(\boldsymbol{p})$ becomes a set of two coupled radial eigenvalue equations for the bound-state mass M :
$2 E(p) \varphi_{2}(p)+2 \int_{0}^{\infty} \frac{\mathrm{d} q q^{2}}{(2 \pi)^{2}} V(p, q) \varphi_{2}(q)=M \varphi_{1}(p)$,
$2 E(p) \varphi_{1}(p)=M \varphi_{2}(p)$,

$$
V(p, q) \equiv \frac{8 \pi}{p q} \int_{0}^{\infty} \mathrm{d} r \sin (p r) \sin (q r) V(r), \quad q \equiv|\boldsymbol{q}|
$$

3. In the truly massless Goldstone case $M=0$, the system decouples, one component vanishes $\left[\varphi_{1}(p) \equiv 0\right]$, and the surviving component satisfies

$$
E(p) \varphi_{2}(p)+\int_{0}^{\infty} \frac{\mathrm{d} q q^{2}}{(2 \pi)^{2}} V(p, q) \varphi_{2}(q)=0
$$

Denoting by $T(r)$ the Fourier transform of the kinetic term $E(p) \varphi_{2}(p)$, $V(r)$ can be found from the latter's configuration-space representation:

$$
V(r)=-\frac{T(r)}{\varphi_{2}(r)}
$$

Constraints on Bethe-Salpeter amplitude

Information on $\varphi_{2}(p)$ can be extracted from the full quark propagator $S(p)$, determined by its mass function $M\left(p^{2}\right)$ and a renormalization factor $Z\left(p^{2}\right)$:

$$
S(p)=\frac{\mathrm{i} Z\left(p^{2}\right)}{\not p-M\left(p^{2}\right)+\mathrm{i} \varepsilon}, \quad \not p \equiv p^{\mu} \gamma_{\mu}, \quad \varepsilon \downarrow 0 .
$$

Studies of $S(p)$ within the Dyson-Schwinger framework, preferably done in Euclidean space indicated by underlined variables, entail crucial insights. In the chiral limit, a Ward-Takahashi identity relates [6] this quark propagator to the flavour-nonsinglet pseudoscalar-meson Bethe-Salpeter amplitude [3]:

$$
\Phi(\underline{k}) \approx \frac{M\left(\underline{k}^{2}\right)}{\underline{k}^{2}+M^{2}\left(\underline{k}^{2}\right)} \gamma_{5}+\text { subleading contributions }
$$

In order to devise an analytic scenario, we exploit two pieces of information:

1. Phenomenologically sound Dyson-Schwinger models [7] get for $M\left(\underline{k}^{2}\right)$, in the chiral limit, at large \underline{k}^{2} a decrease basically proportional to $1 / \underline{k}^{2}$.
2. From axiomatic QFT, we may infer [8] that the presence in $M\left(\underline{k}^{2}\right)$ of an inflexion point at spacelike momenta $\underline{k}^{2}>0$ entails quark confinement.

Of course, such requirements on $M\left(\underline{k}^{2}\right)$ are reflected by $\Phi(\underline{k})$. A compatible ansatz for $\Phi(\underline{k})$, involving a mass parameter μ and a mixing parameter η, is

$$
\Phi(\underline{k})=\left[\frac{1}{\left(\underline{k}^{2}+\mu^{2}\right)^{2}}+\frac{\eta \underline{k}^{2}}{\left(\underline{k}^{2}+\mu^{2}\right)^{3}}\right] \underline{\gamma}_{5}, \quad \mu>0, \quad \eta \in \mathbb{R} .
$$

An integration w.r.t. the Euclidean momentum's time component results in

$$
\varphi_{2}(p) \propto \frac{1}{\left(p^{2}+\mu^{2}\right)^{3 / 2}}+\eta \frac{p^{2}+\mu^{2} / 4}{\left(p^{2}+\mu^{2}\right)^{5 / 2}}, \quad p \equiv|\boldsymbol{p}|,
$$

in configuration space expressible in terms of modified Bessel functions K_{n} :

$$
\varphi_{2}(r) \propto 4(1+\eta) K_{0}(\mu r)-\eta \mu r K_{1}(\mu r) .
$$

If $\eta<-1$ or $\eta>0, \varphi_{2}(r)$ has one zero, which induces a singularity in $V(r)$.
For special values of $m / \mu, V(r)$ can be given by an analytic expression $[3,4]$. Henceforth, any quantity is understood in units of the adequate power of μ.

