

Status of and challanges in Virgo computing

Gergely Debreczeni

Wigner RCP Virgo Computing Coordinator

(Debreczeni.Gergely@wigner.mta.hu)

Content

Artists's view of a gramma-ray burst Credit: NASA/Swift/Mary Pat Hrybyk-Keith and John Jones

2015 may. 25. - INFN CNAF

• Virgo experiment

- A one slide introduction to the Virgo experiment
- Computing model walkthrough
 - Scale, type and strategies in Virgo computing
- Data transfer
 - Transfer of measurement data to CCs
- Analysis types
 - Computing needs of anaalysis workflows
- Pipeline execution problems
 - Problems related to pipeline execution
- GPU perspectives
 - How GPUs can help us in cheaper computing
- Cloud solution
 - Why a computing cloud would be excellent for Virgo
- Future plans
 - Things we would like to work on in the future

The Virgo experiment

- The Virgo detector is located in the site of the European Gravitational Observatory (EGO) in Cascina, near Pisa, Italy.
- Construction finished in 2003
- It is now a european collaboration including France, Italy, Hungary, Netherland, Poland
- Working together with LIGO (Laser Interferometer Gravitational-wave Observatory), synchronized observations and coordinated analysis
- So far, approixmately c.c 20 month of data taking
- Currently under upgrade, will start to collect scientific data in early 2016
 - 2015 may. 25. INFN CNAF

Computing model in 1 slide

- Data is taken by the 3 detector
- Online (low-latency) analysis happens on the measurement site.
- Data is stored at site temporarly in a circular buffer (typicaly for 6 month)
- All data is transferred with c.c. 1 day latency to external CCs and stored in 3 different location (Lyon, CNAF, Ligo site)
- Virgo uses its two main CCs and the INFN grid sites, while LIGO uses dedicated Condor clusters and XEDE supercomputer resources
- Offline analysis based on Condor DAG, Pegasus DAX and shared file system based workflows and/or simple EMI Grid submission mechnisms. No unified job scheduler is used over the collaboration.
- Analysis code must undergo serious review, coordinated prioritisation and optimisation efforts. Reviewed code is tagged, freezed.

Type of measurement data

- The measurement data is a time series, sampled at 20 kHz, then downsampled to 16 kHz and 4 kHz.
- There are hundreds of auxiliary enviromemntal channels, some of them with much lower frequencies
- Amount of data is a few hundred TB / yr but its arithmetic complexity is much higher than that of the HEP experiments.
- Depending on the source to be examined / discovered many different kind of analysis is crunching this data with computing requirements differing by order of magnitued.
- Different analysis requiring different input data size and computing architectures
- Gravitational wave analysis is **compute intensive** not data intensive

Data transfer

- Measurement data produced in Cascina on the Virgo site
- Low latency online analysis happens in place and data is stored temporarly on site using a circular buffer of length of several month.
- For offline analysis this data must be transferred to the computer centers.
- For this purpose a transfer tool was developed by EGO.
- It uses the
 - lcg-tools to transfer data to CNAF
 - and the irod client installation for IN2P3
- The amount of data is not overwhelming, in principle data transfer should not be a challange
- Data from LIGo detectors are also get copied to our CCs. This data consist(ed) of small file which must be merged to bigger ones in order to fit better for HPSS storage. Now this problem had been solved

Data transfer issues

• Virgo is using different data transfer tools for different data transfers. Each of them is easy and works reliably, however the need for using multiple backend needs extra manpower and development.

• A preffered solution would be to use the LDR (LIGO Data Replicator) data transfer framework all over in the LIGO-Virgo collaboration which cann communicate with legacy GSIFTP backends and perform reliable data transfer.

• GSIFTP is not available in IN2P3 which is a problem, probably will be solved soon

2015 may. 25. - INFN CNAF

Data and file and metadata catalogs

- Some analysis is using the LFC (Lightweight File Catalog). Its use is easy and we found no problem with it.
- The DIsckcache software is used to catalog files available on a given site and respond to queries of the pipelines with physical location of files.
- Typical query includes GPS times, detector name, channel name.
- No file metadata catalog is used so far, there is not too much need of that. Many
 information is in file names and can be easily queried.

Analysis pipelines

- CW (Continuos waves) Rotating, assymetric neutron stars
 - The most compute intense pipeline, practically can consume all available resources. Sensitivity goes like 1/sqrt(T), where T is the duration of data chunk in question. As a result one must restrict parameter space explored -> scientific limitation.
- **CBC** (Compact Binary Coalescence) Gravitational waves emitted by coalescing binarie neutron stars or binary black holes
 - Very compute intensive, theoretical templates are tested againts the measurement data by means of matched filter. With the decrease of low frequency cutoff compute costs grows exponentially.
- Burst Explosions, supernovas, unmodelled tranzient sources
 - Very similar but more generic than CBC. Sensitivity is comparable (~c.c 30% less).
- Stochastic Search for stochastic gravitational waves of galactic or primordial origin
 - Important from physics point of view, but has negligible compute cost.

