
A minimal introduction to OO
programming in C++

Luciano Pandola
INFN – Laboratori Nazionali del Sud

Originally based on a presentation by Maria Grazia Pia (INFN-Ge)

C++ and its versions
 C++ is a "live" language, which is evolving in time

New features, libraries and functionalities are added, to
meet new requirements and hardware developments
(e.g. multi-threading)

 Standardization provided by
ISO
Back-compatibility provided (old
codes compile also with new versions)

 C++03 used for a long time
(ROOT, Geant4). Most
scientific projects are
migrating to C++11
 ROOT 6, Geant4 10.2

(next)

Quick intro: pointers and
functions (a.k.a. methods)

Reference and pointers - 1

The address that locates a variable within memory is what we call a
reference to that variable

x = &y; // reference operator & “the address of”

A variable which stores a reference to another variable is called a pointer
Pointers are said to "point to" the variable whose reference they store

z = *x; // z equal to “value pointed by” x

pointer

x = 0; // null pointer (not pointing to any valid reference or

 memory address  initialization)

Reference and pointers - 2
#include <iostream>
using namespace std;
int main ()
{
 double x = 10.; // declaration
 double* pointer = &x;

 //Let’s print
 cout << x << endl;
 cout << pointer << endl;
 cout << *pointer << endl;
 cout << &x << endl;

 // terminate the program:
 return 0;
}

variable of type “double” (double-
precision real)  value set to 10.

pointer for a “double” variable. Now it
contains address of variable x

These lines will print the content of
variable x (namely, 10)

Notice: if we change the value stored in
variable x (e.g. x=x+5), the pointer does

not change

These lines will print the memory
address (=the reference) of variable x

(something like 0xbf8595d0)

Dynamic memory - 1

Operator new

pointer = new type
Student* paul = new Student;

double* x = new double;

If the allocation of this block of memory failed,
the failure could be detected by checking if paul took a null pointer value:
if (paul == 0) {
 // error assigning memory, take measures
};

C++ allows for memory allocation at run-time (amount of
memory required is not pre-determined by the compiler)

The operator gives back the pointer to the allocated
memory area

Dynamic memory - 2

Operator delete delete paul;

Dynamic memory should be freed once it is no longer needed,
so that the memory becomes available again for other requests of dynamic memory

Rule of thumb: every new must be paired by a delete

Failure to free memory: memory leak ( system
crash)

Dynamic vs. static memory
Two ways for memory allocation:

o static (“on the stack”)

The amount of memory required for the program is determined
at compilation time. Such amount is completely booked during
the execution of the program (might be not efficient)  same
as FORTRAN

o dynamic (“on the heap”)

memory is allocated and released dynamically during the
program execution. Possibly more efficient use of memory but
requires care! You may run out of memory!  crash!

double yy;
double* x;

double* x = new double;
*x = 10;
delete x;

Functions - 1

Type name(parameter1, parameter2, ...)
{
 statements…;
 return somethingOfType;
}

No return type: void

void printMe(double x)
{
 std::cout << x << std::endl;
}

In C++ all function
parameters are passed by

copy.

Namely: if you modify them
in the function, this will not

affect the initial value:
{
 double x = 10;
 double y = some_function(x);
 ...
}
x is still 10 here, even if x is
modified inside some_function()

Functions - 2

int myFunction (int first, int second);

Arguments can be passed by value and by reference

int myFunction (int& first, int& second);

int myFunction (const int& first, const int& second);

Pass a copy of parameters

Pass a reference to
parameters

They may be modified
in the function!

Pass a const reference to parameters
They may not be modified in the function!

More fun on functions - 1

Default values in parameters

double divide (double a, double b=2.)
{
 double r;
 r = a / b;
 return r;
}

int main ()
{
 cout << divide (12.) << endl;
 cout << divide(12.,3.) << endl;
 return 0;
}

Notice: functions are distinguishable from variables
because of ()  they are required also for functions without

parameters

More fun on functions - 2

Overloaded functions Same name, different parameter type

int operate (int a, int b)
{
 return (a*b);
}

A function cannot be overloaded only by its return type

double operate (double a, double b)
{
 return (a/b);
}

{
 cout << operate (1,2) << endl; //will return 2
 cout << operate (1.0,2.0)<< endl; //will return 0.5
}

the compiler will decide which version of the function must be executed

Basics of OO

OOP basic concepts
 Object and class

 A class defines the abstract characteristics of a thing (object),
including the thing's attributes and the thing's behaviour (e.g. a
blueprint of a house)

 A class can contain variables and functions (methods)  members
of the class

 A class is a kind of “user-defined data type”, an object is like a
“variable” of this type.

