Progress toward QCD at non-zero matter density

> Philippe de Forcrand ETH Zürich & CERN

Bari, December 10, 2015

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

500

▲□▶ ▲圖▶ ▲콜▶ ▲콜▶ - 콜

Monte Carlo: no pain, no gain...

Monte Carlo highly efficient: *importance sampling* $Prob(conf) \propto exp(-E(conf)/T)$

- But all low-hanging fruits have been picked by now
- Further progress requires tackling the sign problem
- Examples:
- real-time quantum evolution:

weight in path integral $\propto \exp(-\frac{i}{\hbar}Ht) \longrightarrow$ phase cancellations

- Hubbard model:

repulsion $Un_{\uparrow}n_{\downarrow} \xrightarrow{} \det_{\text{Hubbard-Stratonovich}} \det_{\uparrow} \det_{\downarrow}$ complex except at half-filling (additional symmetry)

- QCD at non-zero density / chemical potential:

integrate out the fermions $det(\not D + \mu \gamma_0)^2$ ($N_f = 2$) complex unless $\mu = 0$ or pure imaginary (additional symmetry)

Lattice QCD: Euclidean path integral

space + imag. time \rightarrow 4*d* hypercubic grid:

$$Z = \int \mathcal{D}U\mathcal{D}\bar{\psi}\mathcal{D}\psi e^{-S_{E}[\{U,\bar{\psi},\psi\}]}$$

• Discretized action S_E :

•
$$\psi(x) \cup \psi(x) + \hat{\mu} + h.c.,$$

• $\psi(x) \cup \psi(x + \hat{\mu}) + h.c.,$
• $\psi(y) \psi$
• $\psi(y) \psi$
• $\psi(x) = \psi(x) + h.c.,$
• $\psi(y) \psi$

• Monte Carlo: with Grassmann variables $\psi(x)\psi(y) = -\psi(y)\psi(x)$?? Integrate out analytically (Gaussian) \rightarrow determinant *non-local*

 $\operatorname{Prob}(\operatorname{config}\{U\}) \propto \operatorname{det}^2 \mathcal{D}(\{U\}) e^{+\beta \sum_P \operatorname{ReTr} U_P}$ real non-negative when $\mu = 0$

Sampling oscillatory integrands

"Every x is important" \leftrightarrow How to sample?

Computational complexity of the sign pb

◆□▶ ◆□▶ ◆ 三▶ ◆ 三 ● つへぐ

• How to study: $Z_{\rho} \equiv \int dx \ \rho(x), \ \rho(x) \in \mathbf{R}$, with $\rho(x)$ sometimes negative ? Reweighting: sample with $|\rho(x)|$, and "put the sign in the observable":

$$\langle W \rangle_f \equiv \frac{\int dx \ W(x)\rho(x)}{\int dx \ \rho(x)} = \frac{\int dx \ [W(x)\operatorname{sign}(\rho(x))] \ |\rho(x)|}{\int dx \ \operatorname{sign}(\rho(x)) \ |\rho(x)|} = \left| \frac{\langle W\operatorname{sign}(\rho) \rangle_{|\rho|}}{\langle \operatorname{sign}(\rho) \rangle_{|\rho|}} \right|$$

Computational complexity of the sign pb

• How to study: $Z_{\rho} \equiv \int dx \ \rho(x), \ \rho(x) \in \mathbf{R}$, with $\rho(x)$ sometimes negative ? Reweighting: sample with $|\rho(x)|$, and "put the sign in the observable":

$$\langle W \rangle_f \equiv \frac{\int dx \ W(x)\rho(x)}{\int dx \ \rho(x)} = \frac{\int dx \ [W(x)\operatorname{sign}(\rho(x))] \ |\rho(x)|}{\int dx \ \operatorname{sign}(\rho(x)) \ |\rho(x)|} = \left| \frac{\langle W\operatorname{sign}(\rho) \rangle_{|\rho|}}{\langle \operatorname{sign}(\rho) \rangle_{|\rho|}} \right|$$

•
$$\langle \operatorname{sign}(\rho) \rangle_{|\rho|} = \frac{\int dx \ \operatorname{sign}(\rho(x))|\rho(x)|}{\int dx \ |\rho(x)|} = \boxed{\frac{Z_{\rho}}{Z_{|\rho|}}} = \exp(-\frac{V}{T} \Delta f(\mu^2, T))$$
, exponentially small
diff. free energy dens.
Each meas. of $\operatorname{sign}(\rho)$ gives value $\pm 1 \Longrightarrow$ statistical error $\approx \frac{1}{\sqrt{\# \text{ meas.}}}$
Constant relative accuracy \Longrightarrow need statistics $\propto \exp(+2\frac{V}{T}\Delta f)$
Large V, low T inaccessible: signal/noise ratio degrades exponentially
 Δf measures severity of sign pb.

