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@ QCD phase diagram



QCD phase diagram

The Phases of QCD

Temperature

Quark-Gluon Plasma

(from bnl.gov)

Important implications in cosmology, in the physics of compact stars
and in relativistic heavy-ion collisions.



0 Introduction

@ QCD with non-zero baryon density and the sign problem



QCD at non-zero temperature and density

@ Lattice is the main non-perturbative tool for the investigation of the QCD phase
diagram

@ Non-zero temperature: ! T= NT;(B) , B= %’g’

@ Non-zero density: ! sign problem!

Importance sampling requires positive weights, but in (e.g. Wilson fermions,
ne=1)

2(T,1) = [aU] &6l aefm(u)]
the fermionic determinant det[M ()] is complex for p # 0 in SU(3).
Exceptions: e imaginary chemical potential: pu = iy

e SU(2) or two-color QCD
e isospin chemical potential: uy = —pg



Ways around |

@ Perform simulations at =0 and take advantage of physical fluctuations in the
thermal ensemble for extracting information at (small) non-zero u, after suitable
reweighting

[I.M. Barbour et al., 1997] [Z. Fodor, S.D. Katz, 2002 —]

@ Taylor-expand in u the v.e.v. of interest and calculate the coefficients of the
expansion by numerical simulations at . = 0
[S.A. Gottlieb, 1988] [QCD-TARO coll., 2001]
[C.R. Allton et al., 2002-2003-2005] [R.V. Gavai, S. Gupta, 2003-2005]
[S. Ejiri et al., 2006]

@ Build canonical partition functions by Fourier transform of the grand canonical
function at imaginary chemical potential
[A. Hasenfratz, D. Toussaint, 1992] [M.G. Alford, A. Kapustin, F. Wilczek, 1999]
[P. de Forcrand, S. Kratochvila, 2004-2005-2006] [A. Alexandru et al., 2005]

@ Reorder the path integral representation of the partition function, by first
calculating expectation values with constrained parameters and then weighting
over the density of states

[G. Bhanot et al., 1987] [M. Karliner et al., 1988] [A. Gocksch, 1988]
[V. Azcoiti, G. Di Carlo, A.F. Grillo, 1990] [X.-Q. Luo, 2001]
[J. Ambjorn et al., 2002] [Z. Fodor, S.D. Katz, C. Schmidt, 2005-2007]



Ways around |l

@ Allow the field variables to take value in the complexified configuration space
(complex Langevin dynamics, integration along Lefschetz thimbles)
[G. Aarts, 2012]
[G. Aarts, L. Bongiovanni, E. Seiler, D. Sexty, I.-O. Stamatescu, 2013]
[M. Cristoforetti, F. Di Renzo, A. Mukherjee, L. Scorzato, 2013]

@ Use the strong-coupling expansion (worldline representation of lattice QCD,
heavy dense approximation)
[P. Rossi, U. Wolff, 1984] [F. Karsch, K. Mutter, 1989]
[P. de Forcrand, M. Fromm, 2010]
[P. de Forcrand, J. Langelage, O. Philipsen, W. Unger, 2013]
[H. Vairinhos, P. de Forcrand, 2014]
[J. Langelage, M. Neuman, O. Philipsen, 2014]
[T. Rindlisbacher, P. de Forcrand, 2015]

@ Simulate the theory in some dual representation
[Y. Delgado Mercado, C. Gattringer, A. Schmidt, 2013]
[O. Borisenko’s talk]
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@ The method of analytic continuation



The method of analytic continuation

@ Perform Monte Carlo numerical simulations at some selected imaginary values
of the chemical potential, 1« = ip,, thus getting data points with their statistical
uncertainties

@ Interpolate the results obtained by a suitable function of ,u?

@ Analytically continue to real chemical potentials: 1y — —ip

Some historical remarks:

@ |dea of formulating a theory at imaginary chemical potential
[M.G. Alford, A. Kapustin, F. Wilczek, 1999]

@ test of effectiveness in strong-coupling QCD [M.P. Lombardo, 2000]

@ thereafter, a lot of applications to QCD and tests in QCD-like theories and in spin
models



@ Applications in QCD:

e n; = 2 staggered [Ph. de Forcrand, O. Philipsen, 2002]
[M. D’Elia, F. Sanfilippo, 2009]

[P. Cea, L. Cosmai, M. D’Elia, A.P,, F. Sanfilippo, 2012]

e n; = 3 staggered [Ph. de Forcrand, O. Philipsen, 2003]
e ny = 4 staggered [M. D’Elia, M.P. Lombardo, 2003-2004]
[V. Azcoiti et al., 2004-2005]

[M. D’Elia, F. Di Renzo, M.P. Lombardo, 2007]

[P. Cea, L. Cosmai, M. D’Elia, A.P,, 2010]

e ny = 2 + 1 staggered [Ph. de Forcrand, O. Philipsen, 2007]
[P. Cea, L. Cosmai, A.P., 2014-2015]

