LHCb Computing

Resources: 2014 usage 2015 status 2016 requests

Concezio Bozzi Bologna, May 25th 2015

- Main activity: MC production
- Other activites:
 - Incremental stripping in spring 2014
 - legacy stripping of Run1 data (2 months in Dec 2014–Jan 2015)
 - "swimming" production in Spring 2014

[•] User jobs

	Used	Pledge	
<power></power>	(kHS06)	(kHS06)	\geq
CH-CERN	15.6	34.0	H
DE-KIT	14.6	19.2	\sim
ES-PIC	7.8	7.1	
FR-CCIN2P3	20.6	21.7	
IT-INFN-CNAF	23.2	19.8	
NL-T1	13.7	13.8	
RRC-KI-T1	15.2	10.8	
UK-T1-RAL	20.4	34.7	
Total	131.2	161.1	

<power></power>	(kHS06)	(kHS06)
Brazil	1.2	8.0
France	12.0	11.0
Germany	0.2	3.2
Italy	3.9	8.5
Netherlands	2.7	0.0
Poland	7.5	3.2
Romania	2.3	4.9
Russia	8.9	0.1
Spain	10.4	2.8
Switzerland	4.2	5.2
UK	30.6	10.1
Total	84.0	57.0

C. Bozzi – LHCb 2014 usage 2015 status 2016 requests – 25/05/2015

Resource usage: CPU

C. Bozzi - LHCb 2014 usage 2015 status 2016 requests - 25/05/2015

Resource usage: CPU, user jobs

 \sim 3/4 at Tier0 + Tier1s \sim 1/4 outside

Resource usage: Disk

- Enabled recording of information as of May 2012
- Information recorded for each job:
 - Dataset (path)
 - Number of files for each job
 - Storage element used
- Allows currently by visual inspection to identify unused datasets
- o Plan:
 - Establish, per dataset:
 - ☆ Last access date
 - Number of accesses in last (n) months (1<n<12)</p>
 - * Normalise number of dataset accesses to its size
 - Prepare summary tables per dataset
 - Access summary (above)
 - ☆ Storage usage at each site
 - Allow to trigger replica removal when space is required

Ο

Examples of popularity plots

Usage of datasets

C. Bozzi – LHCb 2014 usage 2015 status 2016 requests – 25/05/2015

2015: suppression of reprocessing

- During LS1, major redesign of LHCb HLT system
 - HLT1 (displaced vertices) will run in real time
 - HLT2 (physics selections) deferred by several hours
 - ☆ Run continuous calibration in the Online farm to allow use of calibrated PID information in HLT2 selections
 - * HLT2 reconstruction becomes very similar to offline
- Automated validation of online calibration for use offline
 - Includes validation of alignment
 - Removes need for "first pass" reconstruction
- Green light from validation triggers 'final' reconstruction
 - Foresee up to two weeks' delay to allow correction of any problems flagged by automatic validation
 - No end of year reprocessing
 - 🖈 Just restripping
- If insufficient resources, foresee to 'park' a fraction of the data for processing after the run
 - Unlikely to be needed before 2017 but commissioned from the start

Going beyond the Grid paradigm

DIRAC allows easy integration of non WLCG resources

- In 2014, ~10% of CPU resources from LHCb HLT and Yandex farms
- Vac infrastructure
 - Virtual machines created and contextualised for virtual organisations by remote resource providers
- Clouds
 - Virtual machines running on cloud infrastructures collecting jobs from the LHCb central task queue
- Volunteer computing
 - Use the BOINC infrastructure to enable payload execution on arbitrary compute resources

- Increases in trigger rate and expanded physics programme put strong pressure on storage resources
- Tape shortages mitigated by reduction in archive volume
 - Archives of all derived data exist as single tape copy
 - * Forced to accept risk of data loss
 - Re-introduce a second tape copy in Run2, to cope with data preservation "obligations"

Re-generation in case of data loss is an operational nightmare and an overload of computing resources

- Disk shortages addressed by
 - Introduction of Disk at Tier 2
 - Reduction of event size in derived data formats
 - Changes to data replication and data placement policies
 - Measurement of data popularity to guide decisions on replica removals