 Inheritance
 “Subclasses” are more specialized versions of a class, which inherit

attributes and behaviours from their parent classes (and can
introduce their own)

 Encapsulation
 Each object exposes to any class a certain interface (i.e. those

members accessible to that class)
 Members can be public, protected or private

Class and object - 1
Object: is characterized by attributes (which define its

state) and operations
A class is the blueprint of objects of the same type

class Rectangle {
 public:
 Rectangle (double,double); // constructor (takes 2 double variables)
 ~Rectangle() { // empty; } // destructor
 double area () { return (width * height); } // member function
 private:
 double width, height; // data members
};

an object is a concrete realization of a class  like house (= object) and
blueprint (class). Many objects (= instances) of the same class possible

Class and object - 2

// the class Rectangle is defined in a way that you need two double
// parameters to create a real object (constructor)

Rectangle rectangleA (3.,4.); // instantiate an object of type “Rectangle”
Rectangle* rectangleB = new Rectangle(5.,6.); //pointer of type “Rectangle”

// let’s invoke the member function area() of Rectangle
cout << “A area: " << rectangleA.area() << endl;
cout << “B area: " << rectangleB->area() << endl;

//release dynamically allocated memory
delete rectangleB; // invokes the destructor

The class interface in C++
How a class “interacts” with the rest of the world. Usually
defined in a header (.h or .hh) file:

class Rectangle {
 public:
 // Members can be accessed by any object (anywhere else
from the world)

 protected:
 // Can only be accessed by Rectangle and its derived objects

 private:
 // Can only be accessed by Rectangle for its own use.
 //No access by derived classes
};

Class member functions

class Rectangle {
 public:
 Rectangle (double,double); // constructor (takes 2 double variables)
 ~Rectangle() { // empty; } // destructor
 double area () { return (width * height); } // member function
 private:
 double width, height; // data members
};

Rectangle::Rectangle(double v1,double v2)
{
 width = v1; height=v2;
}

Short functions can be
defined “inline”. More

complex functions are usually
defined separately

type class::function()

(but costructor has no type)

Class members

int main() {
 Rectangle* myRectangle = new Rectangle(); //won’t work
 Rectangle* myRectangle = new Rectangle(3.,4.);
 double theArea = myRectangle->area(); //invokes a public member (function)

 myRectangle->width = 10; //won’t work: tries to access a private member

 delete myRectangle; //invokes the destructor
};

constructor needs two parameters

Classes: basic design rules
 Hide all member variables (use public methods instead)
 Hide implementation functions and data (namely those that are not

necessary/useful in other parts of the program)

 Minimize the number of public member functions
 Use const whenever possible / needed

A invokes a function of a B object
A creates an object of type B
A has a data member of type B

OK:

A uses data directly from B
(without using B’s interface)

Bad:

A directly manipulates data in B Even worse:

Inheritance
 A key feature of C++
 Inheritance allows to create classes derived from other

classes
 Public inheritance defines an “is-a” relationship

 What applies to a base class applies to its derived classes.
Derived may add further details

class Base {
 public:
 virtual ~Base() {}
 virtual void f() {…}
 private:
 int b; …
};

class Derived : public Base {
 public:
 virtual ~Derived() {}
 virtual void f() {…}
 …
};

Flavours of inheritance

class Derived : public Base
In Base In Derived
public public

protected protected

private -

class Derived: private Base public private
protected private

private -

class Derived: protected Base public protected
protected protected

private -

Inheritance
 A key feature of C++
 Inheritance allows to create classes derived from other

classes
 Public inheritance defines an “is-a” relationship

 What applies to a base class applies to its derived classes.
Derived may add further details

class Base {
 public:
 virtual ~Base() {}
 virtual void f() {…}
 private:
 int b; …
};

class Derived : public Base {
 public:
 virtual ~Derived() {}
 virtual void f() {…}
 …
};

Polymorphism

 Mechanism that allows a derived class to modify the behaviour
of a member declared in a base class  namely, the derived
class provides an alternative implementation of a member
of the base class

Which f() gets called? Base* b = new Derived;
b->f();
delete b;

Notice: a pointer of the Base class can be used for an object of the
Derived class (but only members that are present in the base class

can be accessed)

Advantage: many derived classes can be treated in the same way
using the “base” interface  see next slide

Inheritance and virtual
functions - 1

class Circle : public Shape
{
 public:
 Circle (double r);
 void draw();
 void mynicefunction();
 private:
 double radius;
};

class Rectangle : public Shape
{
 public:
 Rectangle(double h, double w);
 private:
 double height, width;
};

class Shape
{
 public:
 Shape();
 virtual void draw();
};

Circle and Rectangle are both
derived classes of Shape.

