
Status of and challanges in Virgo
computing

Gergely Debreczeni

Wigner RCP
Virgo Computing Coordinator

(Debreczeni.Gergely@wigner.mta.hu)

2015 may. 25. - INFN CNAF Gergely, DEBRECZENI - Status and future
of gravitational wvae computing

2

Content
● Virgo experiment

● A one slide introduction to the Virgo experiment

● Computing model walkthrough

● Scale, type and strategies in Virgo computing

● Data transfer

● Transfer of measurement data to CCs

● Analysis types

● Computing needs of anaalysis workflows

● Pipeline execution problems

● Problems related to pipeline execution

● GPU perspectives

● How GPUs can help us in cheaper computing

● Cloud solution

● Why a computing cloud would be excellent for Virgo

● Future plans

● Things we would like to work on in the future

Artists's view of a gramma-ray burst

Credit: NASA/Swift/Mary Pat Hrybyk-Keith and John Jones

2015 may. 25. - INFN CNAF Gergely, DEBRECZENI - Status and future
of gravitational wvae computing

3

The Virgo experiment

● The Virgo detector is located in the site
of the European Gravitational
Observatory (EGO) in Cascina, near Pisa,
Italy.

● Construction finished in 2003

● It is now a european collaboration
including France, Italy, Hungary,
Netherland, Poland

● Working together with LIGO (Laser
Interferometer Gravitational-wave
Observatory), synchronized observations
and coordinated analysis

● So far, approixmately c.c 20 month of
data taking

● Currently under upgrade, will start to
collect scientific data in early 2016

2015 may. 25. - INFN CNAF Gergely, DEBRECZENI - Status and future
of gravitational wvae computing

4

Computing model in 1 slide
● Data is taken by the 3 detector

● Online (low-latency) analysis happens on the measurement site.

● Data is stored at site temporarly in a circular buffer (typicaly for 6 month)

● All data is transferred with c.c. 1 day latency to external CCs and stored in 3
different location (Lyon, CNAF, Ligo site)

● Virgo uses its two main CCs and the INFN grid sites, while LIGO uses dedicated
Condor clusters and XEDE supercomputer resources

● Offline analysis based on Condor DAG, Pegasus DAX and shared file system based
workflows and/or simple EMI Grid submission mechnisms. No unified job scheduler is
used over the collaboration.

● Analysis code must undergo serious review, coordinated prioritisation and
optimisation efforts. Reviewed code is tagged, freezed.

2015 may. 25. - INFN CNAF Gergely, DEBRECZENI - Status and future
of gravitational wvae computing

5

Type of measurement data
● The measurement data is a time series, sampled at 20 kHz, then downsampled to 16
kHz and 4 kHz.

● There are hundreds of auxiliary enviromemntal channels, some of them with much
lower frequencies

● Amount of data is a few hundred TB / yr but its arithmetic complexity is much
higher than that of the HEP experiments.

● Depending on the source to be examined / discovered many different kind of
analysis is crunching this data with computing requirements differing by order of
magnitued.

● Different analysis requiring different input data size and computing architectures

● Gravitational wave analysis is compute intensive not data intensive

2015 may. 25. - INFN CNAF Gergely, DEBRECZENI - Status and future
of gravitational wvae computing

6

Data transfer
● Measurement data produced in Cascina on the Virgo site

● Low latency online analysis happens in place and data is stored temporarly on site
using a circular buffer of length of several month.

● For offline analysis this data must be transferred to the computer centers.

● For this purpose a transfer tool was developed by EGO.

● It uses the

● lcg-tools to transfer data to CNAF

● and the irod client installation for IN2P3

● The amount of data is not overwhelming, in principle data transfer should not be a
challange

● Data from LIGo detectors are also get copied to our CCs. This data consist(ed) of
small file which must be merged to bigger ones in order to fit better for HPSS
storage. Now this problem had been solved

2015 may. 25. - INFN CNAF Gergely, DEBRECZENI - Status and future
of gravitational wvae computing

7

Data transfer issues
● Virgo is using different data transfer tools for different data transfers. Each of
them is easy and works reliably, however the need for using multiple backend needs
extra manpower and development.

● A preffered solution would be to use the LDR (LIGO Data Replicator) data transfer
framework all over in the LIGO-Virgo collaboration which cann communicate with
legacy GSIFTP backends and perform reliable data transfer.

● GSIFTP is not available in IN2P3 which is a problem, probably will be solved soon

2015 may. 25. - INFN CNAF Gergely, DEBRECZENI - Status and future
of gravitational wvae computing

8

Data and file and metadata catalogs
● Some analysis is using the LFC (Lightweight File Catalog). Its use is easy and we
found no problem with it.

● The DIsckcache software is used to catalog files available on a given site and
respond to queries of the pipelines with physical location of files.

