Progress toward QCD at non-zero matter density

> Philippe de Forcrand ETH Zürich & CERN

Bari, December 10, 2015

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

 \mathcal{DQ}

◀ ㅁ ▶ . ◀ @ ▶ . ◀ 로 ▶ . ◀ 로 ▶ . . 로 ...

Monte Carlo: no pain, no gain...

Monte Carlo highly efficient: *importance sampling* Prob(conf) \propto exp($-E(\text{conf})/T$)

- *•* But all low-hanging fruits have been picked by now
- Further progress requires tackling the sign problem
- *•* Examples:
- real-time quantum evolution:

weight in path integral $\propto \exp(-\frac{{\rm i}}{\hbar} H t) \,\,\longrightarrow\,\,$ phase cancellations

- Hubbard model:

 $repulsion$ $Un_{\uparrow}n_{\downarrow}$ $\quad \rightarrow$ Hubbard-Stratonovich det $_{\uparrow}$ det $_{\downarrow}$ complex except at half-filling (additional symmetry)

- QCD at non-zero density / chemical potential:

integrate out the fermions det($\bar{\psi}$ + $\mu\gamma_0$)² ($N_f = 2$) complex unless $\mu = 0$ or pure imaginary (additional symmetry)

Lattice QCD: Euclidean path integral

space $+$ imag. time \rightarrow 4*d* hypercubic grid:

$$
Z = \int \mathcal{D}U \mathcal{D}\bar{\psi} \mathcal{D}\psi e^{-S_E[\{U,\bar{\psi},\psi\}]}\Big|
$$

• Discretized action *S^E* :

•
$$
\overline{\psi}(x)U_{\mu}(x)\psi(x+\hat{\mu}) + h.c.,
$$
 Dirac operator
\n $\overline{\psi}\psi$
\n• $\overline{\psi}\psi$

• Monte Carlo: with Grassmann variables $\psi(x)\psi(y) = -\psi(y)\psi(x)$?? Integrate out analytically $(Gaussian) \rightarrow determination$ *non-local*

 ${\rm Prob}({\rm config}\{U\}) \propto {\rm det}^2 \not \!\! D(\{U\}) \, \, {\rm e}^{+\beta \sum_P {\rm Re Tr} U_P}$ real non-negative when $\mu=0$

Sampling oscillatory integrands

"Every x is important" \leftrightarrow How to sample?

Computational complexity of the sign pb

K □ ▶ K @ ▶ K ミ ▶ K ミ ▶ │ ミ │ めQ ⊙

• How to study: $Z_{\rho} \equiv \int dx \; \rho(x), \; \rho(x) \in \mathbb{R}$, with $\rho(x)$ sometimes negative ? Reweighting: sample with $|\rho(x)|$, and "put the sign in the observable":

$$
\langle W \rangle_f \equiv \frac{\int dx W(x)\rho(x)}{\int dx \rho(x)} = \frac{\int dx [W(x)\text{sign}(\rho(x))] |\rho(x)|}{\int dx \text{sign}(\rho(x)) |\rho(x)|} = \frac{\langle W \text{sign}(\rho) \rangle_{|\rho|}}{\langle \text{sign}(\rho) \rangle_{|\rho|}}
$$

Computational complexity of the sign pb

• How to study: $Z_{\rho} \equiv \int dx \; \rho(x), \; \rho(x) \in \mathbb{R}$, with $\rho(x)$ sometimes negative ? Reweighting: sample with $|\rho(x)|$, and "put the sign in the observable":

$$
\langle W \rangle_f \equiv \frac{\int dx W(x)\rho(x)}{\int dx \rho(x)} = \frac{\int dx [W(x)\text{sign}(\rho(x))] |\rho(x)|}{\int dx \text{sign}(\rho(x)) |\rho(x)|} = \left| \frac{\langle W \text{sign}(\rho) \rangle_{|\rho|}}{\langle \text{sign}(\rho) \rangle_{|\rho|}} \right|
$$

•
$$
\langle \text{sign}(\rho) \rangle_{|\rho|} = \frac{\int dx \, \text{sign}(\rho(x)) |\rho(x)|}{\int dx \, |\rho(x)|} = \boxed{\frac{Z_{\rho}}{Z_{|\rho|}}} = \exp(-\frac{V}{T} \underbrace{\Delta f(\mu^2, T)})
$$
, exponentially small
diff. free energy dens.
Each meas. of sign(ρ) gives value $\pm 1 \implies$ statistical error $\approx \frac{1}{\sqrt{\frac{4}{T} \text{ meas}}}$.
Constant relative accuracy \implies $\boxed{\text{need statistics} \propto \exp(+2\frac{V}{T}\Delta f)}$
Large V, low T inaccessible: signal/noise ratio degrades exponentially

 Δf measures severity of sign pb.