"Sign problem" is generic roadblock: condensed matter, real time, \cdots

The CPU effort grows exponentially with L^3/T

CPU effort to study matter at nuclear density in a box of given size Give or take a few powers of 10...

Reward prospects: the wonderland phase diagram of QCD from Wikipedia

Caveat: everything in red is a conjecture

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ~ のへぐ

Finite μ : what is known?

Minimal, possible phase diagram

◆□▶ ◆□▶ ▲≡▶ ▲≡▶ ▲□▶

- Frogs: *acknowledge* the sign problem
 - explore region of small $\frac{\mu}{T}$ where sign pb is mild enough
 - find tricks to enlarge this region

- Birds: *solve* the sign pb
 - solve QCD ?

- find a model which can be made sign-pb free and paint it "QCD-like"

- Frogs: *acknowledge* the sign problem
 - explore region of small $\frac{\mu}{T}$ where sign pb is mild enough
 - find tricks to enlarge this region

Taylor expansion, imaginary μ , strong coupling expansion,...

• Birds: *solve* the sign pb

- solve QCD ?

- find a model which can be made sign-pb free and paint it "QCD-like"

◆□▶ ◆□▶ ◆ 三▶ ◆ 三 ● つへぐ

Langevin, fermion bags, QC_2D , isospin μ ,...

- Frogs: *acknowledge* the sign problem
 - explore region of small $\frac{\mu}{T}$ where sign pb is mild enough
 - find tricks to enlarge this region

Taylor expansion, imaginary μ , strong coupling expansion,...

• Birds: *solve* the sign pb

- solve QCD ?

- find a model which can be made sign-pb free and paint it "QCD-like"

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ⑦ � @

Langevin, fermion bags, QC_2D , isospin μ ,...

Lefschetz thimble: don't solve the sign pb and don't solve QCD

- Frogs: *acknowledge* the sign problem
 - explore region of small $\frac{\mu}{T}$ where sign pb is mild enough
 - find tricks to enlarge this region

Taylor expansion, imaginary μ , strong coupling expansion,...

• Birds: *solve* the sign pb

- solve QCD ?

- find a model which can be made sign-pb free and paint it "QCD-like"

Langevin, fermion bags, QC_2D , isospin μ ,...

Lefschetz thimble: don't solve the sign pb and don't solve QCD

• *Think different*: build an analog QCD simulator with cold atoms

• Severity of sign pb. is *representation dependent*: $Z = \text{Tr}e^{-\beta H} = \text{Tr}\left[e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)\cdots\right]$ Any complete set $\{|\psi\rangle\}$ will do

If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_I\rangle = e^{-\frac{\beta}{N}E_k}\delta_{kI} \ge 0 \rightarrow \text{no sign pb}$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● のへで

• Severity of sign pb. is *representation dependent*: $Z = \text{Tr}e^{-\beta H} = \text{Tr}\left[e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)\cdots\right]$ Any complete set $\{|\psi\rangle\}$ will do

If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_I\rangle = e^{-\frac{\beta}{N}E_k}\delta_{kI} \ge 0 \rightarrow \text{no sign pb}$

• Strategy:

choose $\{|\psi\rangle\}$ "close" to physical eigenstates of H

• Severity of sign pb. is *representation dependent*: $Z = \text{Tr}e^{-\beta H} = \text{Tr}\left[e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)\cdots\right]$ Any complete set $\{|\psi\rangle\}$ will do

If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_I\rangle = e^{-\frac{\beta}{N}E_k}\delta_{kI} \ge 0 \rightarrow \text{no sign pb}$

