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Monte Carlo: no pain, no gain...

Monte Carlo highly e�cient: importance sampling Prob(conf) / exp(�E (conf)/T )

• But all low-hanging fruits have been picked by now

• Further progress requires tackling the sign problem

• Examples:

- real-time quantum evolution:
weight in path integral / exp(� i

~Ht) �! phase cancellations

- Hubbard model:
repulsion Un"n# !

Hubbard-Stratonovich
det" det#

complex except at half-filling (additional symmetry)

- QCD at non-zero density / chemical potential:
integrate out the fermions det(D/ + µ�0)2 (Nf = 2)
complex unless µ = 0 or pure imaginary (additional symmetry)



Lattice QCD: Euclidean path integral

space+ imag. time ! 4d hypercubic grid:

a

quark

gluon

 (x)

Uµ(x) 3⇥3

matrix

Z =
R DUD ̄D e�SE [{U, ¯ , }]

• Discretized action SE :

• �!  ̄(x)Uµ(x) (x + µ̂) + h.c ., Dirac operator
 ̄D/  

• , �! � ReTrUP , UP plaquette matrix Yang-Mills action

a ! 0 , � = 6

g2

0

! 1 1

4

Fµ⌫Fµ⌫

• Monte Carlo: with Grassmann variables  (x) (y)=� (y) (x) ??
Integrate out analytically (Gaussian) ! determinant non-local

Prob(config{U}) / det2 D/ ({U}) e+�
P

P ReTrUP real non-negative when µ = 0



Sampling oscillatory integrands

• Example: Z (�) =
R
dx exp(�x2 + i�x) =

R
dx exp(�x2) cos(�x)

-3  0  3

in
te

gr
an

d

x

lambda=  0
lambda=20

• Z (�)/Z (0) = exp(��2/4): exponential cancellations
! truncating deep in the tail at x ⇠ � gives O(100%) error

“Every x is important” $ How to sample?



Computational complexity of the sign pb

• How to study: Z⇢ ⌘ R
dx ⇢(x), ⇢(x) 2 R, with ⇢(x) sometimes negative ?

Reweighting: sample with |⇢(x)|, and “put the sign in the observable”:

hW if ⌘
R
dx W (x)⇢(x)R

dx ⇢(x)
=

R
dx [W (x)sign(⇢(x))] |⇢(x)|R

dx sign(⇢(x)) |⇢(x)| =
hW sign(⇢)i|⇢|
hsign(⇢)i|⇢|
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• How to study: Z⇢ ⌘ R
dx ⇢(x), ⇢(x) 2 R, with ⇢(x) sometimes negative ?

Reweighting: sample with |⇢(x)|, and “put the sign in the observable”:

hW if ⌘
R
dx W (x)⇢(x)R

dx ⇢(x)
=

R
dx [W (x)sign(⇢(x))] |⇢(x)|R

dx sign(⇢(x)) |⇢(x)| =
hW sign(⇢)i|⇢|
hsign(⇢)i|⇢|

• hsign(⇢)i|⇢| =
R
dx sign(⇢(x))|⇢(x)|R

dx |⇢(x)| = Z⇢

Z|⇢|
= exp(�V

T �f (µ2,T )| {z }
diff. free energy dens.

), exponentially small

Each meas. of sign(⇢) gives value ±1 =) statistical error ⇡ 1p
# meas.

Constant relative accuracy =) need statistics / exp(+2V

T

�f )

Large V , low T inaccessible: signal/noise ratio degrades exponentially

�f measures severity of sign pb.

”Sign problem” is generic roadblock: condensed matter, real time, · · ·



The CPU e↵ort grows exponentially with L

3/T

CPU e↵ort to study matter at nuclear density in a box of given size
Give or take a few powers of 10...
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Reward prospects: the wonderland phase diagram of QCD
from Wikipedia

quark

= 1
3µBaryon

T or µ ! 1:
interaction weak

(asymptotic freedom)

Also:
• crystal phase(s)
• quarkyonic phase
• strangelets
. . .

Caveat: everything in red is a conjecture



Finite µ: what is known?

T

µ

confined

QGP

Color superconductor

Tc

Minimal, possible phase diagram

Nuclear liquid-gas transition (exp.)

crossover (lattice)



Frogs and birds

• Frogs: acknowledge the sign problem

- explore region of small µ
T where sign pb is mild enough

- find tricks to enlarge this region

• Birds: solve the sign pb

- solve QCD ?