Analysis pipeline problems

- LIGO and Virgo collaboration is working closely together.
- However LIGO collaboration is larger by a factor of > x10
- As a result many important pipeline development is dominated by LIGO colleagues and are tailored to LIGO resources
- As a consequance those pipelines cannot be executed out of the box on pur resources, but requires quite some porting effort.
- This effort is not a one time action, but needs continouse attention -> very expensive in terms of time and manpower...Virgo cannot afford.
- Many attempts have been made to overcome this difficulty including
 - the set up of a pilot pool framework
 - using the Pegasus scheduler
 - examining the possibility of using the Dirac jobmission framework
 - thinking on virtualized Condor cluster, i.e. a Cloud

The Virgo Pilot Pool - I

2011 may. 30-31

The Virgo Computing Model

The Virgo Pilot Pool - II

Virgo EGI sites

The Virgo Pilot Pool - III

• Mapping of abstract workflows like DAGs/DAXes to the Grid is now easily possible with the Virgo Pilot server.

• Complex and relational workflow handling is/was missing from Cream/WMS.

GPUs for analysis

• Many search algorithm can be accelerated by making use of operation level paralellizability offered by various many-core hardwares such as GPUs. Such examples are:

- FFT, vector operations, reduce, max finding, clustering in CBC analysis pipelines
- FFT, 2D thresholding, Differential Hough map creation, integration, peak finding in CW analysis
- There are multiple tool developed to allow easier use of GPUs by less advanced programmers, such as:
 - GWTools An OpenCL based templates C++ generic algorithm library for GW searches
 - pyCBC CUDA based set of Python algorithm used in CBC analysis
 - CB Compute Backend offers a unified host code for CUDA and OpenCL, so there is no need to write the code twice for NVidia and AMD cards
- GPUs will play crucial role in the following years probably even for the discovery
- •Typical full-pipeline accelerations experienced are ranging from x30 to x120

Cloud 4 Virgo

- Out of the above possibilities each of them has some serious drawbacks except the Cloud solution
- Having an OpenStack based virutal Cloud Condor installation at CNAF would solve almost all our problem including,
 - pipeline porting
 - architectural difference
 - training of people and the must to learn multiple submission mechanisms
 - real sharing of our resources
 - easy of GPU access and GPU CPU matching, allocation problems
 - better monitoring of user jobs

Optimisation, prioritisation

• The LIGO - Virgo analysis software stack went through on a serious process of review, benchmarking and optimisation.

- The process was triggered by the NSF review of LIGO request for XEDE resources
- It has a very positive effect on the quality, organisation and performance of the code used for analysis in the Collaborations.
- Analysis type based compute resource request estimation, logging and accounting and prioritisation is just under introduction in the collaborations
- A common unit of measure for called "Service Unit" SU has been introduced, since we observed that HS06 numbers are not alway accurate enough in reflecting the ratios of performances of a specific CPU cores for specific analysis. 1 SU corresponds to the performance of an Intel Xeon E5-2650 core.
- LVCN the LIGO Virgo Computing Network was estableshed