"Sign problem" is generic roadblock: condensed matter, real time, *···*

The CPU effort grows *exponentially* with L^3/T

CPU effort to study matter at nuclear density in a box of given size Give or take a few powers of 10...

Reward prospects: the wonderland phase diagram of QCD from Wikipedia

Caveat: everything in red is a conjecture

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ■ 重 $\mathcal{P} \circ \mathcal{P}$

Finite μ : what is known?

Minimal, possible phase diagram

Kロト K団 K K ミト K ミト / ミー のQ (V

- *•* Frogs: *acknowledge* the sign problem
	- explore region of small $\frac{\mu}{\tau}$ where sign pb is mild enough
	- find tricks to enlarge this region

- *•* Birds: *solve* the sign pb
	- solve QCD ?

- find a model which can be made sign-pb free and paint it "QCD-like"

- *•* Frogs: *acknowledge* the sign problem
	- explore region of small $\frac{\mu}{\tau}$ where sign pb is mild enough
	- find tricks to enlarge this region

Taylor expansion, imaginary μ , strong coupling expansion,...

• Birds: *solve* the sign pb

- solve QCD ?

- find a model which can be made sign-pb free and paint it "QCD-like"

K ロ ▶ K 印 ▶ K ミ ▶ K ミ ▶ │ ミ │ め Q (V

Langevin, fermion bags, QC_2D , isospin μ ,...

- *•* Frogs: *acknowledge* the sign problem
	- explore region of small $\frac{\mu}{\tau}$ where sign pb is mild enough
	- find tricks to enlarge this region

Taylor expansion, imaginary μ , strong coupling expansion,...

• Birds: *solve* the sign pb

- solve QCD ?

- find a model which can be made sign-pb free and paint it "QCD-like"

K ロ ▶ K 印 ▶ K ミ ▶ K ミ ▶ │ ミ │ め Q (V

Langevin, fermion bags, QC_2D , isospin μ ,...

Lefschetz thimble: don't solve the sign pb and don't solve QCD

- *•* Frogs: *acknowledge* the sign problem
	- explore region of small $\frac{\mu}{\tau}$ where sign pb is mild enough
	- find tricks to enlarge this region

Taylor expansion, imaginary μ , strong coupling expansion,...

• Birds: *solve* the sign pb

- solve QCD ?

- find a model which can be made sign-pb free and paint it "QCD-like"

Langevin, fermion bags, QC_2D , isospin μ ,...

Lefschetz thimble: don't solve the sign pb and don't solve QCD

• *Think different*: build an analog QCD simulator with cold atoms

• Severity of sign pb. is *representation dependent*: $Z = \text{Tr} e^{-\beta H} = \text{Tr} \left[e^{-\frac{\beta}{N}H} \left(\sum |\psi\rangle\langle\psi| \right) e^{-\frac{\beta}{N}H} \right]$ $\sum |\psi\rangle\langle\psi|) \cdots \Bigr]$ Any complete set $\{|\psi\rangle\}$ will do

If $\{|\psi\rangle\}$ form an eigenbasis of *H*, then $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_l\rangle=e^{-\frac{\beta}{N}E_k}\delta_{kl}\geq 0\to$ no sign pb

K ロ ▶ K 伊 ▶ K ミ ▶ K ミ ▶ │ ミ │ のQ ⊘

• Severity of sign pb. is *representation dependent*: $Z = \text{Tr} e^{-\beta H} = \text{Tr} \left[e^{-\frac{\beta}{N}H} \left(\sum |\psi\rangle\langle\psi| \right) e^{-\frac{\beta}{N}H} \right]$ $\sum |\psi\rangle\langle\psi|) \cdots \Bigr]$ Any complete set $\{|\psi\rangle\}$ will do