[C. Bonati, M. D’Elia, M. Mariti, M. Mesiti, F. Negro, F. Sanfilippo, 2014-2015]

[R. Bellwied, S. Borsanyi, Z. Fodor, J. Ginther, S.D. Katz, C. Ratti, K.K. Szabo, 2015]

e n; = 2 Wilson [L.-K. Wu, X.-Q. Luo, H.-S. Chen, 2007]
[A. Nagata, K. Nakamura, 2011]
e n; = 4 Wilson [H.-S. Chen, X.-Q. Luo, 2005]
@ Tests:
e 3d SU(3) + adj. Higgs [A. Hart, M. Laine, O. Philipsen, 2001]
e SU(2), ny = 8 staggered [P. Giudice, A.P., 2004]

[P. Cea, L. Cosmai, M. D’Elia, A.P., 2007-2008]
[P. Cea, L. Cosmai, M. D’Elia, C. Manneschi, A.P., 2009]

e SU(3), ny = 8 staggered [S. Conradi, M. D’Elia, 2007]
e SU(2) via chiral RMT model [Y. Shinno, H. Yoneyama, 2009]
e 3d 3-state Potts model [S. Kim et al., 2005]

e 2d Gross-Neveu at large N [F. Karbstein, M. Thies, 2006]



Drawbacks

@ a practical one: Monte Carlo simulations yield data points with statistical
uncertainties at fixed values of the imaginary chemical potential; the interpolation
of these points is not unambiguous

@ a principle one: the theory at imaginary chemical potential has its own
non-analyticities and is periodic in the variable 0 = u;/ T (period 27 /N)
[A. Roberge, N. Weiss, 1986]

= the region effectively available for Monte Carlo simulations is limited by the
condition p;/T <1
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Drawbacks

@ a practical one: Monte Carlo simulations yield data points with statistical
uncertainties at fixed values of the imaginary chemical potential; the interpolation
of these points is not unambiguous

@ a principle one: the theory at imaginary chemical potential has its own
non-analyticities and is periodic in the variable 0 = u;/ T (period 27 /N)
[A. Roberge, N. Weiss, 1986]

= the region effectively available for Monte Carlo simulations is limited by the
condition p;/T <1

@ The combination of these two drawbacks implies that the analytic continuation is
expected to work for real chemical potentials satisfying pug/T < 1.



Analytic continuation of the critical line

e Locate T(u) for some values T

of the imaginary chemical potential
1y, looking for peaks in the suscep- T.
tibilities of a given observable

e Interpolate the values of T¢(w/)

. . . [EEp— 3 2
with an analytic function of 42 and N = Bew N
extrapolate to real chemical poten- .
tial

|33
A PO 1
=aw, pr=apr, T=gx3
HRW _ 1
T — 3

(valid for ne = 1 QCD or for QCD with same p
for all quarks)



@ Critical line of QCD with n; = 2 4 1
@ Lattice setup and numerical simulations



Lattice setup and numerical simulations

@ Highly improved staggered quark action with tree-level improved Symanzik gauge
action (HISQ/tree) with 2+1 flavors:

z= [1oue S T] dex(DalUs i)'
q=u,d,s

@ Same quark chemical potential for the three quark species:

— kB
Mu:HdZHs:H=?

@ Line of constant physics (LCP) with physical strange quark mass at each value
of the coupling 3 and light-quark mass fixed at m; = ms/20 (M. = 160 MeV)
[A. Bazavov et al. (HotQCD coll.), 2012]
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@ To probe the crossover transition at u? < 0 we adopted the renormalized
disconnected susceptibility of the light quark chiral condensate over T2:

1 nZ 12 12
Xlren = 73 Xidise »  Xidise = 16130, {((Tqu )y —(TeDg ) } ,

B reference point

[A. Bazavov et al. (HotQCD coll.), 2010]

@ Modified MILC public code (http://physics.utah.edu/ detar/milc.html):

forward and backward temporal links entering the discretized Dirac operator
multiplied by €@ and e~'a*, respectively.

@ Rational hybrid Monte Carlo (RHMC) simulation algorithm, with length of each
trajectory set to 1.0 in molecular dynamics time units.

@ Typically not less than 1000 trajectories for each run discarded to ensure
thermalization and from 4000 to 8000 trajectories collected for measurements.

@ Two different procedures to set the lattice scale in order to get the physical
temperature at a given gauge coupling.



Setting the lattice scale

From (i) slope of the qq potential at T = 0 and (ii) decay constant fx
[A. Bazavov et al. (HotQCD coll.), 2012]
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a,,  of(B)+c(10/8)R(8) ate(8) = c&f(8) + ¢ (10/8)3(B)

= K =
A AT ) T+ (10/3)P(3)
Co = 44.06, c; = 272102, dp = 4281,  cX =7.66, ci = 32911, dff = 2388,
ry = 0.3106(20) fm rifx ~ 0.1738.