Notice: Circle has its own
version of draw(), Rectangle

has not.

Inheritance and virtual
functions - 2

A virtual function defines the interface and provides an
implementation; derived classes may provide alternative

implementations

Shape* s1 = new Circle(1.);

Shape* s2 = new Rectangle(1.,2.);

s1->draw(); //function from Circle

s2->draw(); //function from Shape (Rectangle has not its own!)

s1->mynicefunction(); //won’t work, function not in Shape!

Circle* c1 = new Circle(1.);

c1->mynicefunction(); //this will work

Use a pointer to the base
class for derived objects

Abstract classes and interfaces

class Shape
{
 public:
 Shape();
 virtual area() = 0;
};

A pure virtual function
defines the interface

and delegates the implementation
to derived classes (no default!)

Abstract class, cannot be instantiated:

Shape* s1 = new Shape(); //won’t work

Abstract Interface
a class containing at least one

pure virtual function

Abstract classes and interfaces

class Circle : public Shape
{
 public:
 Circle (double r);
 double area();
 private:
 double radius;
};

class Rectangle : public Shape
{
 public:
 Rectangle(double h, double w);
 double area();
 private:
 double height, width;
}; Concrete class

Concrete classes must provide their own implementation of
the virtual method(s) of the base class

Concrete class

Inheritance and virtual
functions

Inheritance of the
interface

Inheritance of the
implementation

Non virtual
function Mandatory Mandatory (cannot provide

alternative versions)

Virtual
function

Mandatory
By default

Possible to reimplement

Pure virtual
function Mandatory

Implementation is mandatory
(must provide an
implementation)

Shape* s1 = new Shape; //won’t work if Shape is abstract!

Shape* s2 = new Circle(1.); //ok (if Circle is not abstract)

Circle* c1 = new Circle(1.); //ok, can also use mynicefunction();

Utilities from C++11
class Circle : public Shape
{
 public:
 Circle (double r);
 void draw() ;
 void Ciao (size_t i);
};

class Shape
{
 public:
 Shape();
 virtual void draw() const;
 virtual void Ciao(int i);
};

Possible error: signature mismatch! The draw() and Ciao() in the derived
class are seen as new functions, not as overloads  OK for the compiler
May cause that the version of the functions which is called is different from
what it is intended, e.g. you want the draw() from Circle and you get the
draw() from Shape.
Keyword (optional) override: say that the function is meant to override

something from the base class  will cause a compiler error in case of
signature mismatch

class Circle : public Shape
{
 public:
 Circle (double r);
 void draw() override;
 void Ciao (size_t i) override;
};

Utilities from C++11

class Shape final
{
};

class Circle : public Shape
{
};

In some cases you want to prevent a function to be overridden or
even a class to be derived  final keywork

In some cases, the variable type can be deduced by the compiler
 why to explicitly write it? Error-prone. Keyword auto

std::map<int,double> mymap;
for (map<int,double>::iterator itr = mymap.begin() ; itr<mymap.end(); itr++)
{}

std::map<int,double> mymap;
for (auto itr = mymap.begin() ; itr<mymap.end(); itr++)
{}

A few practical issues and
miscellanea

Organization strategy

image.hh Header file: Class definition

.cc file: Full implementation

Main function

image.cc

main.cc

void SetAllPixels(const Vec3& color);

void Image::SetAllPixels(const Vec3& color) {
 for (int i = 0; i < width*height; i++)
 data[i] = color;
}

myImage.SetAllPixels(clearColor);

A Geant4 application:

Main program
All headers (.hh)

here
All implementations

(.cc) here

.mac and .in are macro files, not compiled

How a header file looks like

begin header guard #ifndef SEGMENT_HEADER
#define SEGMENT_HEADER

class Point;
class Segment
{
public:
 Segment();
 virtual ~Segment();
 double length();
private:
 Point* p0,
 Point* p1;
};
#endif // SEGMENT_HEADER