If $\{|\psi\rangle\}$ form an eigenbasis of *H*, then $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_l\rangle=e^{-\frac{\beta}{N}E_k}\delta_{kl}\geq 0\to$ no sign pb

• Strategy: choose $\{|\psi\rangle\}$ "close" to physical eigenstates of *H*

K ロ ▶ K 伊 ▶ K ミ ▶ K ミ ▶ │ ミ │ のQ ⊘

• Severity of sign pb. is *representation dependent*: $Z = \text{Tr} e^{-\beta H} = \text{Tr} \left[e^{-\frac{\beta}{N}H} \left(\sum |\psi\rangle\langle\psi| \right) e^{-\frac{\beta}{N}H} \right]$ $\sum |\psi\rangle\langle\psi|) \cdots \Bigr]$ Any complete set $\{|\psi\rangle\}$ will do

If $\{|\psi\rangle\}$ form an eigenbasis of *H*, then $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_l\rangle=e^{-\frac{\beta}{N}E_k}\delta_{kl}\geq 0\to$ no sign pb

• Strategy: choose $\{|\psi\rangle\}$ "close" to physical eigenstates of *H*

 QCD physical states are color singlets \rightarrow Monte Carlo on colored gluon links is bad idea

K ロ ▶ K 伊 ▶ K ミ ▶ K ミ ▶ │ ミ │ のQ ⊘

• Severity of sign pb. is *representation dependent*: $Z = \text{Tr} e^{-\beta H} = \text{Tr} \left[e^{-\frac{\beta}{N}H} \left(\sum |\psi\rangle\langle\psi| \right) e^{-\frac{\beta}{N}H} \right]$ $\sum |\psi\rangle\langle\psi|) \cdots \Bigr]$ Any complete set $\{|\psi\rangle\}$ will do

If $\{|\psi\rangle\}$ form an eigenbasis of H , then $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_I\rangle\!=\!e^{-\frac{\beta}{N}E_k}\delta_{kl}\geq 0\to$ no sign pb

• Strategy: choose $\{|\psi\rangle\}$ "close" to physical eigenstates of *H*

 QCD physical states are color singlets \rightarrow Monte Carlo on colored gluon links is bad idea

Usual: • integrate over quarks analytically \rightarrow det($\{U\}$) *•* Monte Carlo over gluon fields *{U}* Reverse order: *•* integrate over gluons *{U}* analytically *•* Monte Carlo over quark color singlets (hadrons)

• Caveat: must turn off 4-link coupling in $\beta \sum_{P}$ ReTr U_P by setting $\beta = 0$ $\beta = \frac{6}{\sigma^2}$ $\frac{6}{g_0^2} = 0$: strong-coupling limit \longleftrightarrow continuum limit $(\beta \to \infty)$ **◆ロト ◆団ト ◆ミト ◆ミト → ミー ◆9 Q (>**

• Severity of sign pb. is *representation dependent*: $Z = \text{Tr} e^{-\beta H} = \text{Tr} \left[e^{-\frac{\beta}{N}H} \left(\sum |\psi\rangle\langle\psi| \right) e^{-\frac{\beta}{N}H} \right]$ $\sum |\psi\rangle\langle\psi|) \cdots \Bigr]$ Any complete set $\{|\psi\rangle\}$ will do

If $\{|\psi\rangle\}$ form an eigenbasis of H , then $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_I\rangle\!=\!e^{-\frac{\beta}{N}E_k}\delta_{kl}\geq 0\to$ no sign pb

• Strategy: choose $\{|\psi\rangle\}$ "close" to physical eigenstates of *H*

 QCD physical states are color singlets \rightarrow Monte Carlo on colored gluon links is bad idea

Usual: • integrate over quarks analytically \rightarrow det($\{U\}$) *•* Monte Carlo over gluon fields *{U}* Reverse order: *•* integrate over gluons *{U}* analytically *•* Monte Carlo over quark color singlets (hadrons)

$$
Z(\beta=0)=\int\prod_{x}d\bar{\psi}d\psi\ \prod_{x,\nu}\left(\int dU_{x,\nu}e^{-\{\bar{\psi}_{x}U_{x,\nu}\psi_{x+\hat{\nu}}-h.c.\}}\right)
$$

Product of 1-link integrals performed analytically

Strong coupling limit at finite density (staggered quarks) Chandrasekharan, Wenger, PdF, Unger, Wolff, ...

