Che calorimetro adopereremo alla presa dati? (cont.)

Agenda

Aggiunte alla "simulazione" con cosmici le informazioni del Monte Carlo ufficiale.

Risultati forniti da Bejamin su due differenti cristalli (cristallo # 80 e cristallo # 5) della E.C. con le simulazioni dell'ultima campagna per i fondi.

Software di analisi permette di implementare pile-up con differenti numeri di hits in una data finestra temporale.

Risultati con statistica completa per situazione pile-up tipo cristallo #80.

Rispetto a due settimane fa....

Benjamin ha girato il M.C. ufficiale ottenendo: energia media depositata e # di hit per i cristalli 5 , 80 con tre differenti soglie in energia : 0. 0.1 e 0.5 MeV.

I risultati ottenuti da Benjamin corroborano l'ipotesi che per il cristallo #80 l'energia/μsec e' attorno ai 5 Mev frazionata in ~ 3 hits.

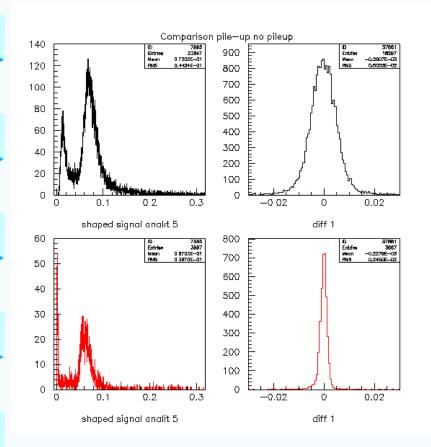
I risultati del MC

Cristallo	# hits No cut	# hits > 0.1 MeV	# hits >0.5 MeV	<e> MeV</e>	<e>>0.1 MeV</e>	< <i>E</i> > >0.5 MeV
80	5.5	4.5	3.	5.61	5.6	5.15
5	13.5	10.9	5.6	10.0	9.95	8.6

Ottenuti con 100 eventi di fondo su circa 24 µsec di base di tempo.

Gli errori sono ancora da capire.....

Ora i dati

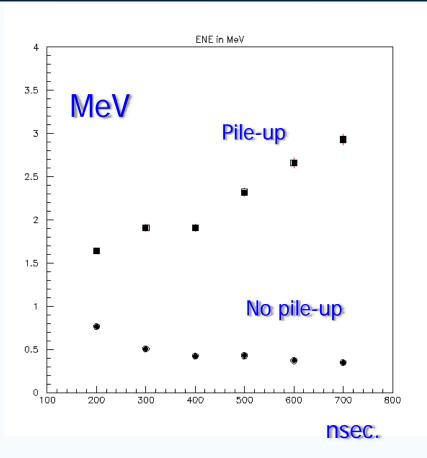

Come si puo' evincere dai risultati del Monte Carlo, il numero di hits ha una forte dipendenza dall'energia.

La popolazione e' folta a bassa energia, rada ad alta energia, tuttavia gli hits rilevanti sono questi ultimi, che provocano le fluttuazioni 'cattive'.

Al momento i dati vengono trattati con una distribuzione di energia piatta degli hits; con il prossimo upgrade della analisi dei cosmici implementero' una distribuzione degli hits decrescente con l'energia

I risultati, penso, con la distribuzione piatta sono probabilmente una stima pessimista della realta'.

Confronto con/senza pile-up Cristallo tipo 80

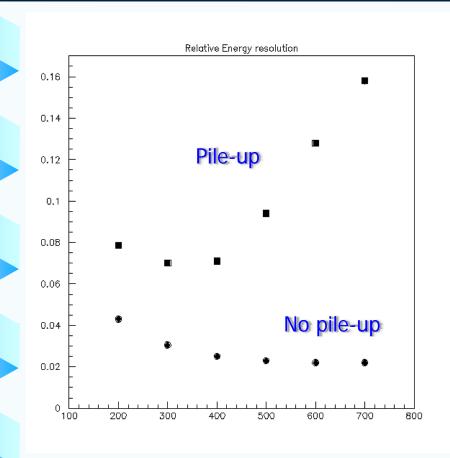

Plot superiori con pile-up quelli inferiori senza.