Tier2Ds

- Tier2Ds are a limited set of Tier2 sites which are allowed to provide disk capacity for LHCb
 - Introduced in 2013 to circumvent shortfall of disk storage
 - To provide disk storage for physics analysis files (MC and data)
 - * Run user analysis jobs on the data stored at the sites
- Blurs even more functional distinction between Tier1 and Tier2
 - A large Tier2D is a small Tier1 without Tape
- Status (Jan 18th 2015): 2.4 PB available, 0.83 PB used

Data Formats

- Highly centralised LHCb data processing model allows to optimise data formats for operation efficiency
- Large shortfalls in disk and tape storage (due to larger trigger rates and expanded physics programme) drive efforts to reduce data formats for physics:
 - DST used by most analyses in 2010 (~120kB/event)
 Contains copy of RAW and full Reco information
 - Strong drive to µDST (~13kB/event)
 - \Rightarrow Save information for signal only
 - Suitable for most exclusive analyses, but many iterations required to get content correct
 - * User-defined data can be added on demand (tagging, isolation,...)
 - "Legacy" stripping campaign of Run1 data just completed
 - \bigstar Will allow to test μDST
 - MDST.DST == FULL.DST of all events passing a μDST stream. Temporary format (2015-2016) to allow regeneration of μDST in case of missing information without running the stripping again

Data-driven automatic replication \mathbf{O} Archive systematically all analysis data (T1D0) Real Data: 4 disk replicas, $1(\rightarrow 2)$ archives • MC: 3 disk replicas, $1(\rightarrow 2)$ archives Selection of disk replication sites: Keep together whole runs (for real data) * Random choice per file for MC Chose storage element depending on free space * Random choice, weighted by the free space * Should allow no disk saturation * Exponential fall-off of free space * As long as there are enough non-full sites! • Removal of replicas For processing n-1: reduce to 2 disk replicas (randomly) * Possibility to preferentially remove replicas from sites with less free space

□ For processing n-2: only keep archive replicas

Tier0 + Tier1 pledged resources in 2015

T0+T1 Tape 2015

CERN
France
Germany
Italy
Netherlands
Russian Federation
Spain Spain
UK

CPU	Dick	-	
	DISK	Tape	
HS06	Tbytes	Tbytes	
36000	5500	11200	
23000	1880	4360	
19600	2340	3960	
23600	2720	6870	
15661	1570	2773	
14200	1260	1480	
7670	761	1541	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
35400	3510	7110	
175131	19541	39294	
154000	17200	34900	
13.7%	13.6%	12.6%	
	HS06 36000 23000 19600 23600 15661 14200 7670 35400 175131 154000 13.7%	HS06Tbytes36000550023000188019600234023600272015661157014200126076707613540035101540001720013.7%13.6%	HS06TbytesTbytes360005500112002300018804360196002340396023600272068701566115702773142001260148076707611541354003510711015400172003490013.7%13.6%12.6%

Tier2 pledged resources in 2015

C. Bozzi – LHCb 2014 usage 2015 status 2016 requests – 25/05/2015

Difference

3.4%

-8.2%

Summary of 2015-2017 requests

			LHC schedule			
Running	Proton physics	LHC start date	01/05/2015	01/04/2016	01/04/2017	
assumptions		LHC end date	31/10/2015	31/10/2016	15/12/2017	
assumptions		LHC run days	183	213	258	
		Fraction of days for physics	0.60	0.70	0.80	
		LHC efficiency	0 32	0 39	0 39	
		Approx. running seconds	3.0 10 ⁶	5.0 10 ⁶	$7.0\ 10^6$	
	Heavy Ion physics	Approx. running seconds	< -	0.710°	0.7.10	

Power (kHS06)	Request 2015	Request 2016	Request 2017	
Tier 0	36	51-	62	
Tier 1	118	156	191	
Tier 2	66	88	107	
Total WLCG	220	295	360	
HLT farm	10	10	10	
Yandex	10	10	10	
Total non-WLCG	20	20	20	
Grand total	240	315	380	

Disk

Disk (PB)	2015	2016	2017
	Request	Request	Request
Tier0	5.5	7.6	9.1
Tier1	11.7	13.5	15.0
Tier2	1.9	4.0	5.5
Total	19.1	25.2	29.6