LVCN supply table

/x	A	B	C	D	E	F	G	н	1	J K	L	м	N	0	P	Q	R	S	т	U	v	N	х	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI	LA	
1													Vira	- 0	1.00	14	2011/1			nton	Mare	h 20	01E)													
2		D	EPLO	YED :	SYSTEMS				INDIV	IDUAL D	EVICE	STAT	ISTIC	S			SY	STEM	TOTA	۱L		RELA	ATIVE P	PERF			AVAIL	ABL	ECOR	ES (E	5-267	0 equ	ivaler	nt)		
3	Tag	SITE	Org	Arch	Model	Qty	Peak	SPECfp	FFT	pycbc pycb	c gstla	Core	Clock	Cache	nax flop I	/lem	Peak	CPU	GPU	Mem	eprote r	Full Dev	vice Perfor	mance	ette (/2k)	Dev	Dev	Prod	Prod	Peak	01	02	03	Deployed	EOL	Comment
5	CIT			CPU	Opteron 275	662	18	15	GFLUPS	(4K) : (ZK) : (ZK)	2	2 2 0 0	2	er cycle 4	2	11.651	1.324	core	1.324	0.06	-т рус	CDC(4K) : D)	CDC(ZK); (sual(2K)	100	331	70	Core	Core	галк	rank	гапк	02/2006	2015	
6	CIT			CPU	Opteron 2376	328	74	54				4	2,300	6	8	8	24,141	1.312		2,624	0.23					100	590	Ő	0	0	1			03/2009	2020	
7	CIT	OIT		CPU	Xeon E5-2670	96	333	240	102.9	43,875 97,4	88 44,00	0 8	2,600	20	16	64	31,949	768		6,144	1.00 1	.00	1.00	1.00	1.00	0	0	100	768	768	1	1	1	12/2012	8/2013	
8	CIT	CII		CPU	Xeon E3-1241v3	200	448	153		27,903 71,0	52	4	3,500	8	32	32	89,600	800		6,400	0.64		0.64	0.73		0	0	100	1,020	1,020	1	1	1	4/1/2015		aLIGO FY15 procurer
9	CIT		Lah	GPU	Tesla K10	64	4,580		378			3,072	745			8	293,120		196,608	512	3	.67				0		100						12/2012		
10	CIT		Lau	MIC	Xeon Phi 5110P	32	2,022					60	1,053			8	33,696	1,920		256						0		100						8/2013		
11	OBS	LLO		CPU	Opteron 2376	504	74	54				4	2,300	6	8	8	37,094	2,016		4,032	0.23					100	907	0	0	0	1			03/2009		
12	OBS			CPU	Xeon E3-1241v3	100	448	153				4	3,500	8	32	32	44,800	400		3,200	0.64					0	0	100	510	510	1	. 1	1	4/1/2015		aLIGO FY15 procuren
13	OBS	LHO		CPU	Opteron 2376	504	74	54				4	2,300	6	8	8	37,094	2,016		4,032	0.23					100	907	0	0	0	1			03/2009		
14	OBS			CPU	Xeon E3-1241v3	100	448	153				4	3,500	8	32	32	44,800	400		3,200	0.64					0	0	100	510	510	1	. 1	1	4/1/2015		aLIGO FY15 procuren
15	HAN			CPU	Xeon X3220	1,176	38	40				4	2,400	8	4	8	45,158	4,704		9,408	0.17		0.05	0.00		50	784	0	0	0	1			03/2008:	2014/5	(
10	HAN			CPU	Xeon E3-1220V3	1,820	397	137	40	28,511 64,3	97	4	3,100	8	32	16	/22,1/6	7,280		29,120	0.57 0	.39	0.65	0.66	0.05	0	0	50	4,156	8,311	1	. 1	1	02/2014:		
10	HAN			CPU	Xeon E3-1231V3	2/0	435	151	55		37,60	0 4	3,400	8	32	16	117,504	1,080		4,320	0.63 0	.54			0.85	0	0	50	680	1,359	1	. 1	1	02/2014:	0	
10	HAN	LIAN		CPU	Xeon E5-1650V2	52	330	220				0	3,500	12	10	10	2,000	312		3,328	0.92					0	0	50	191	381	1	. 1	1	02/2014:	20152	
20		HAN		CPU	Tecla C1060	116	022	57				240	1,200	4	•	12	100 220	240	27.940	/44	0.24					U	0	00	29	110				01/2010	2015?	Atlac CDL numbers of
21	HAN			CPU	Tesla C1000	101	1 030				_	240	1,300			7	100,220		45 248	404		_												01/2010	2015?	Auds GPO numbers c
22	HAN			GPU	GT6/0	/50	601					38/	1,150			2	317 160		45,240	018		_												03/2010	2013:	
23	HAN			GPU	GTX750	270	1 044				-	512	1 080			2	281 880		138 240	540														06/2014		
24	SYR			CPU	Xeon X3220	80	38	40				4	2 400	8	4	- 2	3072	320	100,240	640	0.17					50	53	0	0	0	1			10/2007	10/2015	Sugar: Confirm availa
25	SYR	SYR		CPU	Xeon X5650	667	128	125		23,808 43,8	64	6	2,668	12	8	24	85,419	4.002		16.008	0.52		0.54	0.45		0	0	100	2,779	2,779	1	1	1	2015	2.018	Crush: MoU not signe