● Typical query includes GPS times, detector name, channel name.

● No file metadata catalog is used so far, there is not too much need of that. Many
information is in file names and can be easily queried.

2015 may. 25. - INFN CNAF Gergely, DEBRECZENI - Status and future
of gravitational wvae computing

9

Analysis pipelines
● CW (Continuos waves) - Rotating, assymetric neutron stars

● The most compute intense pipeline, practically can consume all available resources.
Sensitivity goes like 1/sqrt(T), where T is the duration of data chunk in question. As a
result one must restrict parameter space explored -> scientific limitation.

● CBC (Compact Binary Coalescence) - Gravitational waves emitted by coalescing binarie
neutron stars or binary black holes

● Very compute intensive, theoretical templates are tested againts the measurement data
by means of matched filter. With the decrease of low frequency cutoff compute costs
grows exponentially.

● Burst - Explosions, supernovas, unmodelled tranzient sources

● Very similar but more generic than CBC. Sensitivity is comparable (~c.c 30% less).

● Stochastic - Search for stochastic gravitational waves of galactic or primordial origin

● Important from physics point of view, but has negligible compute cost.

2015 may. 25. - INFN CNAF Gergely, DEBRECZENI - Status and future
of gravitational wvae computing

10

Analysis pipeline problems
● LIGO and Virgo collaboration is working closely together.

● However LIGO collaboration is larger by a factor of > x10

● As a result many important pipeline development is dominated by LIGO colleagues and are
tailored to LIGO resources

● As a consequance those pipelines cannot be executed out of the box on pur resources, but
requires quite some porting effort.

● This effort is not a one time action, but needs continouse attention -> very expensive in
terms of time and manpower...Virgo cannot afford.

● Many attempts have been made to overcome this difficulty including

● the set up of a pilot pool framework

● using the Pegasus scheduler

● examining the possibility of using the Dirac jobmission framework

● thinking on virtualized Condor cluster, i.e. a Cloud

2011 may. 30-31 The Virgo Computing Model 11

The Virgo Pilot Pool - I

The Virgo Pilot Pool properties:

● Homogen infrastructure over the
inhomogen Grid
● Less administrative interaction/delay
● User transparent mechanisms
● Low latency submission
● Global priorities

● Late-binding to resources
● No stucked-in jobs
● Improved job failure rate due to pilot
prechecks
● Interactive login
● Smooth interaction interoperability
with LDG/OSG.

2011 may. 30-31 The Virgo Computing Model 12

The Virgo Pilot Pool - II
Ligo clusters Virgo EGI sites

 virgo-pilot-server.kfki.hu

2011 may. 30-31 The Virgo Computing Model 13

The Virgo Pilot Pool - III
● Mapping of abstract workflows like DAGs/DAXes to the Grid is now easily possible with
the Virgo Pilot server.

● Complex and relational workflow handling is/was missing from Cream/WMS.

2015 may. 25. - INFN CNAF Gergely, DEBRECZENI - Status and future
of gravitational wvae computing

14

GPUs for analysis
● Many search algorithm can be accelerated by making use of operation level paralellizability
offered by various many-core hardwares such as GPUs. Such examples are:

● FFT, vector operations, reduce, max finding, clustering in CBC analysis pipelines

● FFT, 2D thresholding, Differential Hough map creation, integration, peak finding in CW
analysis

● There are multiple tool developed to allow easier use of GPUs by less advanced
programmers, such as:

● GWTools - An OpenCL based templates C++ generic algorithm library for GW searches

● pyCBC - CUDA based set of Python algorithm used in CBC analysis

● CB - Compute Backend - offers a unified host code for CUDA and OpenCL, so there is no
need to write the code twice for NVidia and AMD cards

● GPUs will play crucial role in the following years probably even for the discovery

●Typical full-pipeline accelerations experienced are ranging from x30 to x120

2015 may. 25. - INFN CNAF Gergely, DEBRECZENI - Status and future
of gravitational wvae computing

15

Cloud 4 Virgo
● Out of the above possibilities each of them has some serious drawbacks except the Cloud
solution

● Having an OpenStack based virutal Cloud Condor installation at CNAF would solve almost
all our problem including,

● pipeline porting

● architectural difference

● training of people and the must to learn multiple submission mechanisms

● real sharing of our resources

● easy of GPU access and GPU - CPU matching, allocation problems

● better monitoring of user jobs

2015 may. 25. - INFN CNAF Gergely, DEBRECZENI - Status and future
of gravitational wvae computing

16

Optimisation, prioritisation
● The LIGO - Virgo analysis software stack went through on a serious process of review,
benchmarking and optimisation.