• Strategy: choose $\{|\psi\rangle\}$ "close" to physical eigenstates of H

QCD physical states are color singlets \rightarrow Monte Carlo on colored gluon links is bad idea

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● のへで

• Severity of sign pb. is *representation dependent*: $Z = \text{Tr}e^{-\beta H} = \text{Tr}\left[e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)\cdots\right]$ Any complete set $\{|\psi\rangle\}$ will do

If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_I\rangle = e^{-\frac{\beta}{N}E_k}\delta_{kI} \ge 0 \rightarrow \text{no sign pb}$

• Strategy: choose $\{|\psi\rangle\}$ "close" to physical eigenstates of H

QCD physical states are color singlets \rightarrow Monte Carlo on colored gluon links is bad idea

Usual: • integrate over quarks analytically $\rightarrow det(\{U\})$ • Monte Carlo over gluon fields $\{U\}$ Reverse order: • integrate over gluons $\{U\}$ analytically • Monte Carlo over quark color singlets (hadrons)

• Caveat: must turn off 4-link coupling in $\beta \sum_{P} \operatorname{ReTr} U_{P}$ by setting $\beta = 0$ $\beta = \frac{6}{g_{0}^{2}} = 0$: strong-coupling limit \longleftrightarrow continuum limit $(\beta \to \infty)$

• Severity of sign pb. is *representation dependent*: $Z = \text{Tr}e^{-\beta H} = \text{Tr}\left[e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)\cdots\right]$ Any complete set $\{|\psi\rangle\}$ will do

If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_I\rangle = e^{-\frac{\beta}{N}E_k}\delta_{kI} \ge 0 \rightarrow \text{no sign pb}$

• Strategy: choose $\{|\psi\rangle\}$ "close" to physical eigenstates of H

QCD physical states are color singlets \rightarrow Monte Carlo on colored gluon links is bad idea

Usual: • integrate over quarks analytically → det({U})
 • Monte Carlo over gluon fields {U}
 Reverse order: • integrate over gluons {U} analytically
 • Monte Carlo over quark color singlets (hadrons)

$$Z(\beta = 0) = \int \prod_{x} d\bar{\psi} d\psi \quad \prod_{x,\nu} \left(\int dU_{x,\nu} e^{-\{\bar{\psi}_{x} U_{x,\nu} \psi_{x+\hat{\nu}} - h.c.\}} \right)$$

Product of 1-link integrals performed analytically

Strong coupling limit at finite density (staggered quarks) Chandrasekharan, Wenger, PdF, Unger, Wolff, ...

• Integrate over U's, then over quarks: exact rewriting of $Z(\beta = 0)$

New, discrete "dual' degrees of freedom: meson & baryon worldlines

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < □ > つへで

Strong coupling limit at finite density (staggered quarks) Chandrasekharan, Wenger, PdF, Unger, Wolff, ...

• Integrate over U's, then over quarks: exact rewriting of $Z(\beta = 0)$

New, discrete "*dual*" degrees of freedom: meson & baryon worldlines

Constraint at every site: 3 blue symbols (• $\bar{\psi}\psi$, meson hop) or a baryon loop Undate with worm algorit

Update with worm algorithm: "diagrammatic" Monte Carlo

÷.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Strong coupling limit at finite density (staggered quarks) Chandrasekharan, Wenger, PdF, Unger, Wolff, ...

• Integrate over U's, then over quarks: exact rewriting of $Z(\beta = 0)$

New, discrete "dual" degrees of freedom: meson & baryon worldlines

Constraint at every site: 3 blue symbols (• $\bar{\psi}\psi$, meson hop) or a baryon loop

The dense (crystalline) phase: 1 baryon per site; no space left $\rightarrow \langle \bar{\psi}\psi \rangle = 0$

E

 \mathcal{A}

Update with worm algorithm: "diagrammatic" Monte Carlo

Sign problem? Monitor $\Delta f = -\frac{1}{V} \log \langle \text{sign} \rangle$

• $\langle \text{sign} \rangle = \frac{Z}{Z_{||}} \sim \exp(-\frac{V}{T}\Delta f(\mu^2))$ as expected

• Determinant method $\rightarrow \Delta f \sim \mathcal{O}(1)$. Here, Gain $\mathcal{O}(10^4)$ in the exponent!

