Prompt- γ analysis with the BaF₂

Marie Vanstalle

May 2015

Marie Vanstalle

Prompt- γ analysis with the BaF₂

 ▲ ■
 ■

 </

The experiment

Scheme of the experimental setup

▲ 書 ▶ 書 ∽ � < ♂ May 2015 2 / 13

File	au	$\varepsilon_{ au}$	N _{12C}
Gsi90deg-0BP-1MHz-2	0.01948	0.00478	5.97×10^{7}
Gsi90deg-0BP-1MHz-3	0.083089	0.000761745	5.52×10^{8}
Gsi90deg-0BP-1MHz-4	0.0897365	0.000551779	$1.34\! imes\!10^{9}$
Gsi90deg-0BP-1MHz-5	0.0867246	0.00176858	1.43×10^{8}
Gsi+30deg-0BP-1MHz-Coll	0.20200	0.051	$1.32 \! imes \! 10^9$
Gsi+30deg-0BP-1MHz-Coll-1	0.22080	0.059	1.02×10^{9}

イロト イポト イヨト イヨト

Geant4 simulations Comparison with "raw" data

- BIC is the worst
- INCL has the better agreement with the data

Angle	$\chi^2(BIC)$	χ^2 (QMD)	χ^2 (INCL)
60°	7.5	3.8	1.6
90°	11.1	6.6	2.9

Table : Reduced χ^2 between experimental and simulated photon yield at 60° and 90°. The values are calculated for energy bins above 2 MeV.

"Raw" energy spectra =normalized by N_{12C} and τ ...

Prompt- γ spectra Correction factors

All correction factors calculated with Geant4

Figure : Barium fluoride geometrical efficiency as a function of the γ energy.

Figure : Correction factor of reconstruction method + comparison between simulated and reconstructed spectra.

∃ ⊳

Prompt- γ spectra Correction factors

Problem with previous calculation of the acceptance : assumption was made that γ are isotropically emitted \rightarrow WRONG !

Figure : Angular distribution of prompt- γ , simulated by Geant4 (BIC, QMD and INCL).

New acceptance calculation with anisotropy implementation :

Barium fluoride efficiency

 E_{kin} (line) vs E_{dep} (points) simulated with INCL for 60°

Efficiency estimated by Geant4 simulation \rightarrow systematics error to be accounted !

$$60^{\circ}$$
: $\sigma_{\rm sysG4} = 0.09 \times 10^{-2}$

90° :
$$\sigma_{
m sysG4}=0.20 imes10^{-1}$$

Marie Vanstalle

Prompt- γ analysis with the BaF₂

7 / 13

Does Geant4 reproduce well γ efficiency?

Comparison between simulated and tabulated (XCOM) attenuation.

$\begin{array}{l} \mathsf{Prompt-}\gamma \; \mathsf{spectra} \\ \mathsf{Corrected} \; \mathsf{spectra} \end{array}$

May 2015 9 / 13

$\begin{array}{l} {\rm Prompt-}\gamma \,\, {\rm spectra} \\ {\rm Comparison \ with \ Geant4} \end{array}$

- Good agreement in terms of shape for QMD and INCL
- Not so bad agreement for the yield
- BIC remains the worst

	60°	90°
Data	$(1.15 \pm 0.11) imes 10^{-2}$	$(1.29 \pm 0.22) imes 10^{-2}$
BIC	$(2.15 \pm 0.02) \times 10^{-2}$	$(1.83 \pm 0.02) imes 10^{-2}$
QMD	$(2.33 \pm 0.03) imes 10^{-2}$	$(1.88 \pm 0.03) imes 10^{-2}$
INCL	$(1.31 \pm 0.02) \times 10^{-2}$	$(1.09 \pm 0.02) imes 10^{-2}$

May 2015 10 / 13

Prompt- γ spectra Comparison with Geant4

Inelastic scattering $({}^{12}C+{}^{12}C)$

- BIC doesn't reproduce well coulex
- BIC fails to reproduce ¹⁶O decays [₹]/₂
 (6.05 MeV + 6.13 MeV)
- INCL seems the best model

Agreement with Catania data?

Catania data (Agodi 2012) : $\Phi_{\gamma} = 2.32 \times 10^{-3} \text{ sr}^{-1}$ This work : $\Phi_{\gamma} = 1.15 \times 10^{-2} \text{ sr}^{-1}$ \rightarrow factor 5 between both values Geant4 predicts a factor 4.6 between 220 MeV/u and 80 MeV/u

May 2015 12 / 13