£(8) is the two-loop beta function: £(8) = (bo(10/8))~b1/(250) exp(—3/(20by))

(bg and by universal coefficients)



1
Xl,ren = 7,%Xl,disc
m(B) ry
Zm(B) = , =237
") =y B
~N
=
B* = 6.54706 (r; scale) B
T
B* = 6.56778 (fx scale) <
To localize the peak, a Lorentzian
fit has been used:
a4
14+ az(T — Tc)z

Determination of T¢(u)

/(i) = 0.200
O 16°x6
O 32°x8
& 40°x10
A 4gx12




Summary of results for of T(u)/ T-(0)

lattice u/(wT) Te(w)/ Te(0) Te()/ Te(0)

(ry scale) (fx scale)

16 x 6 0.15j 1.038(13) 1.043(14)

0.2 1.063(15) 1.070(15)

0.25i 1.085(16) 1.095(18)

243 x 6 0.2 1.061(9) 1.067(10)
328 x 8 0.15/ 1.054(7) 1.059(8)

0.2 1.066(10) 1.071(11)

0.25j 1.117(10) 1.126(10)

40% x 10 0.15i 1.023(23) 1.024(24)

0.2 1.075(14) 1.079(15)

0.25j 1.102(15) 1.107(15)

483 x 12 0.15i 1.013(31) 1.013(33)

0.20i 1.051(14) 1.052(15)

0.25j 1.094(26) 1.097(25)

T¢(0) determined using data for disconnected light chiral susceptibility obtained by the
HotQCD collaboration [A. Bazavov et al. (HotQCD coll.), 2012, 2014]
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@ Critical line of QCD with n; = 2 4 1

@ Continuum limit



Curvature in the continuum limit
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Curvature in the continuum limit
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@ Critical line of QCD with n; = 2 4 1

@ Comparison with other analyses



Comparison with other analyses

@ Caveats in the comparison with other lattice studies
o different choices for discretization, lattice size, quark masses, chemical
potentials, procedure to circumvent the sign problem, etc., lead to different
systematics

e since QCD exhibits a smooth crossover rather than a true phase transition,
different probe observables lead to different values of T¢(u), even with the same
lattice setup

@ Caveats in the comparison with the curvature of the freeze-out curve
e no a priori reason for the coincidence of the QCD pseudocritical line with the
chemical freeze-out curve: the quark-gluon plasma fireball (if created) first
rehadronizes, then reaches the chemical freeze-out

e in heavy-ion collisions strangeness neutrality, (ns) = 0, is satisfied; this implies
that, near T¢(0), we should have uu =~ pg, ps = py,q/4

o the freeze-out curve is determined through thermal-statistical models,
subjected to their own systematic effects



arXiv:1403.0821 - P. Cea, L. Cosmai, A. P,

T Tt Tt T TrT analytic continuation, HISQ/tree action, pu; = ps, discon-
k=0.020(4) nected chiral susceptibility
1403.0821
——e— )
a4 arXiv:1508.07599 - P. Cea, L. Cosmai, A. P,
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[ | arXiv:1012.4694 - R. Falcone, E. Laermann, M.P.

1 1
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analytic continuation, p4-action, y; = us, Polyakov loop

hep-ph/0511084 - J. Cleymans et al.,
freeze-out curvature, from standard statistical hadronization model

arXiv:1212.2341 - F. Becattini et al.,
same + effect of inelastic collisions after freeze-out



Extrapolation of the critical line to real up

Caveats: [ e e LA e e e s e e e

o reliable up to £+ ~ 0.25, i.e. up ~ 0.4 GeV #

I 1
o effect of us # 0 at the larger up in this range 015] A4 s n ++ i
not assessed I _+_ $ 1

Te(up) = a— by

a=To(0), b= %

0.1— —

T (1) (GeV)

Using our result k = 0.020(4) 0.05 |~ ;) 1
and T¢(0) = 154(9) MeV
[A. Bazavov et al. (HotQCD coll.), 2012]
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to be compared with

® hep-ph/0511094 - J. Cleymans et al.
b= 0.139(16) GeV~! M arxiv:1212.2341 - F. Becattini et al.
[J Cleymans etal, 2006] A arxiv:1403.4903 - P. Alba et al.



Extrapolation of the critical line to real up
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Conclusions

@ We have simulated on a space-time lattice QCD with 2+1 flavors at almost
physical masses, in a setup with the same chemical potential for the three quark
species

@ By analytic continuation, we have estimated the continuum limit of the
curvature of the QCD pseudocritical line at zero baryon density

@ Our result agrees at 10 level with the most recent determinations of the same
quantity, with a slightly higher central value

@ Within statistical and systematic uncertainties, the extrapolated pseudocritical
line extrapolated nicely compares with most determinations of the freeze-out
curve at small ug
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