- heuristic argument correct: color singlets closer to eigenbasis
- negative sign? product of *local* neg. signs caused by spatial baryon hopping:
 - no baryon \rightarrow no sign pb (no silver blaze pb.)
 - \bullet saturated with baryons \rightarrow no sign pb

Results – Phase diagram and Polyakov loop $(m_q = 0)$ w/Unger, Langelage, Philipsen

- Chiral transition $(m_q = 0)$: 2nd \rightarrow 1rst order as μ increases: *tricritical* point
- finite- N_t corrections \rightarrow continuous-time. (then, no re-entrance)
- Polyakov \neq anti-Polyakov loop. Both "feel" chiral transition.

Toward the continuum limit at $\mathcal{O}(\beta)$ 1406.4397 \rightarrow PRL

• Introduce auxiliary plaquette variables $q_P = \{0, 1\}$:

$$\exp\left(\frac{\beta}{N_c}\operatorname{ReTr} U_P\right) = \sum_{q_P=\{0,1\}} \left(\delta_{q_P,0} + \delta_{q_P,1}\frac{\beta}{N_c}\operatorname{ReTr} U_P\right) + \mathcal{O}(\beta^2)$$

- Sample $\{q_P\} \rightarrow \text{exact at } \mathcal{O}(\beta)$
- $q_P = 1 \rightarrow$ new color-singlet hopping terms qqg, $\bar{q}g$, from $\int dUUe^{-(\bar{\psi}U\psi h.c.)}$:
 - hadrons acquire *structure*
 - hadron interaction by gluon exchange

• $\mu = 0$: crosscheck with HMC ok; linear (aT_c) extrapolation good up to $\beta \sim 1$

Toward the continuum limit at $\mathcal{O}(\beta)$ 1406.4397 \rightarrow PRL

• Introduce auxiliary plaquette variables $q_P = \{0, 1\}$:

$$\exp(\frac{\beta}{N_c}\operatorname{ReTr} U_P) = \sum_{q_P = \{0,1\}} \left(\delta_{q_P,0} + \delta_{q_P,1} \frac{\beta}{N_c} \operatorname{ReTr} U_P \right) + \mathcal{O}(\beta^2)$$

- Sample $\{q_P\} \rightarrow \text{exact at } \mathcal{O}(\beta)$
- $q_P = 1 \rightarrow$ new color-singlet hopping terms qqg, $\bar{q}g$, from $\int dU U e^{-(\bar{\psi}U\psi h.c.)}$:
 - hadrons acquire *structure*
 - hadron interaction by *gluon exchange*

• $\mu = 0$: crosscheck with HMC ok; linear (aT_c) extrapolation good up to $\beta \sim 1$

• $\mu \neq 0$: - phase boundary more "rectangular" with TCP at corner

Toward the continuum limit at $\mathcal{O}(\beta)$ 1406.4397 \rightarrow PRL

• Introduce auxiliary plaquette variables $q_P = \{0, 1\}$:

$$\exp(\frac{\beta}{N_c}\operatorname{ReTr} U_P) = \sum_{q_P = \{0,1\}} \left(\delta_{q_P,0} + \delta_{q_P,1} \frac{\beta}{N_c} \operatorname{ReTr} U_P \right) + \mathcal{O}(\beta^2)$$

- Sample $\{q_P\} \rightarrow \text{exact at } \mathcal{O}(\beta)$
- $q_P = 1 \rightarrow$ new color-singlet hopping terms qqg, $\bar{q}g$, from $\int dU U e^{-(\bar{\psi}U\psi h.c.)}$:
 - hadrons acquire *structure*
 - hadron interaction by *gluon exchange*

• $\mu = 0$: crosscheck with HMC ok; linear (aT_c) extrapolation good up to $\beta \sim 1$

- $\mu \neq 0$: phase boundary more "rectangular" with TCP at corner
 - liquid-gas CEP splits and moves down ?