Segment.h header file

forward declaration

class declaration

constructor

destructor

end header guard

member variables
need semi-colon

member functions

Forward declaration

 In header files, only
include what you must

 If only pointers to a

class are used, use
forward declarations
(than put the real
#include in the .cc)

Class Gui
{
//
};

Gui.hh

//Forward declaration

class Gui;

class Controller
{
//...
private:
 Gui* myGui;
//...
};

Controller.hh

Header and implementation

#ifndef SEGMENT_HEADER
#define SEGMENT_HEADER

class Point;
class Segment
{
public:
 Segment();
 virtual ~Segment();
 double length();
private:
 Point* p0,
 Point* p1;
};
#endif // SEGMENT_HEADER

File Segment.hh #include “Segment.hh”
#include “Point.hh”

Segment::Segment() // constructor
{
 p0 = new Point(0.,0.);
 p1 = new Point(1.,1.);
}
Segment::~Segment() // destructor
{
 delete p0;
 delete p1;
}
double Segment::length()
{
 function implementation …
}

File Segment.cc

Segmentation fault (core
dumped)

int intArray[10];
intArray[10] = 6837;
//Remember: in C++ array index starts from 0!

Image* image;
image->SetAllPixels(colour);

Typical causes:

Access outside of array bounds

Attempt to access
a NULL or previously
deleted pointer

These errors are often very difficult to catch and
can cause erratic, unpredictable behaviour

More C++

Standard Template Library
(STL)

Containers
 Sequence

 vector: array in contiguous memory
 list: doubly-linked list (fast insert/delete)
 deque: double-ended queue
 stack, queue, priority queue

 Associative
 map: collection of (key,value) pairs
 set: map with values ignored
 multimap, multiset (duplicate keys)

 Other
 string, basic_string
 valarray:for numeric computation
 bitset: set of N bits

Algorithms
 Non-modifying

 find, search, mismatch, count,
for_each

 Modifying
 copy, transform/apply, replace,

remove

 Others
 unique, reverse,

random_shuffle
 sort, merge, partition
 set_union, set_intersection,

set_difference
 min, max, min_element,

max_element
 next_permutation,

prev_permutation

std::vector

#include <vector>
void FunctionExample()
{
 std::vector<int> v(10);
 int a0 = v[3]; // unchecked access
 int a1 = v.at(3); // checked access
 v.push_back(2); // append element to end
 v.pop_back(); // remove last element
 size_t howbig = v.size(); // get # of elements
 v.insert(v.begin()+5, 2); // insert 2 after 5th element
}

use std::vector,
not built-in C-style array,

whenever possible

Dynamic management of arrays having size is not known a priori!

std::string

Example:
#include <string>

void FunctionExample()
{
 std::string s, t;
 char c = 'a';
 s.push_back(c); // s is now “a”;
 const char* cc = s.c_str(); // get ptr to “a”
 const char dd[] = ‘like’;
 t = dd; // t is now “like”;
 t = s + t; // append “like” to “a”
}

std::atomic
 Meant for MT-programming. Avoid/reduce competition (= data

race) when many cores handle the same variables
 count++ means:

1. read count value into a register
2. increment register value
3. write register back into count

 What if an other core checks/modifies count while the work is
in progress?
 Unpredictable behaviour

 Want the block of instructions to be "atomic" (i.e.
inseparable, seen as a single operation), before an other core
can access the variable
std::atomic<int> count;
count++; //working now

Backup

C++ “rule of thumb”

Uninitialized pointers are bad!
int* i;

if (someCondition) {
 …
 i = new int;
} else if (anotherCondition) {
 …
 i = new int;
}

*i = someVariable;

“null pointer exception”

Compilation

Preprocessor
Inlines #includes etc.