• Integrate over *U*'s, then over quarks: *exact* rewriting of $Z(\beta = 0)$

New, discrete "*dual*" degrees of freedom: meson & baryon worldlines

K ロ ▶ K 日 ▶ K 王 ▶ K 王 ▶ │ 王 │ ◆ 9 Q (〉

Strong coupling limit at finite density (staggered quarks) Chandrasekharan, Wenger, PdF, Unger, Wolff, ...

• Integrate over *U*'s, then over quarks: *exact* rewriting of $Z(\beta = 0)$

New, discrete "*dual*" degrees of freedom: meson & baryon worldlines

Constraint at every site: 3 blue symbols ($\bullet \psi\psi$, meson hop) or a baryon loop

Update with worm algorithm: "diagrammatic" Monte Carlo

重

 OQ

Strong coupling limit at finite density (staggered quarks) Chandrasekharan, Wenger, PdF, Unger, Wolff, ...

• Integrate over *U*'s, then over quarks: *exact* rewriting of $Z(\beta = 0)$

New, discrete "*dual*" degrees of freedom: meson & baryon worldlines

Constraint at every site: 3 blue symbols ($\bullet \psi\psi$, meson hop) or a baryon loop

The dense (crystalline) phase: 1 baryon per site; no space left $\rightarrow \quad \langle \bar{\psi}\psi \rangle = 0$

重

 $\mathcal{P}Q$

Update with worm algorithm: "diagrammatic" Monte Carlo

Sign problem? Monitor $\Delta f = -\frac{1}{V} \log \langle \text{sign} \rangle$

• \langle sign $\rangle = \frac{Z}{Z_1}$ $\frac{Z}{Z_{||}} \sim \exp(-\frac{V}{\mathcal{T}} \Delta f(\mu^2))$ as expected

• Determinant method $\rightarrow \Delta f \sim \mathcal{O}(1)$. Here, Gain $\mathcal{O}(10^4)$ in the exponent!

- heuristic argument correct: color singlets closer to eigenbasis
- negative sign? product of *local* neg. signs caused by spatial baryon hopping:
	- no baryon \rightarrow no sign pb (no silver blaze pb.)
	- saturated with baryons \rightarrow no sign pb

Results – Phase diagram and Polyakov loop ($m_q = 0$) w/Unger, Langelage, Philipsen

- Chiral transition $(m_q = 0)$: 2nd \rightarrow 1rst order as μ increases: *tricritical* point
- finite- N_t corrections \rightarrow continuous-time. (then, no re-entrance)
- Polyakov \neq anti-Polyakov loop. Both "feel" chiral transition.

Toward the continuum limit at $\mathcal{O}(\beta)$ 1406.4397 \rightarrow PRL

• Introduce auxiliary plaquette variables $q_P = \{0, 1\}$.

$$
\exp(\frac{\beta}{N_c}\text{ReTr }U_P)=\sum_{q_P=\{0,1\}}\left(\delta_{q_P,0}+\delta_{q_P,1}\frac{\beta}{N_c}\text{ReTr}U_P\right) + \hat{O}(\beta^2)
$$

- Sample $\{q_P\}$ \rightarrow exact at $\mathcal{O}(\beta)$
- $q_P = 1 \rightarrow$ new color-singlet hopping terms qqg , $\overline{q}g$, from $\int dU U e^{-(\bar{\psi}U\psi-h.c.)}$:
	- hadrons acquire *structure*
	- hadron interaction by *gluon exchange*

• μ = 0: crosscheck with HMC ok; linear (aT_c) extrapolation good up to $\beta \sim 1$

◀ ロ ▶ ◀ 何 ▶ ◀ ヨ ▶ ◀ ヨ ▶ │ ヨ │

 DQQ

Toward the continuum limit at $\mathcal{O}(\beta)$ 1406.4397 \rightarrow PRL

• Introduce auxiliary plaquette variables $q_P = \{0, 1\}$.

$$
\exp\left(\frac{\beta}{N_c}\text{ReTr } U_P\right) = \sum_{q_P=\{0,1\}} \left(\delta_{q_P,0} + \delta_{q_P,1}\frac{\beta}{N_c}\text{ReTr} U_P\right) + \mathcal{O}(\beta^2)
$$

