

J/ ψ production at central rapidity in p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV with ALICE

Giuseppe TROMBETTA^{1,2} on behalf of the ALICE Collaboration

1. Università degli studi di Bari, dipartimento interateneo di Fisica «M. Merlin» - 2. Istituto Nazionale di Fisica Nucleare, sezione di Bari

The observations of a suppression of the J/ ψ yield in ultra-relativistic heavy-ion collisions relatively to predictions from elementary pp collisions have long been interpreted as a signature of the formation of a deconfined state of hadronic matter, known as the **Quark-Gluon Plasma** (**QGP**). Different **Cold Nuclear Matter** (**CNM**) effects, such as nuclear shadowing or partonic energy loss, are expected to affect J/ ψ production in addition to the modifications due to the presence of the QGP.

The study of p-Pb collisions, where the formation of a QGP medium is not expected, represents a necessary baseline for characterizing the CNM effects affecting J/ ψ production and improving our understanding of Pb-Pb collision results. Moreover, the determination of the non-prompt J/ ψ fraction originated from the decay of beauty-flavoured hadrons allows an indirect measurement of the inclusive b-quark production and a consequent evaluation of their interaction with CNM.

J/ψ IDENTIFICATION AT MID RAPIDITY WITH ALICE

The ALICE experiment at the LHC is capable of efficiently reconstructing J/ ψ at mid rapidity through their di-electronic decay channel: $J/\psi \rightarrow e^+e^-$

The low-momentum electron identification capabilities and the unique acceptance of ALICE central barrel allow

INCLUSIVE J/ ψ MEASUREMENT

ALICE published the measurement of inclusive J/ ψ production [1] as function of p_T in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV in the mid rapidity region corresponding to $-1.37 < y_{\rm cms} < 0.43$ in the centre of mass frame.

J/ ψ candidates were selected from a sample of Minimum Bias (MB) p-Pb events collected in 2013 corresponding to an integrated luminosity $L_{\rm int} = 51 \,\mu b^{-1}$.

Raw yields are obtained by counting the number of entries within the di-electron signal invariant mass range $2.92 < m_{e^+e^-} < 3.16$ GeV/ c^2 after the subtraction of the background, evaluated from the invariant mass distribution of mixed-event electron pairs.

reconstruction of inclusive J/ ψ down to zero p_T , and the separation of non-prompt J/ ψ down to $p_T \sim 1.3 \text{ GeV}/c$, in a complementary momentum region with respect to other LHC experiments.

DETECTORS USED

ITS (Inner Tracking System):

made up of 6 cylindrical layers of silicon detectors providing excellent spatial resolution and allowing secondary vertex determination.

TPC (Time Projection Chamber):

main central barrel detector dedicated to tracking and allowing electron identification through specific energy loss (dE/dx) measurement.

NUCLEAR MATTER EFFECTS

Modifications affecting J/ψ production due to the presence of the nuclear medium are evaluated by means of the **nuclear modification factor** R_{pPb} , which is obtained as the ratio of the differential cross sections of proton-nucleus and proton-proton collisions, scaled by A_{Pb} .

$$R_{\rm pPb}(y, p_{\rm T}) = \frac{d^2 \sigma_{\rm pPb}^{\rm J/\psi}/dy dp_{\rm T}}{A_{\rm Pb} \cdot d^2 \sigma_{\rm pp}^{\rm J/\psi}/dy dp_{\rm T}}$$

Right figures show p_T -differential (*top*) and *y*-differential (bottom) results compared to predictions from various theoretical models based on calculations for prompt J/ ψ production.

A J/ ψ suppression at low p_T , which tends to vanish at high p_T , is observed.

p-Pb \ *s*_{NN} = 5.02 TeV *L*_{int} = 52 μb⁻¹ 40 • Opposite Sign $|y_{120}| < 0.9$ Like Sign*1.31 $150 \square p_{\tau} > 0 \text{ GeV}/c$ ്യ 180 MeV/ MC shape $2.92 < m_{ee} < 3.16 \text{ GeV}/c^2$: $N_{J/w} = 371 \pm 39$ ALICE Significance: 12.6±1.1 25/10/2013 **60**E

The $p_{\rm T}$ -differential cross section d² σ /dyd $p_{\rm T}$ is obtained after correcting the raw yields measured in five transverse momentum intervals by the product of acceptance time efficiency (A × ε), evaluated by means of MC simulations.

Systematic uncertainties are mainly due to the signal extraction procedure, the dielectron reconstruction efficiency and to the choice of the $J/\psi p_T$ and y distributions used in the MC simulation. Calculations including cold nuclear matter effects such as **shadowing** (with EPS09 parametrization) and **coherent energy loss** reproduce within uncertainties the p_T dependence of the suppression for $p_T > 1.5$ GeV/*c*.

Predictions based on the **Color Glass Condensate** (CGC) framework appear in fair agreement with the p_{T} -differential mid rapidity data, but clearly underestimate the R_{pPb} measurements in the full p_{T} range at forward rapidity, via J/ ψ dimuonic decay channel.

MEASUREMENT OF NON-PROMPT J/ ψ FRACTION

The measurement of the f_B fraction of inclusive J/ ψ produced from the decay of beauty-flavoured hadrons is based on the **pseudoproper decay length** x observable of each J/ ψ candidate.

An **un-binned likelihood fit** to the two-dimensional distribution of invariant mass $m_{e^+e^-}$ and x of the di-electron pairs is performed after modelling, for both the prompt and non-prompt component, the $m_{e^+e^-}$ and x distributions of both signal and background pairs.

Prompt and non-prompt J/ ψ exhibit welldistinguished x distributions, allowing their separation on a statistical basis down to p_T as low as ~ 1.3 GeV/c. Figures on the left show results from dedicated MC simulations for both prompt (*left*) and non-prompt (*right*) x distributions.

$2.92 < M(e^+e^-) < 3.16 \text{ GeV}/c^2$ $\chi^2/dof = 27/44$ it, prompt J/ψ fit, J/w from b-hadrons fit, background ALICE pp, vs = 7 TeV 10 *p*, > 1.3 GeV/*c* -2000 -1500 -1000 -500 500 1000 1500 pseudoproper decay length (µm) LI-PUB-16234

REFERENCES

INFN

[1] Adam J., *et al*. (ALICE Collaboration), JHEP 1506 (2015) 055
[2] Abelev B., *et al*. (ALICE Collaboration), JHEP 1211 (2012) 065
[3] Adam J., *et al*. (ALICE Collaboration), JHEP 1507 (2015) 051

Istituto Nazionale

di Fisica Nucleare

The non-prompt J/ ψ fraction at central rapidity was measured by ALICE in pp collisions at $\sqrt{s} = 7$ TeV [2] and in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV [3]. Analysis for the measurement of the f_B fraction in p-Pb collisions is currently being finalized. Figure on the right shows the x projection of the maximized likelihood function, along with its different components for signal and background, from the pp analysis.

QCD@Work – International Workshop on QCD Theory and Experiment

27-30 June 2016, Martina Franca, Italy