Confining potentials: Analytic results [3,4]

As consequence of our particular ansatz for $\varphi_{2}(r)$, for $\eta \neq-1$ all $V(r)$ must develop, at spatial origin, a logarithmically softened Coulombic singularity:

$$
V(r) \underset{r \rightarrow 0}{\longrightarrow} \frac{\text { const }}{r \ln r} \underset{r \rightarrow 0}{\longrightarrow}-\infty \quad(\text { const }>0) \quad \text { for } \eta \neq-1
$$

Analytically manageable scenario of massless quarks $(m=0)$

For our $\varphi_{2}(r), V(r)$ involves modified $\operatorname{Bessel}\left(I_{n}\right)$ and Struve $\left(\mathbf{L}_{n}\right)$ functions and rises - confiningly-to infinity either at the zero of $\varphi_{2}(r)$ or for $r \rightarrow \infty$:

$$
\begin{aligned}
& V(r)=\frac{N(r)}{D(r)}, \quad N(r) \equiv \pi\left[4+\eta\left(4+r^{2}\right)\right]\left[\mathbf{L}_{0}(r)-I_{0}(r)\right] \\
& +\pi(4+5 \eta) r\left[\mathbf{L}_{1}(r)-I_{1}(r)\right]+4(2+3 \eta) r, \\
& D(r) \equiv 2 r\left[4(1+\eta) K_{0}(r)-\eta r K_{1}(r)\right] .
\end{aligned}
$$

$V(r)$ of the Fierz-symmetric kernel $K(p, q)$ for $m=0$ and mixture $\eta=0[3]$ (black), $\eta=1$ (red), $\eta=2$ (magenta), $\eta=-0.5$ (blue), or $\eta=-1$ (violet):

Analytically expressible case: quarks of common mass $m=\mu$

Here, $T(r)$ exhibits a mixture of Yukawa and exponential behaviour. Thus,

$$
V(r)=-\frac{\pi[8+\eta(8-3 r)] \exp (-r)}{4 r\left[4(1+\eta) K_{0}(r)-\eta r K_{1}(r)\right]} \underset{r \rightarrow \infty}{\longrightarrow}-\frac{\text { const }}{\sqrt{r}} \underset{r \rightarrow \infty}{\longrightarrow} 0 .
$$

$V(r)$ of the Fierz-symmetric kernel $K(p, q)$ for $m=1$ and mixture $\eta=0[3]$ (black), $\eta=0.5$ (red), $\eta=1$ (magenta), $\eta=2$ (blue), and $\eta=-1$ (violet):

Test of reliability: Numerical derivation [5]

We check our results using the pointwise form of the chiral-limit quark mass function $M\left(\underline{k}^{2}\right)$, provided graphically in Ref. [7]: We parametrize $M\left(\underline{k}^{2}\right)$ by

$$
M\left(\underline{k}^{2}\right)=0.708 \mathrm{GeV} \exp \left(-\frac{\underline{k}^{2}}{0.655 \mathrm{GeV}^{2}}\right)+\frac{0.0706 \mathrm{GeV}}{\left[1+\left(\frac{k^{2}}{0.487 \mathrm{GeV}^{2}}\right)^{1.48}\right]^{0.752}} .
$$

N.B.: $1.48 \times 0.752=1.1$, pretty close to unity. Feeding this parametrization into our inversion procedure, we get potentials which are finite at $r=0$ and rise, with r, to infinity for sufficiently small m but stay negative for large m.
$V(r)$ arising from $M\left(\underline{k}^{2}\right)$ of Ref. [7] for $m=0$ (black), $m=0.35 \mathrm{GeV}$ (red), $m=0.50 \mathrm{GeV}$ (magenta), $m=1.0 \mathrm{GeV}$ (blue), $m=1.69 \mathrm{GeV}$ (violet) [5]:

References

[1] W. Lucha and F. F. Schöberl, Phys. Rev. D 87 (2013) 016009, arXiv:1211.4716 [hep-ph].
[2] W. Lucha, Proc. Sci., EPS-HEP 2013 (2013) 007, arXiv:1308.3130 [hep-ph].
[3] W. Lucha and F. F. Schöberl, Phys. Rev. D 92 (2015) 076005, arXiv:1508.02951 [hep-ph].
[4] W. Lucha and F. F. Schöberl, Phys. Rev. D 93 (2016) 056006, arXiv:1602.02356 [hep-ph].
[5] W. Lucha and F. F. Schöberl, Phys. Rev. D 93 (2016) 096005, arXiv:1603.08745 [hep-ph].
[6] P. Maris, C. D. Roberts, and P. C. Tandy, Phys. Lett. B 420 (1998) 267, arXiv:nucl-th/9707003.
[7] P. Maris and C. D. Roberts, Phys. Rev. C 56 (1997) 3369, arXiv:nucl-th/9708029.
[8] C. D. Roberts, Prog. Part. Nucl. Phys. 61 (2008) 50, arXiv:0712.0633 [nucl-th].