Compiler
Translates into machine code
Associates calls with functions

Linker
Associates functions with definitions

Object files

Executable

External Libraries, libc.so, libcs123.so

make myFirstProgram

myFirstProgram

g++ myfile.c –o myoutput

Getting started – 1

 // my first program in C++
 #include <iostream>
 int main ()
 {
 std::cout << "Hello World!";
 return 0;
 }

// This is a comment line

#include <iostream>

• directive for the preprocessor
• used to include in the program

external libraries or files

int main ()
• beginning of the definition of

the main function
• the main function is the point

by where all C++ programs
start their execution

• all C++ programs must have a
main function

• body enclosed in braces {}
• it returns a “int” variable

(usually returning 0 means “all
right”)

Getting started – 2

 // my first program in C++
 #include <iostream>
 int main ()
 {
 std::cout << "Hello World!";
 return 0;
 }

std::cout << "Hello World";
• C++ statement
• cout is declared in the iostream

standard file within the std
namespace, used to print
something on the screen

• it belongs to the “std” set of
C++ libraries  require std::

• cin used to read from keyboard
• semicolon (;) marks the end of

the statement

return 0;
• the return statement causes the

main function to finish

Namespace std

#include <iostream>
#include <string>
...
std::string question = “What do I learn this week?”;
std::cout << question << std::endl;

Alternatively:

using namespace std;
…
string answer = “How to use Geant4”;
cout << answer << endl;

Variables
#include <iostream>
#include <string>
using namespace std;
int main ()
{
 // declaring variables:
 int a, b; // declaration
 int result = 0;
 // process:
 a = 5;
 b = 2;
 a = a + 1;
 result = a - b;
 // print out the result:
 cout << result << endl;
 const int neverChangeMe = 100;
 // terminate the program:
 return 0;
}

Scope of variables

• global variables can be referred
from anywhere in the code

• local variables: limited to the
block enclosed in braces ({})

Initialization
int a = 0; // assignment operator
int a(0); // constructor

const
the value cannot be modified after
definition

All
variables
MUST be
declared

Most common operators
Assignment =

Arithmetic operators +, -, *, /, %

Compound assignment +=, -=, *=, /=, … a+=5; // a=a+5;

Increase and decrease ++, -- a++; // a=a+1;

Relational and equality operators ==, !=, >, <, >=, <=

Logical operators ! (not), && (and), || (or)

Conditional operator (?) a>b ? a : b
// returns whichever is greater, a or b

Explicit type casting operator
int i; float f = 3.14; i = (int) f;

Control structures - 1

for (initialization; condition; increase) statement;

for (n=10; n>0; n--)
 {
 cout << n << ", ";
 if (n==3)
 {
 cout << "countdown aborted!";
 break;
 }
 }

std::ifstream myfile(“myfile.dat”);
for (; !myfile.eof();)
 {
 int var;
 myfile >> var;
 }
myfile.close()

reads until file is over Notice: the for loop is executed as long
as the “condition” is true. It is the only

necessary part of the for structure

Control structures - 2

if (x == 100)
 {
 cout << "x is ";
 cout << x;
 }

if (x == 100)
 cout << "x is 100";
else
 cout << "x is not 100";

while (n>0) {
 cout << n << ", ";
 --n;
}

do {
 cout << "Enter number (0 to end): ";
 cin >> n;
 cout << "You entered: " << n << endl;
} while (n != 0);

if (x)
 cout << "x is not 0";
else
 cout << "x is 0";

shortcut for (x != 0)

	A minimal introduction to OO programming in C++
	C++ and its versions	
	Quick intro: pointers and functions (a.k.a. methods)
	Reference and pointers - 1
	Reference and pointers - 2
	Dynamic memory - 1
	Dynamic memory - 2
	Dynamic vs. static memory
	Functions - 1
	Functions - 2
	More fun on functions - 1
	More fun on functions - 2
	Basics of OO
	OOP basic concepts
	Class and object - 1
	Class and object - 2
	The class interface in C++
	Class member functions
	Class members
	Classes: basic design rules
	Inheritance
	Flavours of inheritance
	Inheritance
	Polymorphism
	Inheritance and virtual functions - 1
	Inheritance and virtual functions - 2
	Abstract classes and interfaces
	Abstract classes and interfaces
	Inheritance and virtual functions
	Utilities from C++11
	Utilities from C++11
	A few practical issues and miscellanea
	Organization strategy
	A Geant4 application:
	How a header file looks like
	Forward declaration
	Header and implementation
	Segmentation fault (core dumped)
	More C++
	Standard Template Library (STL)
	std::vector
	std::string
	std::atomic
	Backup
	C++ “rule of thumb”
	Compilation
	Getting started – 1
	Getting started – 2
	Namespace std
	Variables
	Most common operators
	Control structures - 1
	Control structures - 2