A sinistra spettri di ampiezza A destra differenza di ampiezza dei due PIN.

Il deterioramento in larghezza e' evidente.

Come vedremo NON viene soltanto dall'allargamento del piedistallo.

L'ENE in funzione del tempo del filtro

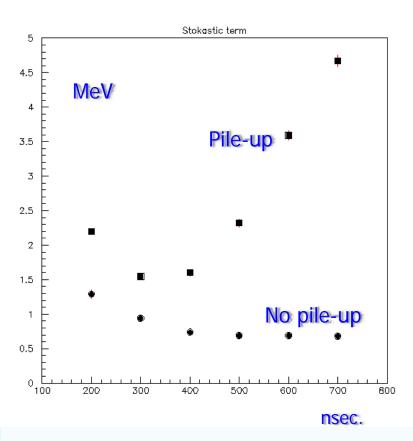


Fondo tipo cristallo 80

3 hits/µsec

5 MeV/μsec

Risoluzione relativa in funzione del tempo del filtro



Fondo tipo cristallo 80

3 hits/µsec

5 MeV/µsec

Deconv. Risoluzione energia / ENE in funzione del tempo del filtro

Fondo tipo cristallo 80

3 hits/µsec

5 MeV/μsec

Il termine 'stocastico'

Nel caso di 0 pile-up sottraendo in quadratura dalla risoluzione l'ENE si ottiene il termine stocastico della risoluzione.

Non appena il fenomeno del pile-up diventa rilevante, il termine di ENE deve essere affiancato da un secondo termine dello stesso tipo, che rispecchia il fatto che la fluttuazione della baseline dipende dal tempo.

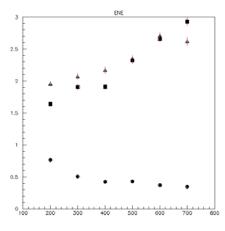
Fortunatamente tutti e due questi termini non dipendono dall'energia e quindi il loro peso cala all'aumentare dell'energia.

In formule:

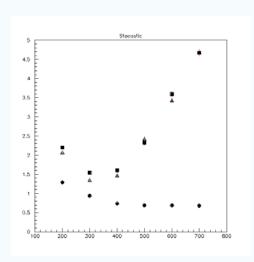
$$\sigma_E = \sqrt{ENE^2 + ENE^2 + k_{stoc}^2 \times \frac{E}{40}}$$

Il termine 'stocastico' (cont)

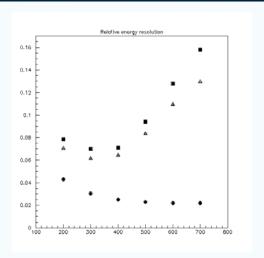
Ad esempio a 100 MeV avremo con shaping nominale (500 ns):


$$\sigma_E = \sqrt{2^2 + 2^2 + .7^2 \times \frac{E}{40.}} = 3.0 MeV_{@100MeV}$$

Per confronto un sistema (CsI) puro che fornisca 5 primari/MeV, supponendo trascurabili i due termini di pileup, darebbe:


$$\sigma_E = \sqrt{0^2 + 0^2 + 2.8^2 \times \frac{E}{40.}} = 4.5 MeV_{@100MeV}$$

Il break-even point sarebbe appena al di sopra di 10 primari/MeV. Con shaping times piu' piccoli la situazione per il CsI(Tl) migliora.


Una prima occhiata alla situazione tipo cristallo 5

ENE

Stocas.

Rel. resol.

Concludendo

- Il peggioramento delle prestazioni del calorimetro causa pile-up e' sostanziale.
- Il cambiamento dello shaping time permette di ridurne gli effetti anche se non e' possibile ritornare alle prestazioni originarie.
- A bassa energia (100 MeV) dovrebbe essere possibile ottenere una risoluzione *limite* dell'ordine del 2.5-3 %.
- Ad una prima occhiata, i fondi dell'ultima campagna darebbero un effetto di pile-up dell'anello piu' interno, non molto peggio (forse meglio) di quello del secondo anello.

Questo fenomeno va capito piu' in dettaglio.

.....Stay tuned....