- find a model which can be made sign-pb free and paint it “QCD-like”
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Frogs and birds

• Frogs: acknowledge the sign problem

- explore region of small µ
T where sign pb is mild enough

- find tricks to enlarge this region

Taylor expansion, imaginary µ, strong coupling expansion,...

• Birds: solve the sign pb

- solve QCD ?

- find a model which can be made sign-pb free and paint it “QCD-like”

Langevin, fermion bags, QC2D, isospin µ,...

Lefschetz thimble: don’t solve the sign pb and don’t solve QCD

• Think di↵erent: build an analog QCD simulator with cold atoms



µ/T & O(1): how to make the sign problem milder?

• Severity of sign pb. is representation dependent:

Z = Tre��H = Tr

h
e�

�
N H (

P | ih |) e� �
N H (

P | ih |) · · ·
i

Any complete set {| i} will do

If {| i} form an eigenbasis of H, then h k |e� �
N H | li=e�

�
N Ek �kl � 0 ! no sign pb
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µ/T & O(1): how to make the sign problem milder?

• Severity of sign pb. is representation dependent:

Z = Tre��H = Tr
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N H (
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N H (
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Any complete set {| i} will do

If {| i} form an eigenbasis of H, then h k |e� �
N H | li=e�

�
N Ek �kl � 0 ! no sign pb

• Strategy: choose {| i} “close” to physical eigenstates of H

QCD physical states are color singlets ! Monte Carlo on colored gluon links is bad idea

Usual: • integrate over quarks analytically ! det({U})
• Monte Carlo over gluon fields {U}

Reverse order: • integrate over gluons {U} analytically
• Monte Carlo over quark color singlets (hadrons)

• Caveat: must turn o↵ 4-link coupling in �
P

P ReTrUP by setting �=0

� = 6

g2

0

= 0: strong-coupling limit  ! continuum limit (� !1)



µ/T & O(1): how to make the sign problem milder?

• Severity of sign pb. is representation dependent:

Z = Tre��H = Tr

h
e�

�
N H (

P | ih |) e� �
N H (

P | ih |) · · ·
i

Any complete set {| i} will do

If {| i} form an eigenbasis of H, then h k |e� �
N H | li=e�

�
N Ek �kl � 0 ! no sign pb

• Strategy: choose {| i} “close” to physical eigenstates of H

QCD physical states are color singlets ! Monte Carlo on colored gluon links is bad idea

Usual: • integrate over quarks analytically ! det({U})
• Monte Carlo over gluon fields {U}

Reverse order: • integrate over gluons {U} analytically
• Monte Carlo over quark color singlets (hadrons)

Z (� = 0) =
R Q

x d ̄d 
Q

x,⌫

⇣R
dUx,⌫e

�{ ¯ xUx,⌫ x+⌫̂�h.c.}
⌘

Product of 1-link integrals performed analytically



Strong coupling limit at finite density (staggered quarks)
Chandrasekharan, Wenger, PdF, Unger, Wol↵, ...

• Integrate over U’s, then over quarks: exact rewriting of Z (� = 0)

New, discrete ”dual” degrees of freedom: meson & baryon worldlines

Update with worm algorithm: ”diagrammatic” Monte Carlo
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Strong coupling limit at finite density (staggered quarks)
Chandrasekharan, Wenger, PdF, Unger, Wol↵, ...

• Integrate over U’s, then over quarks: exact rewriting of Z (� = 0)

New, discrete ”dual” degrees of freedom: meson & baryon worldlines

Constraint at every site:
3 blue symbols (•  ̄ , meson hop)
or a baryon loop

The dense (crystalline) phase:
1 baryon per site; no space left

! h ̄ i = 0
Update with worm algorithm: ”diagrammatic” Monte Carlo



Sign problem? Monitor �f = � 1
V loghsigni
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• hsigni = Z
Z||

⇠ exp(�V
T �f (µ2)) as expected

• Determinant method ! �f ⇠ O(1). Here, Gain O(104) in the exponent!

- heuristic argument correct: color singlets closer to eigenbasis
- negative sign? product of local neg. signs caused by spatial baryon hopping:

• no baryon ! no sign pb (no silver blaze pb.)
• saturated with baryons ! no sign pb



Results – Phase diagram and Polyakov loop (mq = 0)
w/Unger, Langelage, Philipsen
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t corrections

• Chiral transition (mq = 0): 2nd ! 1rst order as µ increases: tricritical point

• finite-Nt corrections ! continuous-time. (then, no re-entrance)

• Polyakov 6= anti-Polyakov loop. Both “feel” chiral transition.