- Sample $\{q_P\}$ \rightarrow exact at $\mathcal{O}(\beta)$
- $q_P = 1 \rightarrow$ new color-singlet hopping terms qqg , $\overline{q}g$, from $\int dU U e^{-(\bar{\psi}U\psi-h.c.)}$:
	- hadrons acquire *structure*
	- hadron interaction by *gluon exchange*

• μ = 0: crosscheck with HMC ok; linear (aT_c) extrapolation good up to $\beta \sim 1$

• $\mu \neq 0$: - phase boundary more "rectangular" with TCP at corner

Toward the continuum limit at $\mathcal{O}(\beta)$ 1406.4397 \rightarrow PRL

• Introduce auxiliary plaquette variables $q_P = \{0, 1\}$.

$$
\exp(\frac{\beta}{N_c}\text{ReTr }U_P)=\sum_{q_P=\{0,1\}}\left(\delta_{q_P,0}+\delta_{q_P,1}\frac{\beta}{N_c}\text{ReTr}U_P\right) + \mathcal{O}(\beta^2)
$$

- Sample $\{q_P\}$ \rightarrow exact at $\mathcal{O}(\beta)$
- $q_P = 1 \rightarrow$ new color-singlet hopping terms qqg , $\overline{q}g$, from $\int dU U e^{-(\bar{\psi}U\psi-h.c.)}$:
	- hadrons acquire *structure*
	- hadron interaction by *gluon exchange*

• μ = 0: crosscheck with HMC ok; linear (aT_c) extrapolation good up to $\beta \sim 1$

- $\mu \neq 0$: phase boundary more "rectangular" with TCP at corner
	- liquid-gas CEP splits and moves down ?

Going beyond $O(\beta)$ Vairinhos & PdF, 1409.8442

• $\beta = 0$: gauge links U are not directly coupled to each other: $Z(\beta = 0) = \int \prod_x d\bar{\psi} d\psi \prod_{x,\nu} \left(\int dU_{x,\nu} e^{-\{\bar{\psi}_x U_{x,\nu} \psi_{x+\hat{\nu}} - h.c.\}} \right)$ Product of 1-link integrals performed analytically

• $\beta \neq 0$: Plaquette 4-link coupling prevents analytic integration of gauge links

Decouple gauge links by Hubbard-Stratonovich transformation:

• Hubbard-Stratonovich: $\forall Y \in \mathbb{C}^{N \times N}$, $e^{TrY^{\dagger}Y} = \mathcal{N} \int dX \ e^{Tr(X^{\dagger}Y + XY^{\dagger})}$ where $X \in \mathbf{C}^{N \times N}$ with Gaussian measure $dX \propto \prod_{ij} d\mathsf{x}_{ij} d\mathsf{x}_{ij}^* e^{-|\mathsf{x}_{ij}|^2}$

• Hubbard-Stratonovich: $\forall Y \in \mathbb{C}^{N \times N}, \quad e^{TrY^{\dagger}Y} = \mathcal{N} \int dX \ e^{Tr(X^{\dagger}Y + XY^{\dagger})}$ where $X \in \mathbf{C}^{N \times N}$ with Gaussian measure $dX \propto \prod_{ij} dx_{ij} dx_{ij}^* e^{-|x_{ij}|^2}$

•
$$
4 \rightarrow 2
$$
-link action:

$$
Y=(U_1U_2+U_4^{\dagger}U_3^{\dagger}), X=Q
$$

$$
\mathcal{S}_{2-\text{link}} = \text{ReTr} \; Q^{\dagger} (U_1 U_2 + U_4^{\dagger} U_3^{\dagger})
$$

K ロ ▶ K 御 ▶ K 重 ▶ K 重 ▶ │ 重 │ 約 Q ⊙

• Hubbard-Stratonovich: $\forall Y \in \mathbb{C}^{N \times N}, \quad e^{TrY^{\dagger}Y} = \mathcal{N} \int dX \ e^{Tr(X^{\dagger}Y + XY^{\dagger})}$ where $X \in \mathbf{C}^{N \times N}$ with Gaussian measure $dX \propto \prod_{ij} dx_{ij} dx_{ij}^* e^{-|x_{ij}|^2}$