26	SYR			GPU	GTX 580	172	1.581	110		20,000 10,0		512	722		Ť	2	271,949	1,002	88.064	258	0.02		0.01	0.10		50	Ŭ	0	2,	2,	1	-		10/2010	10/2015	enden. nie e niet eigne
27	UWM		LSC	CPU	Xeon X5650	320	128	125				6	2.670	12	8	24	41.011	1.920		7.680	0.52					100	1.333	0	0	0	1			1/2010	2015	
28	UWM			CPU	Xeon E5-2650	184	256	210				8	2,000	20	16	32	47,104	1,472		5,888	0.88					0	0	90	1,159	1,288	1	1	1	9/1/2012	9/2017	
29	UWM			GPU	GTX 690	4	5.620					3,072	1,000			2	22,480		12,288	8						0		100						9/2012	9/2017	
30	UWM	UWM		GPU	GTX 580	4	1,581					512	722			2	6,324		2,048	6						0		100						9/2012	9/2017	
31	UWM	1		GPU	Tesla K10	10	4,580					3,072	745			8	45,800		30,720	80						0		100						9/2012		
32	UWM			GPU	Tesla M2075	10	1,030					448	1,150			6	10,300		4,480	60						0		100						9/2012	9/2017	
33	IUCAA	IUCAA		CPU	Xeon E5-2670	60	333	240				8	2,600	20	16	64	19,968			3,840	1.00					25	120	0	0	0	2	2	2	5/2013	8/2017	
34	Cardiff	Cardiff		CPU	Xeon X5660	128	134	125				6	2,800	12	8	48	17,203	768		6,144	0.52					0	0	67	357	533	1	1		12/2012	12/2016	1
35	Cardiff	Garain	-	CPU	Xeon E5-2690v3	100	998	400				12	2,600	30	32	64	99,840	1,200		6,400	1.67					0	0	67	893	1,333	1	1	1	01/2015		
36	KGWG			CPU	Xeon E5645	30	115	106				6	2,400	12	8	12	3,456	180		360	0.44					50	53	0	0	0				01/2012	2016?	
37	KGWG	KGWG		CPU	Xeon E5645	40	115	106				6	2,400	12	8	24	4,608	240		960	0.44					50	71	0	0	0				01/2012	2016?	
38	KGWG			CPU	Xeon X5650	4	128	125				6	2,670	6	8	24	513	24		96	0.52					50	8	0	0	0				01/2010	2016	
39	KGWG	01145		CPU	Xeon X5650	18	128	125				6	2,670	6	8	12	2,307	108		216	0.52					50	38	0	0	0				01/2010	2016	
40	CNAF	CNAF		CPU	Heterogeneous	125	166	120				8	2,600	40	8	64	20,800	1,000		8,000	0.50					0	0	80	400	500	1			01/2011	8/2013	Remaining 20% avail
42	Lyon	Lyon		CPU	Xeon E5645	50	115	210				6	2,400	12	8	96	5,760	300		4,800	0.88					0	0	100	350	350	1			01/2013	2018	
42	Wigner	Rome		CPU	Xeon E5410	52	154	200				0	2,400	12	8	0 22	1,987	416	100	416	0.29					0	0	80	97	121	1			01/2008		
44	Wigner	Wigner		CPU	Opteron 6376	12	4 201	200				2 0 4 9	2,300	10	4	32	2,700	192	192	304	0.83					0	0	90	12	80	1			1/2013		
45	Nikhef	Nikhef	Vimo	CPU	Xeon E5520	10	4,301	150				2,040	2,000	9	9	24	3 25/	190		1 090	0.63	_				0	0	100	225	225	1			1/2013:		
46	Poloray	NIKIN	viigo	CPU	Yeon E5 2665	40	307	235					2,200	20	16	64	/ 015	128		1,000	0.03					0	0	100	125	125	2			1/2015	2018	To be used for Virgo C
47	Polarav			CPU	Opteron 6172	20	101	150				12	2,100	12	4	32	2016	240		640	0.63					0	0	100	100	100	2			1/2013	2010	To be used for Virgo C
48	Polgrav	Polgraw		CPU	Xeon E5645	80	115	106				6	2,400	12	8	24	9,216	480	480	1,920	0.44					0	0	100	283	283	2			2/2012	2010	To be used for Virgo C
49	Polgrav			GPU	GTX Titan	4	4.709	200				2,688	1,000			24	18.836	100	10,752	96	0.11					0		100	200	200				1/1/2014	2010	To be used for Virgo C
50	EGO	EGO		CPU	Xeon E5-2650	13	256	210				8	2.000	20	16	128	3,328	104		1.664	0.88					0	0	100	91	91	1			1/1/2015	9/2017	in the second
51	Tag	SITE	Org	Arch	Model	Qty	Peak	SPECfp	FFT	pycbc pycb	oc gstla	Core	Clock	Cache	lop/core l	/lem	Peak	CPU	GPU	Mem	0.00	Full Dev	/ice Perfor	mance		Dev	Dev	Prod	Prod	Peak	01	02	03	Deployed	EOL	Comment
52	2	015	ma	ay.	25 IN	IFN	I CLOPS	JAI	GEI OPel	(4k) (9k)	1 i (2k)	Ge	rge	ы ly,	DE.	B]	REC	ZE	NI	- S	tatus	an	d fu		istial(2k)	96	core	96	COTE	core	rank	i rank	: rank			17