● The process was triggered by the NSF review of LIGO request for XEDE resources

● It has a very positive effect on the quality, organisation and performance of the code used
for analysis in the Collaborations.

● Analysis type based compute resource request estimation, logging and accounting and
prioritisation is just under introduction in the collaborations

● A common unit of measure for called „Service Unit” SU has been introduced, since we
observed that HS06 numbers are not alway accurate enough in reflecting the ratios of
performances of a specific CPU cores for specific analysis. 1 SU corresponds to the
performance of an Intel Xeon E5-2650 core.

● LVCN - the LIGO - Virgo Computing Network was estableshed

2015 may. 25. - INFN CNAF Gergely, DEBRECZENI - Status and future
of gravitational wvae computing

17

LVCN supply table

2015 may. 25. - INFN CNAF Gergely, DEBRECZENI - Status and future
of gravitational wvae computing

18

LVCN pipeline needs

2015 may. 25. - INFN CNAF Gergely, DEBRECZENI - Status and future
of gravitational wvae computing

19

LVCN priorities

2015 may. 25. - INFN CNAF Gergely, DEBRECZENI - Status and future
of gravitational wvae computing

20

Compute and storage needs at CNAF for
2016

Taking into account the expected time of observation and engineering runs and the
enlarged sensitivity band of the LIGO detectors in 2016 Virgo will need the following
amount of computing resources at CNAF:

Cores: 1500 in addition wrt 2015, (total 2500 cores - 25000 Hs06)

Disk: 100 TB in addition wrt 2015, (total approx 600 TB)

Tape: 500 TB in addition wrt 2015

Probably must revisit the HS06 <-> core conversion factor

2015 may. 25. - INFN CNAF Gergely, DEBRECZENI - Status and future
of gravitational wvae computing

21

Uncertainties of compute and storage
estimates

Storage estimates are derived from detector bandwidth and expected duration of
observation times known in advance, so there not too much uncertainties here.

As for the compute needs the source of uncertainties are as follows:

● Which pipelines will be ported to GPUs and when

● How successfully the sharing of resources will happen with LIGO collaboration

● Possibility of Condor CLOUD installation

● Available budget for computing in EGO

● Currently Virgo is providing only c.c 8% of the total computing power for the LVC
collaboration. This cannot be mainteined on the long term, there is a need for
massive increase.

2015 may. 25. - INFN CNAF Gergely, DEBRECZENI - Status and future
of gravitational wvae computing

22

The Compute Backend (CB)
The problem

● For several reason (cost efficiency, manpower, future
hardwares, etc..) the analysis code has to be generic

● It is always a subject of debate which language to use
to program GPUs.

● Double coding for multiple interface is a waste of
time and manpower.

The solution:

● THE COMPUTE BACKEND (CB) IS
ADDRESSING THIS PROBLEM BY
PROVIDING UNIFIED INTERFACE
FOR VARIOUS GPU PROGRAMING
LANGUAGES, SUCH AS CUDA AND
OPENCL !

● It levreages the burden of host-side double coding and
the very same code can be used to run on CUDA
(NVidia) or OpenCL (AMD, Intel, Samsung, etc...)
devices...

Compute Backend (CB) features:

● C and C++ API (fortran, python and c# on the
way...)

● CUDA and OpenCL backends (ComputeGl,
RenderScript considered)

● Single host-side code for multiple backend

● Runs under Linux/Windows/MacOS

● Compatible with CMake, Autoconf, MSVC, etc.

● Academic license is available

● User support around the clock

●

Compute Backend is available on

http://x-perception.com

2015 may. 25. - INFN CNAF Gergely, DEBRECZENI - Status and future
of gravitational wvae computing

23

The Compute Backend - the C API
#include <stdio.h>
#include <stdlib.h>
#include <cb.h>

int main() {

 // Auxiliary variables
 int err ;
 int i;

 // Sets the log level
 cb_log_level = 5;

 // Get some buffer
 unsigned int num_elements = 1024;
 unsigned int size = num_elements * sizeof(float);

 // ... and also on the host side
 float * h_buffer1 = (float *) malloc(size);
 float * h_buffer2 = (float *) malloc(size);
 float * h_buffer3 = (float *) malloc(size);

 // ... fill up the buffers
 for (i = 0; i < num_elements; i++) {h_buffer1[i] = 4; h_buffer2[i] = 11;}

 // The C API
 // A compute backend
 cb_backend backend;
 cb_program prog;
 cb_kernel kernel1, kernel2, kernel3;
 cb_buffer buffer1, buffer2, buffer3;

 // Get the compute backend
 err = cbGetComputeBackend(&backend);

 // Get a program
 err = cbGetProgram(&backend, "/home/me/testt", &prog);

