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Goldstonic quark–antiquark bound states

Within quantum chromodynamics, the pions or, as a matter of fact, all light

pseudoscalar mesons must be interpretable as both quark–antiquark bound

states and almost massless (pseudo) Goldstone bosons of the spontaneously

—and to a minor degree even explicitly—broken chiral symmetries of QCD.

Relativistic quantum field theory describes bound states by Bethe–Salpeter

amplitudes Φ(p) controlled by some homogeneous Bethe–Salpeter equation

defined, for two bound particles of individual and relative momenta p1,2 and

p, by their propagators S(p1,2) and an integral kernelK(p, q) encompassing

their interactions, suppressing dependences on the total momentum p1+p2:

Φ(p) =
i

(2π)4
S1(p1)

∫

d4q K(p, q) Φ(q)S2(−p2) .

Suitably adapted inversion techniques[1] allow us to retrieve the underlying

interactions analytically in form of a (configuration-space) central potential

V (r), r ≡ |x|, from presumed solutions to the Bethe–Salpeter equation[2].

By that, we are put in a position to construct exact analytic Bethe–Salpeter

solutions for all massless pseudoscalar mesons[3] in the sense of establishing

rigorous analytic relationships between interactions and resulting solutions:

all analytic findings[4] may then be confronted with numerical outcomes[5].
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Crucial simplifying-assumptions sequence

1. Assuming, for any involved quark, both instantaneous interactions and

free propagation with a mass dubbed constituent, simplifies the Bethe–

Salpeter equation to a bound-state equation for the Salpeter amplitude

φ(p) ∝
∫

dp0Φ(p) .

For a spin-1
2
fermion and a spin-1

2
antifermion of equal massesm bound

to a spin-singlet state (which is the case for, e.g., pseudoscalar mesons),

this wave function involves only two independent components, ϕ1,2(p):

φ(p) =

[

ϕ1(p)
γ0 (γ · p +m)

E(p)
+ ϕ2(p)

]

γ5 ,

E(p) ≡
√

p2 +m2 , p ≡ |p| .
2. Upon assuming the quark interactions in the kernel to respect spherical

and Fierz symmetries, the bound-state equation for φ(p) becomes a set

of two coupled radial eigenvalue equations for the bound-state massM :

2E(p)ϕ2(p) + 2

∞
∫

0

dq q2

(2π)2
V (p, q)ϕ2(q) = M ϕ1(p) ,

2E(p)ϕ1(p) = M ϕ2(p) ,

V (p, q) ≡ 8π

p q

∞
∫

0

dr sin(p r) sin(q r)V (r) , q ≡ |q| .

3. In the truly massless Goldstone caseM = 0, the system decouples, one

component vanishes [ϕ1(p) ≡ 0], and the surviving component satisfies

E(p)ϕ2(p) +

∞
∫

0

dq q2

(2π)2
V (p, q)ϕ2(q) = 0 .

Denoting by T (r) the Fourier transform of the kinetic termE(p)ϕ2(p),

V (r) can be found from the latter’s configuration-space representation:

V (r) = − T (r)

ϕ2(r)
.
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Constraints on Bethe–Salpeter amplitude

Information on ϕ2(p) can be extracted from the full quark propagator S(p),

determined by its mass functionM(p2) and a renormalization factor Z(p2):

S(p) =
iZ(p2)

6p−M(p2) + i ε
, 6p ≡ pµ γµ , ε ↓ 0 .

Studies of S(p) within the Dyson–Schwinger framework, preferably done in

Euclidean space indicated by underlined variables, entail crucial insights. In

the chiral limit, a Ward–Takahashi identity relates[6] this quark propagator

to the flavour-nonsinglet pseudoscalar-meson Bethe–Salpeter amplitude[3]:

Φ(k) ≈ M(k2)

k2 +M 2(k2)
γ5 + subleading contributions .

In order to devise an analytic scenario, we exploit two pieces of information:

1. Phenomenologically sound Dyson–Schwinger models [7] get forM(k2),

in the chiral limit, at large k2 a decrease basically proportional to 1/k2.

2. From axiomatic QFT, we may infer[8] that the presence inM(k2) of an

inflexion point at spacelike momenta k2 > 0 entails quark confinement.

Of course, such requirements onM(k2) are reflected by Φ(k). A compatible

ansatz for Φ(k), involving a mass parameter µ and a mixing parameter η, is

Φ(k) =

[

1

(k2 + µ2)2
+

η k2

(k2 + µ2)3

]

γ
5
, µ > 0 , η ∈ R .

An integration w.r.t. the Euclidean momentum’s time component results in

ϕ2(p) ∝
1

(p2 + µ2)3/2
+ η

p2 + µ2/4

(p2 + µ2)5/2
, p ≡ |p| ,

in configuration space expressible in terms of modified Bessel functionsKn:

ϕ2(r) ∝ 4 (1 + η)K0(µ r)− η µ rK1(µ r) .

If η < −1 or η > 0, ϕ2(r) has one zero, which induces a singularity in V (r).

For special values ofm/µ, V (r) can be given by an analytic expression[3,4].

Henceforth, any quantity is understood in units of the adequate power of µ.
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Confining potentials: Analytic results [3,4]

As consequence of our particular ansatz for ϕ2(r), for η 6= −1 all V (r) must

develop, at spatial origin, a logarithmically softened Coulombic singularity:

V (r) −−→
r→0

const

r ln r
−−→
r→0

−∞ (const > 0) for η 6= −1 .

Analytically manageable scenario of massless quarks (m = 0)

For our ϕ2(r), V (r) involves modified Bessel (In) and Struve (Ln) functions

and rises—confiningly—to infinity either at the zero of ϕ2(r) or for r → ∞:

V (r) =
N(r)

D(r)
, N(r) ≡ π [4 + η (4 + r2)] [L0(r)− I0(r)]

+ π (4 + 5 η) r [L1(r)− I1(r)] + 4 (2 + 3 η) r ,

D(r) ≡ 2 r [4 (1 + η)K0(r)− η rK1(r)] .

V (r) of the Fierz-symmetric kernelK(p, q) form = 0 and mixture η = 0[3]

(black), η = 1 (red), η = 2 (magenta), η = −0.5 (blue), or η = −1 (violet):
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Analytically expressible case: quarks of common mass m = µ

Here, T (r) exhibits a mixture of Yukawa and exponential behaviour. Thus,

V (r) = − π [8 + η (8− 3 r)] exp(−r)

4 r [4 (1 + η)K0(r)− η rK1(r)]
−−−→
r→∞

−const√
r

−−−→
r→∞

0 .

V (r) of the Fierz-symmetric kernelK(p, q) form = 1 and mixture η = 0[3]

(black), η = 0.5 (red), η = 1 (magenta), η = 2 (blue), and η = −1 (violet):
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Test of reliability: Numerical derivation [5]

We check our results using the pointwise form of the chiral-limit quark mass

functionM(k2), provided graphically in Ref. [7]: We parametrizeM(k2) by

M(k2) = 0.708 GeV exp

(

− k2

0.655 GeV2

)

+
0.0706 GeV

[

1 +
(

k2

0.487 GeV2

)1.48
]0.752 .
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N.B.: 1.48×0.752 = 1.1, pretty close to unity. Feeding this parametrization

into our inversion procedure, we get potentials which are finite at r = 0 and

rise, with r, to infinity for sufficiently smallm but stay negative for largem.

V (r) arising fromM(k2) of Ref.[7] form = 0 (black),m = 0.35 GeV (red),

m = 0.50 GeV (magenta),m = 1.0 GeV (blue),m = 1.69 GeV (violet)[5]:
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