of gravitational wvae computing

LVCN pipeline needs

fx Highest Priority																								
	A B	с	D	E	F	G	н	1	J	к	L	м	N	0	P	Q	R	s	т	U	v	W	x	Ŷ
1	Highost D	soarchos most likely to mak	vo dotoctione or vi	old eign	ificant act	trophy	eical roe	ilte																
	nignest P	inest in searches most invery to make detections of yierd significant astrophysical results																						
4	RYBG				Unique	Storac	Develop	menutestin	g (SU)	Sin	nulations (s	50)	Pro	duction (S	0)	Additional	for detection	tollowup	duction tim	ing rel. to run (mo	on latency rel. to	Contact name	MSU	
3	Code Group	Search	Pie Name	Software	job schedu	Tb/yea	2015	2016	2017	2015	2016	2017	01	02	700.000	01	02	7.000.000	Start	End	taking (hours	(albert.einstein)	_ 2017	Durant All allo
4	B BURS	I All-sky burst (64-2000 Hz) - offine, 10	Burst All-sky	CWB2G	alisky.cwbo	200	115,000	110,000	110,000	23,000	38,000	76,000	117,000	486,000	/30,000	1,170,000	4,860,000	7,300,000				sergey.klimenko	82	Burst All-sky
•	B BURS	All-sky burst HF (2kHz-5kHz) 10000 I	Burst All-sky	CWB2G	allsky_ht.cv	5	135,000	160,000	160,000	28,000	51,000	102,000	145,000	689,000	1,050,000	1,450,000	6,890,000	10,500,000				sergey.klimenko	11.8	Burst All-sky
0	B BURS	I All-sky burst - online, 5000 lags	Burst low latency	CWB2G	alisky.cwbo	20	10,000	65,000	65,000	12,000	18,000	38,000	58,000	243,000	365,000	-	-	1 200 000				sergey.kiimenko	0.5	Burst low latency
-	BURS	All-sky validation pipeline, 300 lags, 1	Burst All-sky	Iomicron+L	. alisky.omicr		165,000	230,000	86,000	83,000	115,000	86,000	328,000	920,000	1,380,000	328,000	920,000	1,380,000				enk.katsavounidis	2.9	Burst All-sky
8	R BURS	All-sky validation pipeline (EP)*	Burst All-sky	EP dedicated	000	0.5	23,000	9,000	3,000	6,000	5,000	3,000	24,000	37,000	55,000	24,000	37,000	55,000				cnns.pankow	0.1	Burst All-sky
9	R BURS	EM follow-up alerts	Burst All-sky	dedicated	777	0.2	-	-	-	-	-	-	-	-	-	-	-	-				peter.snawnan	-	Burst All-sky
10	B BURS	Burst parameter estimation followups	Burst detection params	Bayeswa	paramesto	5	160,000	160,000	160,000	240,000	360,000	360,000	123,000	334,000	500,000	300,000	900,000	1,400,000				tyson.littenberg	2.4	Burst detection params
	Y BURS	Burst parameter estimation followups	Burst detection params	LIB	paramestin	0.1	1,000	1,000	1,000	-	-	-	50	1/0	250	-	-	-				enk.katsavounidis	0.0	Burst detection params
12	BURS	All-sky burst total	Duration to a supertr			231.8	669,000	735,000	585,000	392,000	587,000	665,000	795,060	2,709,170	4,080,250	3,272,000	13,607,000	20,635,000				- law web and		Provide states and a
13	R BURS	SNEWs triggered supernova search (Burst astro events	raven	snews.rave		-	-	-	400	500	500	1,100	3,500	5,500	-	-	-				alex.urban	0.0	Burst astro events
14	Y BURS	SNEWs tiggered supernova search (Burst astro events	CWB2G	snews.cwb	0.1	16,000	2,000	2,000	100	100	100	100	100	100	-	-	-				michele.zanolin	0.0	Burst astro events
15	B BURS	SNEWs tiggered supernova search (Burst astro events	X-Pipeline	snews.x	0.1	-	-	-	32,000	92,000	92,000	600	92,000	92,000							patrick.sutton	0.2	Burst astro events
10	R BURS	SNEWS tiggered supernova search (Burst astro events	IBD	IBD	0.1	16,000	2,000	2,000	32,500	92,600	92,600	1,800	95,600	97,600	-	-	-				See Burst tab	0.0000	Burst astro events
17	Y BURS	Astrophysically significant NS transie	Burst astro events	X-Pipeline	ns.x	0.1	500	-	-	50	100	100	50	100	100	-	-	-				james.clark	0.0002	Burst astro events
18	Y BURS	GRB triggered burst search - medium	Burst astro events	X-Pipeline	grb.xonline	0.4	-	•	-	2,000	6,000	6,000	6,000	32,000	48,000	-	-	-				patrick.sutton	0.1	Burst astro events
19	Y BURS	HEN triggered search - online	Burst astro events	CWB2G	hen.cwbonl	0.1	-		-	400	500	500	1,100	3,500	5,500			-				imre.bartos	0.0	Burst astro events
20	BURS	Outstanding astrophysical searche	es total				16,500	2,000	2,000	34,950	99,200	99,200	8,950	131,200	151,200	•	•	•						
21	R BURS	Cosmic string - offline	Cosmic strings	dedicated	CS.CS	0.3	-		-	1,000	1,700	2,600	4,000	11,000	17,000	128,000	356,000	534,000				forent.robinet	0.6	Cosmic strings
22		Total Highest Priority					685,500	737,000	587,000	427,950	687,900	766,800	808,010	2,851,370	4,248,450	3,400,000	13,963,000	21,169,000						
	High Prio	r promising extensions of the	highest priority of	poals that	t explore	large	regions	of param	eter spa	ce or can	further	the scien	ce poten	tial of LI	GO and	Virao								
24	DVBC				Unique ID	Stora	Develop	ment/tectin	a (SU)	Sin	nulatione /9	in l	Dro	duction (S	an l	Additional	for detection	followup	duction tim	ing rel to run (ma	n latency rel to	Contact name	-	
25	CodeCrown	Search	Die Name	Software	ioh schedu	Thive	2015	2016	2017	2015	2016	2017	01		03	Auditoriai 01		01000000	Start	End	taking (houre)	(albert einstein)		
26		CDB triggered search offline **	Burst CDB	Y Dineline	orb soffline	0.4	2013	2010	2017	4 000	41,000	41 000	8.000	132,000	262 000	2 000	31.000	31.000	Jan	Enu	taking (nours	natrick sutton	03	Burst CDB