•
$$
4 \rightarrow 2
$$
-link action:

$$
Y=(U_1U_2+U_4^{\dagger}U_3^{\dagger}), X=Q
$$

$$
S_{2-\text{link}} = \text{ReTr} \ Q^{\dagger} (U_1 U_2 + U_4^{\dagger} U_3^{\dagger})
$$

$$
\bullet
$$
 2 \rightarrow 1-link action:

$$
Y=(U_1+QU_2^{\dagger}), X=R_1
$$

$$
S_{1\text{-link}} = Refr - \sum \left(\begin{array}{c|c}\n\hline\nR_1 & + \\
\hline\n\end{array}\right)^{+}
$$

• Hubbard-Stratonovich: $\forall Y \in \mathbb{C}^{N \times N}, \quad e^{TrY^{\dagger}Y} = \mathcal{N} \int dX \ e^{Tr(X^{\dagger}Y + XY^{\dagger})}$ where $X \in \mathbf{C}^{N \times N}$ with Gaussian measure $dX \propto \prod_{ij} dx_{ij} dx_{ij}^* e^{-|x_{ij}|^2}$

\n- \n
$$
4 \rightarrow 2
$$
-link action:\n $Y = (U_1 U_2 + U_4^{\dagger} U_3^{\dagger}), \, X = Q$ \n $S_{2-\text{link}} = \text{ReTr } Q^{\dagger} (U_1 U_2 + U_4^{\dagger} U_3^{\dagger})$ \n
\n

 \bullet 2 \rightarrow 1-link action:

$$
Y = (U_1 + QU_2^{\dagger}), X = R_1
$$

$$
S_{1-\text{link}} = Refr \longrightarrow \sum(\overbrace{\text{R}_1 \text{R}_2 \text{R}_3}^{\text{R}_1} + \sum_{\text{R}_2^{\dagger}} \sum_{\text{R}_2^{\dagger}}^{\dagger}
$$

Q U U U U 1 2 3 ,
4 **R** U U_4 U U 1 2 3 $\frac{1}{4}$ $\frac{K}{2}$ **R**1 $\overline{2}$

• $1 \rightarrow 0$ -link action: integrate out *U* analytically – *also with fermion sources*

QCD with graphs

 $\beta > 0 \ \rightarrow \ \textsf{Monomers}, \ \textsf{dimers}, \ \textsf{baryons}, \ \textsf{quarks}, \ \textsf{all} \ \textsf{in} \ \textsf{the} \ \textsf{background} \ \textsf{of} \ \{Q,R\}$

亳 $\mathcal{P}(\mathcal{A}) \subset \mathcal{P}(\mathcal{A})$

Committee

Start with a simpler case: 2*d* QED

- *•* Extend 0-link representation of 2*d U*(1) with staggered fermions: x to ad \bigcap link representation of $2d$ $11(1)$ $Z(\beta, m) = \int \prod$ *x* $d\chi_x d\bar{\chi}_x e$ $\left[2am\bar{\psi}_{x}\psi_{x}\right]$ ${\cal G}_{\beta}[Q,R]$ $\overline{\mathsf{L}}$ x, μ $Z(\beta,m) = \int \left[\prod d\chi_x d\bar{\chi}_x e^{2am\bar{\psi}_x\psi_x} \right] \, \int {\cal G}_\beta[Q,R] \, \prod \, \int dU \, e^{\text{Re}\left(\left(\beta J^\dagger_{x\mu} + 2 \eta_{x\mu}\psi_x\psi_{x+\hat{\mu}}\right)^\dagger U\right)} \, .$ = Z $\mathcal{G}_{\beta}[Q,R]$ $\overline{\mathsf{L}}$ x, μ $I_0(\beta |J_{x\mu}|)$ \sum *{n,k,C}* $(\mathbf{\Pi})$ *x* $(2am)^{n_x}$ $\bigg)\bigg(\sigma_F(C)\bigg\vert^{\#}$ $\overline{\mathsf{H}}$ *C i*=1 $2\operatorname{Re}(W(C))$ $Z(\beta, m) = \int \left[\prod_x d\chi_x d\chi_x e^{-\chi_x} \right] \int \mathcal{G}(\beta) \left[Q, R \right]$ \overline{Z} = $\int \mathcal{G}_{\beta}$ $\left[\mathcal{Q}, \mathbf{\Lambda} \right] \coprod$ $\int I_0(\beta |J_{x\,\mu}|)$ $\sum_{k\in\mathbb{Z}}$ (1) \vert (2) $\left(\sigma_F(C) \prod 2 \mathop{\rm Re}\nolimits(W(C))\right).$ Γ we can now extend the Γ can now extend the Γ with Γ x tend U-link representation of $2d$ $U(1)$ w *x* ²*am* ¯*^x ^x* | Y α, β \int *u* e $\sqrt{2\pi}$ $\frac{2\pi}{\pi}$ *x* $\$ = \overline{L} *G*[*Q, R*] $\overrightarrow{\mu}$ { $\overrightarrow{n,k,C}$ } $\int_x^{\frac{1}{2}a}$ (2*am*) *nx* σ_F (*C*) $\prod_{i=1} 2$ f *C*(*W*(*C*)) $\left(\frac{C}{C}\right)$
	- i.e. monomers, dimers and electron loops *I*₁(*b*₁) *X*₁ loot *x* rs and electron loo
	- *•* weight of electron loop is *global* and can be *negative* \overline{a} *x* \overline{b} *x* weight of electron loop