Breakdown of CPU requests

nn	Punning
NN	nunning
	- 0

CPU Work in WLCG year (kHS06.years)	2015	2016	2017
Prompt Reconstruction	19	31	26
First pass Stripping	8	-13	11
Full Restripping	8	20	11
Incremental Restripping	0	4)10
Simulation	134	153-	207
VoBoxes and other services		4	4
User Analysis	17	20	24
Total Work (kHS06.years)	186	246	293
Efficiency corrected average power (kHS06)	220	291	348
		L	

HI Running

Resources for heavy ion running	2015 Request	2016 Request	2017 Request
CPU (kHS06)	0	24	32
	*		

Breakdown of DISK requests

nn Running	Disk storage usage forecast (PB)	2015	2016	2017
pp Running	Stripped Real Data	7.3	13.1	15.3
	Simulated Data	8.2	6.9	10.4
	User Data	0.9	1.0	1).1
	MDST.DST	1.5	1.9	0.0
	RAW and other buffers	1.0	1.2	0.9
	Other	0.2	0.2	0.2
	Total	19.1	24.3	27.9

	Resources for heavy ion	2015	2016	2017
	running	Request	Request	Request
HI KUNNINg	Disk (PB)	0	0.9	1.7

Tape (PB)	2015 Request	2016 Request	2017 Request
Tier0	11.2	20.6	30.9
Tier1	23.7	42.1	62.2
Total	34.9	62.7	93.1

pp Running			
Tape storage usage forecast (PB)	2015	2016	2017
Raw Data	12.7	21.7	34.5
FULL.DST	8.7	15.2	20.7
MDST.DST	1.8	5.2	7.9
Archive – Operations	8.6	11.6	15.0
Archive – Data preservation	3.1	6.0	9.2
Total	34.9	59.7	87.3

 D	•
Rur	nnne
	·····C

<u> </u>		
Tape (PB)	0	and a start of the

Please note:

WLCG estimates of tape costs include a 10% cache disk. This is too large for our purposes.

5.7

3.0

Mitigation strategies

- Increase in tape request is beyond flat-budget expectation
 - Ask resource providers for advance purchases in order to ease ramp-up
 - Trade some other resources for tape
 - ☆ But lever arm is short!
- Remove second tape copy of derived dataset?
 - Regeneration of even a small portion of data implies massive tape recalls and computing load, which might jeopardize other production activities
- Continue developing data popularity algorithms and data placement strategies
 - Potential significant savings on disk space

Ο

Continue using available CPU resources "parasitically"

- The resources requested for Tier1 CPU & disk are obtained by scaling the global requests with the INFN fraction: 21%
- For tape, we take the fraction with respect to countries hosting a Tier1: 27%
 - New entry: Russia (Kurchatov Institute, RRCKI)
- These fractions are taken from April 2015 RRB

https://cds.cern.ch/record/2002286/files/CERN-RRB-2015-045.pdf

• This gives the following requests:

CNAF Tier1	2015 pledge	2016	Diff	Replace	tot	kEUR
CPU (kHS06)	23.6	32.5	8.9	?	8.9	124
DISK (TB)	2720	2811	91	?	91	22
TAPE (TB)	6870	8766	1896		1896	47
					Total:	194

INFN requests: Tier2

- The resources requested for Tier2 CPU are obtained by scaling the global requests with the INFN fraction: 21%
- This gives the following requests:

CNAF Tier2	2015 pledge	2016	Diff	Replace	tot	kEUR
CPU (kHS06)	7.88	18.3	10.4	?	10.4	146

- The increase of CPU is partly due to the trading of CPU for tape which was done for 2015
- We could do the same for 2016 and reduce CPU accordingly. For instance

CNAF Tier1	2015 pledge	2016	Diff	Replace	tot	kEUR
CPU (kHS06)	23.6	27.8	4.2	?	4.2	59
DISK (TB)	2720	2811	91	?	91	22
TAPE (TB)	6870	8766	1896		1896	47
					Total:	128
CNAF Tier2	2015 pledge	2016	Diff	Replace	tot	kEUR
CPU (kHS06)	7.88	15.7	7.8	?	7.8	110