27	V RUDS	UEN triggered search offine	Linh energy neutrinos	CWB2C	hen cwhoff	0.4				400	500	500	1 100	3,500	5 500	2,000	51,000	51,000				imre hartos	0.0	Linh energy neutrinos
28	R BUDG	IMBRU burst search offline * 2500 la	Ruret R RL	CWB2G	imph cwhof	****	115 000	110.000	110,000	22,000	38,000	76 000	30,000	100,000	308,000	300 000	1 000 000	3 080 000				serrey klimenko	3.6	Ruret RRU
29		Ontical supernova triggered offine	Burst SuperNovae	CWB2G	an owbofflin	0.1	115,000	100,000	100,000	23,000	8,000	24,000	33,000	1,000	20,000	330,000	1,300,000	3,000,000				micholo zanolin	0.1	Burst SuperNeuro
20		Optical supernova triggered - offline ()	Burst SuperNovae	V Dipoling	SILCWDUIIII	0.1	-	100,000	100,000	-	0,000	24,000	-	1,000	20,000			-				natiok outton	1.0	Burst SuperNovae
21		Optical supernova triggered - offline (1	Burst SuperNovae	A-Pipeline	SILXOIIIIIE	0.1		100.000	100.000		0.000	24.000		1 000	20,000							Coo Runttah		buist Supervovae
22		All sky long duration burst offling 20	Burst Supervovae	STAMD A	allela, etam	0.1	- 00.000	270,000	140,000	25,000	120,000	24,000		400,000	20,000							See Duist tab	0.0	Puret Long Duration
22		All sky long duration burst offline, 20	Burst Long Duration	JANP2C	alisky.stall) vhoffling	30,000	270,000	140,000	33,000	130,000	00,000	66,000	400,000	000,000		-	-				naneanne.bizouaiu	0.0	Burst Long Duration
24		All sky long duration burst offline, 10	Burst Long Duration	V Dineline	allsky_id.cv	/DOIIIIIIe	-			-	61.000	61.000	25 000	152,000	225.000	41 000	100 000	101.000				sergey.kilmenko	-	Burst Long Duration
		All sky long duration burst offling (tai	Burst Long Duration	A-Filening	ansky_iu.xu	****	00.000	270.000	140.000	23,000	101,000	121,000	102,000	152,000	225,000	41,000	120,000	101,000				Coo Runttah	0.0	buist Long Duration
20		FRPL coards office \$ 2500 lags	Burst Cooperation	CWRDC	abbb aubof		115,000	270,000	110,000	22,000	28,000	76,000	20,000	100,000	208,000	41,000	1 000 000	2 090 000				See Duist tab	26	Puret Cocentrie PDU
30	T BURS	EDBH search - online * 2500 lags	DUIST ECCENTIC DDH	CWB2G	eppn.cwpor		115,000	110,000	110,000	23,000	38,000	76,000	39,000	1 000 500	1 700 500	390,000	1,900,000	3,080,000				sergey.kilmenko	3.0	BUIST ECCENTIC DDH
3/		Total High Priority					320,000	590,000	460,000	108,400	316,500	338,500	190,100	1,068,500	1,728,500	823,000	3,959,000	6,382,000						
38																								
	Additiona	sources with low detection	probability but high	h scien	tific payo	ff, and	searches	s under d	evelopm	ent for fu	uture run	s that wil	l be test	ed in the	first ob	serving ru	n						_	
39	RYBG				Unique ID	Storac	Develop	ment/testin	g (SU)	Sin	nulations (S	SU)	Pro	duction (S	iU)	Additional	for detection	followup	duction tim	ing rel. to run (mo	on latency rel. to	Contact name		
40	Code Group	Search	Pie Name	Software	job schedu	Tb/yea	2015	2016	2017	2015	2016	2017	01	02	03	01	02	03	Start	End	taking (hours	(albert.einstein)		
41	R BURS	Joint Radio Transients - GW burst (ca	Radio transients	X-Pipeline	jrt.x	0.3		-	-	6,000	10,000	15,000	12,000	32,000	48,000	750	16,000	16,000				brennan.hughey	0.079	Radio transients
42	B BURS	GRB-triggered long-duration burst sea	GRB (long duration bu	STAMP-st	grb.stocktra	****	25,000	-	-	-		-	150,000	420,000	630,000	440,000	440,000	440,000				eric.thrane	11	GRB (long duration burs
43	B BURS	IMRI search - offline *	Burst Interm mass ratio	CWB2G	imri.cwboffli	****	115,000	110,000	110,000	23,000	38,000	76,000	26,000	127,000	205,000	347,000	1,455,000	2,182,000				sergey.klimenko	2.6	Burst Interm mass ratio
44	B BURS	IMBBH search circular constraint - on	Low latency Burst BBH	CWB2G	imbh.cwbor	20	35,000	33,000	33,000	12,000	18,000	38,000	29,000	122,000	183,000							sergey.klimenko	0.3	Low latency Burst BBH
45	R BURS	GRB-triggered plateaus search - offin	GRB plateaus	dedicated	grb plateau	****	15,000	44,000	22,000	30,000	44,000	22,000	-	22,000	153,000							ales sandra.corsi	0.2	GRB plateaus
46	Y BURS	Hypermassive NS follow-up	SGR/QPOs	cWB2G/B	hmns.cwbo	ffine	5,000	5,000	5,000	2,000	2,500	2,500	1,000	1,500	1,500							james.clark	0.0	SGR/QPOs
47	B BURS	SGR / SGR-QPO triggered searches	SGR/QPOs	STAMP	sgr apo.sta	****			-	800	400	200	3.000	3.000	3.000							james.clark	0.0	SGR/QPOs
48		Total Priority			2 - 11		195,000	192,000	170,000	73,800	112,900	153,700	221,000	727,500	1.223,500	787,750	1,911,000	2,638,000						
49		Total ALL Priorities					1,200,500	1,519,000	1,217,000	610,150	1.117.300	1,259,000	1,219,110	4,647,370	7,200,450		_,,	30,189,000						
							,	,,	,,		,,-	,,	,,20	,,	,,			.,,						
50	Entres																							
	Future				Les e	1															1	1		
51	RYBG			1	IUnique ID	Storac	Develop	ment/testin	a (SU)	Sin	nulations (S	sun	Pro	duction (S	in	Additional	for detection	followup	duction tim	ina rel. to run (ma	nilatency rel. to	dContact name		and the second se
													154	11		Same de			5/					
													10	12					12					
	201	5 may 25 T	C	orgal	TT D	EDT	DEC	TEN	TC	tota	ic on	d fut	ITO	N.	3		and a			10				
	201	5 may. 25 1.	G	ergel	y, D	CDL	LCC.	LLIN	1 - 2	oldlu	IS dll	u Iuli	ule		1.1					10				