Polyakov and anti-Polyakov loop vs mu



Toward the continuum limit at O(�) 1406.4397 ! PRL

• Introduce auxiliary plaquette variables qP = {0, 1}:
exp( �Nc

ReTr UP) =
P

qP={0,1}

⇣
�qP ,0 + �qP ,1

�
Nc

ReTrUP

⌘
+ O(�2)

• Sample {qP} ! exact at O(�)

• qP = 1 ! new color-singlet hopping terms qqg , q̄g , from
R
dUUe�(

¯ U �h.c.):
- hadrons acquire structure
- hadron interaction by gluon exchange
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• µ=0: crosscheck with HMC ok; linear (aTc) extrapolation good up to � ⇠ 1
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1st order extrap.

• µ=0: crosscheck with HMC ok; linear (aTc) extrapolation good up to � ⇠ 1

• µ 6=0: - phase boundary more “rectangular” with TCP at corner

TCP
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Going beyond O(�) Vairinhos & PdF, 1409.8442

• � = 0: gauge links U are not directly coupled to each other:

Z (� = 0) =
R Q

x d ̄d 
Q

x,⌫

⇣R
dUx,⌫e

�{ ¯ xUx,⌫ x+⌫̂�h.c.}
⌘

Product of 1-link integrals performed analytically

• � 6= 0: Plaquette 4-link coupling prevents analytic integration of gauge links

Decouple gauge links by Hubbard-Stratonovich transformation:

Hubbard-Stratonovich variant:

� ReTrUP()

�� ReTr

�|Q|2 � Q†U
1

U
2

� U
3

U
4

Q
�

ie. “2-link” action (Fabricius & Haan, 1984)

Q

U

U

U

U

1

2

3

4

Cf. 4-fermi

Further decoupling to “1-link” action ! link integration possible 8�



2-link action ! 1-link ! 0-link Vairinhos & PdF, 1409.8442

• Hubbard-Stratonovich: 8Y 2 C

N⇥N , eTrY †Y = N R
dX eTr(X†Y+XY †

)

where X 2 C

N⇥N with Gaussian measure dX / Q
ij dxijdx

⇤
ij e

�|xij |2
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dX eTr(X†Y+XY †

)
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⇤
ij e

�|xij |2

• 4 ! 2-link action:

Y = (U
1

U
2

+ U†
4

U†
3

), X = Q

S
2�link

= ReTr Q†(U
1

U
2

+ U†
4

U†
3

)

Q

U

U

U

U
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• 2 ! 1-link action:

Y = (U
1

+ QU†
2

), X = R
1

2 QR

R
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+(

(+
UTr ΣS    =Re1−link
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• 1 ! 0-link action: integrate out U analytically – also with fermion sources



QCD with graphs

� > 0 ! Monomers, dimers, baryons, quarks, all in the background of {Q,R}

Prospects

I Generalize the formalism to non-Abelian gauge groups, in particular SU(3):

I Is there a way to resum the residual fermionic d.o.f. (baryons, electrons, ...)
in order to alleviate the fermionic sign problem?



Start with a simpler case: 2d QED

• Extend 0-link representation of 2d U(1) with staggered fermions:

i.e. monomers, dimers and electron loops

• weight of electron loop is global and can be negative

Diagrammatic compact lattice QED

I We can now extend the 0-link representation of compact lattice QED with
N

f

= 1 staggered fermions to arbitrary �:

Z(�,m) =

Z
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Monte Carlo

• Gaussian heatbath to update {Q,R}

• “Meson” worm to update monomers and dimers

• “Electron” worm to update electron loops and dimers
generalized from Adams & Chandrasekharan



Sign problems

I The sign �(C) has a bosonic �
B

(C) and a fermionic �
F

(C) contribution:

�(C) = sign

0
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Conclusions

• Tolstoi:

“Happy families are all alike; each unhappy family is unhappy in its own way”

“happy” �! sign-pb free

• Finite-density QCD: still a long way to go...

Thank you for your attention



Backup



Liquid-gas endpoint moves to lower temperatures as �
increases
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Monte Carlo algorithms

I Bosonic updates:
1. Gaussian heatbath for the auxiliary fields (Q,R) + HS transformations

(with the help of an auxiliary U(1) field)
2. Metropolis update to correct for electron loop weights
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I Fermionic updates:

1. “Meson” worm algorithm: Updates the monomer-dimer cover, with target
distribution:
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2. Electron worm algorithm: Transforms electron loops into dimers and vice
versa, with target distribution:
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Adams & Chandrasekharan (2003)

Chandrasekharan & Jiang (2006)