 // Get the kernel
 err = cbGetKernel(&prog, "test_kernel", &kernel1);
 err = cbGetKernel(&prog, "simple_kernel", &kernel2);
 err = cbGetKernel(&prog, "buffer_kernel", &kernel3);

 err = cbCreateBuffer(&backend, CB_READ_WRITE, size, NULL, &buffer1);
 err = cbCreateBuffer(&backend, CB_READ_WRITE, size, NULL, &buffer2);
 err = cbCreateBuffer(&backend, CB_READ_WRITE, size, NULL, &buffer3);

 // Send some data to device
 err = cbWriteBuffer(&backend.queues[0], &buffer1, size, h_buffer1, true);
 err = cbWriteBuffer(&backend.queues[0], &buffer2, size, h_buffer2, true);

 // Set the kernel sizes
 cbExtent g_size = cbSetExtent(1,1024);
 cbExtent l_size = cbSetExtent(1, 32);

 // Execute the kernel
 cbParam b1_arg = cbBuffer(&buffer1);
 cbParam b2_arg = cbBuffer(&buffer2);
 cbParam b3_arg = cbBuffer(&buffer3);
 cbParam n_arg = cbInt(100);

 err = cbExecuteKernel(&backend.queues[0], &kernel3, g_size, l_size, 4,
&b1_arg, &b2_arg, &n_arg, &b3_arg);

 // Read back the result
 err = cbReadBuffer(&backend.queues[0], &buffer3, size, h_buffer3, true);

 // Printing the result
 for (i = 0; i < 10; i++) printf("%f ", h_buffer3[i]);
 printf("\n\n");

 // Releasing stuff
 free(h_buffer1);
 free(h_buffer2);
 free(h_buffer3);

 // Exit
 return err;
}

2015 may. 25. - INFN CNAF Gergely, DEBRECZENI - Status and future
of gravitational wvae computing

24

The Compute Backend - the C++ API
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <cb.hpp>

int main() {

 // Sets the log level
 cb_log_level = 5;
 int err ;
 int i;

 // Get some buffer on the host side
 unsigned int num_elements = 1024;
 unsigned int size = num_elements * sizeof(float);

 float * h_buffer1 = new float[num_elements];
 float * h_buffer2 = new float[num_elements];
 float * h_buffer3 = new float[num_elements];

 // ... fill in the buffers
 for (i = 0; i < num_elements; i++) {h_buffer1[i] = 4; h_buffer2[i] = 11;}

 // Construction Backend, Program, Kernel and Buffers
 cb::Backend bck;
 cb::Program prg(bck, "/home/me/test");
 cb::Kernel TestKernel(prg, "test_kernel");
 cb::Kernel SimpleKernel(prg, "simple_kernel");
 cb::Kernel BufferKernel(prg, "buffer_kernel");

 // Initializing the buffers
 cb::Buffer b1(bck, CB_READ_WRITE, size, NULL);
 cb::Buffer b2(bck, CB_READ_WRITE, size, NULL);
 cb::Buffer b3(bck, CB_READ_WRITE, size, NULL);

 // Send data to device
 b1.Write(bck.GetQueue(), h_buffer1);
 b2.Write(bck.GetQueue(), h_buffer2);

 // Set the kernel sizes
 cb::Extent g(num_elements);
 cb::Extent l(32);

 // Create kernel arguments
 cbParam buff1_arg = cbBuffer(b1);
 cbParam buff2_arg = cbBuffer(b2);
 cbParam buff3_arg = cbBuffer(b3);
 cbParam numarg = cbInt(100);

 // Execute the buffer kernel
 BufferKernel(bck.GetQueue(), g, l, 4, &buff1_arg, &buff2_arg, &numarg, &buff3_arg);

 // Read back the result
 b3.Read(bck.GetQueue(), h_buffer3);

 // Some output for checking the result
 for (int i = 0; i < 10; i++) {
 std::cout << h_buffer1[i] << " " << h_buffer2[i] << " " << h_buffer3[i];
 }

 // Releasing stuff
 delete h_buffer1;
 delete h_buffer2;
 delete h_buffer3;

 // Exiting
 exit(0);
}

Compile for CUDA:

cd build
cmake -DOPENCL_BACKEND=1 ../
make

Compile for OpenCL:

cd build
cmake -DCUDA_BACKEND=1 ../
make

2015 may. 25. - INFN CNAF Gergely, DEBRECZENI - Status and future
of gravitational wvae computing

25

Problems
● Graphical monitoring of user jobs

● Interactive debugging, checking logs

● Account request procedure at CNAF is inconvenient for LIGO colleagues. Maybe
could be simplified with a certificate signed request instead of faxing a sheet ?

Good things
● Resources reliable, negligible downtime

● Support mailing list (CTCC@EGO) and CNAF user support works fine ! (Thanks !)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