LVCN priorities

2015 may. 25. - INFN CNAF

Compute and storage needs at CNAF for 2016

Taking into account the expected time of observation and engineering runs and the enlarged sensitivity band of the LIGO detectors in 2016 Virgo will need the following amount of computing resources at CNAF:

Cores: 1500 in addition wrt 2015, (total 2500 cores - 25000 Hs06) Disk: 100 TB in addition wrt 2015, (total approx 600 TB) Tape: 500 TB in addition wrt 2015

Probably must revisit the HS06 <-> core conversion factor

2015 may. 25. - INFN CNAF

Uncertainties of compute and storage estimates

Storage estimates are derived from detector bandwidth and expected duration of observation times known in advance, so there not too much uncertainties here.

As for the compute needs the source of uncertainties are as follows:

- Which pipelines will be ported to GPUs and when
- How successfully the sharing of resources will happen with LIGO collaboration
- Possibility of Condor CLOUD installation
- Available budget for computing in EGO
- Currently Virgo is providing only c.c 8% of the total computing power for the LVC collaboration. This cannot be mainteined on the long term, there is a need for massive increase.

2015 may. 25. - INFN CNAF

The Compute Backend (CB)

The problem

- For several reason (cost efficiency, manpower, future hardwares, etc..) the analysis code has to be generic
- It is always a subject of debate which language to use to program GPUs.
- Double coding for multiple interface is a waste of time and manpower.

The solution:

- THE COMPUTE BACKEND (CB) IS ADDRESSING THIS PROBLEM BY PROVIDING UNIFIED INTERFACE FOR VARIOUS GPU PROGRAMING LANGUAGES, SUCH AS CUDA AND OPENCL !
- It levreages the burden of host-side double coding and the very same code can be used to run on CUDA (NVidia) or OpenCL (AMD, Intel, Samsung, etc...) devices...

Compute Backend (CB) features:

- C and C++ API (fortran, python and c# on the way...)
- CUDA and OpenCL backends (ComputeGl, RenderScript considered)
- Single host-side code for multiple backend
- Runs under Linux/Windows/MacOS
- Compatible with CMake, Autoconf, MSVC, etc.
- Academic license is available
- User support around the clock

Compute Backend is available on

http://x-perception.com

2015 may. 25. - INFN CNAF

The Compute Backend - the C API

#include <stdio.h>
#include <stdlib.h>
#include <cb.h>

int main() {

// Auxiliary variables
int err ;
int i;

// Sets the log level
cb_log_level = 5;

// Get some buffer unsigned int num_elements = 1024; unsigned int size = num_elements * sizeof(float);