Going beyond $\mathcal{O}(\beta)$

• $\beta = 0$: gauge links U are not directly coupled to each other: $Z(\beta = 0) = \int \prod_{x} d\bar{\psi} d\psi \quad \prod_{x,\nu} \left(\int dU_{x,\nu} e^{-\{\bar{\psi}_{x} U_{x,\nu} \psi_{x+\hat{\nu}} - h.c.\}} \right)$ Product of 1-link integrals performed analytically

• $\beta \neq 0$: Plaquette 4-link coupling prevents analytic integration of gauge links

Decouple gauge links by Hubbard-Stratonovich transformation:

2-link action \rightarrow 1-link \rightarrow 0-link Vairinhos & PdF, 1409.8442

• Hubbard-Stratonovich: $\forall Y \in \mathbb{C}^{N \times N}$, $e^{\operatorname{Tr} Y^{\dagger} Y} = \mathcal{N} \int dX \ e^{\operatorname{Tr} (X^{\dagger} Y + XY^{\dagger})}$ where $X \in \mathbb{C}^{N \times N}$ with Gaussian measure $dX \propto \prod_{ij} dx_{ij} dx_{ij}^* e^{-|x_{ij}|^2}$

2-link action \rightarrow 1-link \rightarrow 0-link Vairinhos & PdF, 1409.8442

• Hubbard-Stratonovich: $\forall Y \in \mathbb{C}^{N \times N}$, $e^{\operatorname{Tr} Y^{\dagger} Y} = \mathcal{N} \int dX \ e^{\operatorname{Tr} (X^{\dagger} Y + XY^{\dagger})}$ where $X \in \mathbb{C}^{N \times N}$ with Gaussian measure $dX \propto \prod_{ij} dx_{ij} dx_{ij}^* e^{-|x_{ij}|^2}$

• 4
$$\rightarrow$$
 2-link action:

$$Y=(U_1U_2+U_4^{\dagger}U_3^{\dagger}),~X=Q$$

$$S_{2-\text{link}} = \text{ReTr } Q^{\dagger} (U_1 U_2 + U_4^{\dagger} U_3^{\dagger})$$

◆□▶ ◆□▶ ◆ 三 ▶ ◆ 三 ● ⑦ � ♡

2-link action \rightarrow 1-link \rightarrow 0-link Vairinhos & PdF, 1409.8442

• Hubbard-Stratonovich: $\forall Y \in \mathbb{C}^{N \times N}$, $e^{\operatorname{Tr} Y^{\dagger} Y} = \mathcal{N} \int dX \ e^{\operatorname{Tr} (X^{\dagger} Y + XY^{\dagger})}$ where $X \in \mathbb{C}^{N \times N}$ with Gaussian measure $dX \propto \prod_{ij} dx_{ij} dx_{ij}^* e^{-|x_{ij}|^2}$

• 4
$$\rightarrow$$
 2-link action:

$$Y=(U_1U_2+U_4^\dagger U_3^\dagger)$$
, $X=Q$

$$S_{2-\text{link}} = \text{ReTr } Q^{\dagger} (U_1 U_2 + U_4^{\dagger} U_3^{\dagger})$$

• 2
$$\rightarrow$$
 1-link action:

$$Y=(U_1+QU_2^\dagger)$$
, $X=R_1$

$$S_{1-\text{link}} = \text{ReTr} \longrightarrow \Sigma(\xrightarrow{R_1} + \underbrace{F_2}_{Q})^{+}$$

▲□▶▲□▶▲≡▶▲≡▶ ● ⑦�?

2-link action \rightarrow 1-link \rightarrow 0-link Vairinhos & PdF, 1409.8442 • Hubbard-Stratonovich: $\forall Y \in \mathbb{C}^{N \times N}$, $e^{\operatorname{Tr} Y^{\dagger} Y} = \mathcal{N} \int dX e^{\operatorname{Tr} (X^{\dagger} Y + XY^{\dagger})}$ where $X \in \mathbb{C}^{N \times N}$ with Gaussian measure $dX \propto \prod_{ij} dx_{ij} dx_{ij}^* e^{-|x_{ij}|^2}$ Uz • 4 \rightarrow 2-link action: $Y = (U_1 U_2 + U_4^{\dagger} U_3^{\dagger}), X = Q$ U_4 U_2 $S_{2-\text{link}} = \text{ReTr } Q^{\dagger} (U_1 U_2 + U_4^{\dagger} U_3^{\dagger})$ U_1 • $2 \rightarrow 1$ -link action: U₃ $Y = (U_1 + QU_2^{\dagger}), X = R_1$ U_{4} U_{2} $S_{1-\text{link}} = \text{ReTr} \longrightarrow \Sigma((R_1 + V_1))$ U_1