$$
W(C) = \prod_{(x,\mu)\in C} \widetilde{U}_{x\mu}
$$

$$
\widetilde{U}_{x\mu} = \frac{I_1(\beta |J_{x\mu}|)}{I_0(\beta |J_{x\mu}|)} \frac{J_{x\mu}}{|J_{x\mu}|}
$$

Monte Carlo

- *•* Gaussian heatbath to update *{Q, R}*
- *•* "Meson" worm to update monomers and dimers
- *•* "Electron" worm to update electron loops and dimers generalized from Adams & Chandrasekharan

Sign problems

 \blacktriangleright The sign $\sigma(C)$ has a bosonic $\sigma_B(C)$ and a fermionic $\sigma_F(C)$ contribution:

$$
\sigma(C) = \text{sign}\left(\prod_{i=1}^{\#C} 2 \text{Re}(W(C_i))\right) \times \sigma_F(C)
$$

$$
\sigma_B(C)
$$

Conclusions

• Tolstoi:

"Happy families are all alike; each unhappy family is unhappy in its own way"

"happy" \longrightarrow sign-pb free

• Finite-density QCD: still a long way to go...

Thank you for your attention

K □ ▶ K @ ▶ K ミ ▶ K ミ ▶ │ ミ │ めんぺ

Backup

Liquid-gas endpoint moves to lower temperatures as β increases

Jump at $\beta = 0$ becomes crossover as β grows

◀ ㅁ ▶ ◀ @ ▶ ◀ 듣 ▶ ◀ 듣 ▶ │ 듣 $\mathcal{P}Q$

Monte Carlo algorithms

Bosonic updates:

- 1. Gaussian heatbath for the auxiliary fields (Q, R) + HS transformations (with the help of an auxiliary $U(1)$ field)
- 2. Metropolis update to correct for electron loop weights

$$
\underbrace{\mathcal{G}_{\beta}[Q,R] \prod_{x,\mu} I_0(\beta|J_{x\mu}|)}_{\text{Heatbath (local)}} \underbrace{\prod_{i=1}^{\#C} 2 \operatorname{Re}(W(C_i))}_{\text{Metropolis (global)}}
$$

\blacktriangleright Fermionic updates:

1. "Meson" worm algorithm: Updates the monomer-dimer cover, with target distribution:

$$
w_m = \prod_x (2am)^{n_x} \prod_{x,\mu} 1
$$

2. Electron worm algorithm: Transforms electron loops into dimers and vice versa, with target distribution:

$$
w_e = \prod_{x,\mu} 1 \prod_{i=1}^{\#C} |2\text{Re}(W(C_i))| = \prod_{x,\mu} 1 \left(\frac{I_1(\beta |J_{x\mu}|)}{I_0(\beta |J_{x\mu}|)} \right)^{b_{x\mu}} \prod_{i=1}^{\#C} |2\cos(\varphi(C_i))|
$$

Worm (local) Metropolis (global)

Adams & Chandrasekharan (2003) Chandrasekharan & Jiang (2006)