${\it I\!I}$... and also on the host side

float * h_buffer1 = (float *) malloc(size); float * h_buffer2 = (float *) malloc(size); float * h_buffer3 = (float *) malloc(size);

// ... fill up the buffers
for (i = 0; i < num_elements; i++) {h_buffer1[i] = 4; h_buffer2[i] = 11;}</pre>

// The C API
// A compute backend
cb_backend backend;
cb_program prog;
cb_kernel kernel1, kernel2, kernel3;
cb_buffer buffer1, buffer2, buffer3;

// Get the compute backend
err = cbGetComputeBackend(&backend);

// Get a program
err = cbGetProgram(&backend, "/home/me/testt", &prog);

// Get the kernel
err = cbGetKernel(&prog, "test_kernel", &kernel1);
err = cbGetKernel(&prog, "simple_kernel", &kernel2);
err = cbGetKernel(&prog, "buffer_kernel", &kernel3);

2015 may. 25. - INFN CNAF

err = cbCreateBuffer(&backend, CB_READ_WRITE, size, NULL, &buffer1); err = cbCreateBuffer(&backend, CB_READ_WRITE, size, NULL, &buffer2); err = cbCreateBuffer(&backend, CB_READ_WRITE, size, NULL, &buffer3);

// Send some data to device

err = cbWriteBuffer(&backend.queues[0], &buffer1, size, h_buffer1, true); err = cbWriteBuffer(&backend.queues[0], &buffer2, size, h_buffer2, true);

// Set the kernel sizes
cbExtent g_size = cbSetExtent(1,1024);
cbExtent l_size = cbSetExtent(1, 32);

// Execute the kernel

cbParam b1_arg = cbBuffer(&buffer1); cbParam b2_arg = cbBuffer(&buffer2); cbParam b3_arg = cbBuffer(&buffer3); cbParam n_arg = cbInt(100);

err = cbExecuteKernel(&backend.queues[0], &kernel3, g_size, l_size, 4, &b1_arg, &b2_arg, &n_arg, &b3_arg);

// Read back the result
err = cbReadBuffer(&backend.queues[0], &buffer3, size, h_buffer3, true);

// Printing the result
for (i = 0; i < 10; i++) printf("%f ", h_buffer3[i]);
printf("\n\n");</pre>

// Releasing stuff
free(h_buffer1);
free(h_buffer2);
free(h_buffer3);

// Exit return err;

The Compute Backend - the C++ API

#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <cb.hpp>

int main() {

// Sets the log level
cb_log_level = 5;
int err;
int i;

// Get some buffer on the host side

unsigned int num_elements = 1024; unsigned int size = num_elements * sizeof(float);

float * h_buffer1 = new float[num_elements]; float * h_buffer2 = new float[num_elements]; float * h_buffer3 = new float[num_elements];

// ... fill in the buffers for (i = 0; i < num elements; i++) {h buffer1[i] = 4; h buffer2[i] = 11;}

// Construction Backend, Program, Kernel and Buffers cb::Backend bck;

cb::Program prg(bck, "/home/me/test"); cb::Kernel TestKernel(prg, "test_kernel"); cb::Kernel SimpleKernel(prg, "simple_kernel"); cb::Kernel BufferKernel(prg, "buffer_kernel");

// Initializing the buffers

cb::Buffer b1(bck, CB_READ_WRITE, size, NULL); cb::Buffer b2(bck, CB_READ_WRITE, size, NULL); cb::Buffer b3(bck, CB_READ_WRITE, size, NULL);

// Send data to device b1.Write(bck.GetQueue(), h_buffer1); b2.Write(bck.GetQueue(), h_buffer2);

// Set the kernel sizes

cb::Extent g(num_elements); cb::Extent I(32);

2015 may. 25. - INFN CNAF

// Create kernel arguments

cbParam buff1_arg = cbBuffer(b1); cbParam buff2_arg = cbBuffer(b2); cbParam buff3_arg = cbBuffer(b3); cbParam numarg = cbInt(100);

// Execute the buffer kernel
BufferKernel(bck.GetQueue(), g, l, 4, &buff1_arg, &buff2_arg, &numarg, &buff3_arg);

// Read back the result
b3.Read(bck.GetQueue(), h_buffer3);

// Some output for checking the result

for (int i = 0; i < 10; i++) { std::cout << h_buffer1[i] << " " << h_buffer2[i] << " " << h_buffer3[i];

// Releasing stuff

delete h_buffer1; delete h_buffer2; delete h_buffer3;

// Exiting exit(0);

Compile for CUDA:

cd build cmake -DOPENCL_BACKEND=1 ../ make

Compile for OpenCL:

cd build cmake -DCUDA_BACKEND=1 ../ make

Problems

- Graphical monitoring of user jobs
- Interactive debugging, checking logs

• Account request procedure at CNAF is inconvenient for LIGO colleagues. Maybe could be simplified with a certificate signed request instead of faxing a sheet ?

Good things

- Resources reliable, negligible downtime
- Support mailing list (CTCC@EGO) and CNAF user support works fine ! (Thanks !)