• $1 \rightarrow 0$ -link action: integrate out U analytically – also with fermion sources

QCD with graphs

 $\beta > 0 \rightarrow$ Monomers, dimers, baryons, *quarks*, all in the background of $\{Q, R\}$

Start with a simpler case: 2d QED

• Extend 0-link representation of 2d U(1) with staggered fermions: $Z(\beta, m) = \int \left[\prod_{x} d\chi_{x} d\bar{\chi}_{x} e^{2am\bar{\psi}_{x}\psi_{x}} \right] \int \mathcal{G}_{\beta}[Q, R] \prod_{x,\mu} \int dU e^{\operatorname{Re}\left(\left(\beta J_{x\mu}^{\dagger} + 2\eta_{x\mu}\psi_{x}\psi_{x+\hat{\mu}}\right)^{\dagger}U\right)\right)$ $= \int \mathcal{G}_{\beta}[Q, R] \prod_{x,\mu} I_{0}(\beta |J_{x\mu}|) \sum_{\{n,k,C\}} \left(\prod_{x} (2am)^{n_{x}} \right) \left(\sigma_{F}(C) \prod_{i=1}^{\#C} 2\operatorname{Re}(W(C)) \right)$

i.e. monomers, dimers and electron loops

weight of electron loop is global and can be negative

$$W(C) = \prod_{(x,\mu)\in C} \widetilde{U}_{x\mu}$$

$$\widetilde{U}_{x\mu} = \frac{I_1(\beta|J_{x\mu}|)}{I_0(\beta|J_{x\mu}|)} \frac{J_{x\mu}}{|J_{x\mu}|}$$

Monte Carlo

- Gaussian heatbath to update $\{Q, R\}$
- "Meson" worm to update monomers and dimers
- "Electron" worm to update electron loops and dimers
 generalized from Adams & Chandrasekharan

Sign problems

• The sign $\sigma(C)$ has a bosonic $\sigma_B(C)$ and a fermionic $\sigma_F(C)$ contribution:

$$\sigma(C) = \operatorname{sign}\left(\prod_{i=1}^{\#C} 2\operatorname{Re}(W(C_i))\right) \times \sigma_F(C)$$

$$\underbrace{\sigma_B(C)}$$

Conclusions

• Tolstoi:

"Happy families are all alike; each unhappy family is unhappy in its own way"

"happy" \longrightarrow sign-pb free

• Finite-density QCD: still a long way to go...

Thank you for your attention

Backup

Liquid-gas endpoint moves to lower temperatures as β increases

Jump at $\beta = 0$ becomes crossover as β grows

▲□▶▲□▶▲≡▶▲≡ ∽へ⊙

Monte Carlo algorithms

Bosonic updates:

- 1. Gaussian heatbath for the auxiliary fields (Q, R) + HS transformations (with the help of an auxiliary U(1) field)
- 2. Metropolis update to correct for electron loop weights

$$\mathcal{G}_{\beta}[Q,R]\prod_{x,\mu}I_0(\beta|J_{x\mu}|)\prod_{i=1}^{\#C}2\operatorname{Re}(W(C_i))$$

Heatbath (local) Metropolis (global)

► Fermionic updates:

1. "Meson" worm algorithm: Updates the monomer-dimer cover, with target distribution:

$$w_m = \prod_x (2am)^{n_x} \prod_{x,\mu} 1$$

2. Electron worm algorithm: Transforms <u>electron loops</u> into dimers and vice versa, with target distribution:

$$w_e = \prod_{x,\mu} 1 \prod_{i=1}^{\#C} |2\operatorname{Re}(W(C_i))| = \prod_{x,\mu} 1 \left(\frac{I_1(\beta|J_{x\mu}|)}{I_0(\beta|J_{x\mu}|)} \right)^{b_{x\mu}} \underbrace{\prod_{i=1}^{\#C} |2\cos(\varphi(C_i))|}_{\operatorname{Worm (local)}}$$

Adams & Chandrasekharan (2003) Chandrasekharan & Jiang (2006)