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Shapiro and Teukolsky  “Black holes, white dwarfs, and neutron 
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Matter in heavy nuclei and in compact stars is NOT isospin symmetric
5



TOWARD REALITY

The grandcanonical description of heavy hadronic matter requires the 
inclusion of  µI

Our goal: description of nuclear interactions in an isospin asymmetric 
environment
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TOWARD REALITY

The grandcanonical description of heavy hadronic matter requires the 
inclusion of  µI

Our goal: description of nuclear interactions in an isospin asymmetric 
environment

What for?

Decay processes 
in nuclear matter

Nuclear matter relevant for 
for compact stars
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Chiral perturbation theory
(ChPT)
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Expanding 

Chiral perturbation theory is an effective field theory: A realization of 
hadronic matter at soft energy scales 

At non-asymptotic energy scales QCD is a nonperturbative theory 

p ⌧ ⇤ ⇠ 1GeV
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Expanding 

Chiral perturbation theory is an effective field theory: A realization of 
hadronic matter at soft energy scales 

At non-asymptotic energy scales QCD is a nonperturbative theory 

p ⌧ ⇤ ⇠ 1GeV

Qualitative picture: We assume to know (or to have a big deal of 
information about) the nonperturbative vacuum and we “expand” around 
that vacuum. 

Since we are expanding, we do have control parameters

8



The guiding principles are symmetries.  For massless quarks 

For describing the mesonic multiplets, we use the fact that some global 
symmetries of QCD are spontaneously broken

GQCD = SU(Nf )L ⇥ SU(Nf )R ⇥ U(1)B| {z }
� [U(1)e.m.]
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The guiding principles are symmetries.  For massless quarks 

For describing the mesonic multiplets, we use the fact that some global 
symmetries of QCD are spontaneously broken

GQCD = SU(Nf )L ⇥ SU(Nf )R ⇥ U(1)B| {z }
� [U(1)e.m.]

N2
f � 1

SU(Nf )L ⇥ SU(Nf )R ⇥ U(1)B| {z }
� [U(1)e.m.]

! SU(Nf )V ⇥ U(1)B| {z }
� [U(1)e.m.]

The                  broken generators correspond to the (pseudo) Nambu-
Goldstone bosons identified with the pseudoscalar mesons
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Expanding 

mesonic multipletvacuum

⌃ = u⌃̄u with u = eiT ·�/2

L =
F 2
0

4
Tr(D⌫⌃D

⌫⌃†) +
F 2
0

4
Tr(X⌃† + ⌃X†)

SU(Nf ) generators

The            Lorentz invariant Lagrangian density for pseudoscalar mesonsO(p2)

We have introduced the external currents to take into account inmedium 
propagation, formally preserving the Lorentz invariance 

fluctuation
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Expanding

Dµ⌃ = @µ⌃� i
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2
{aµ,⌃} X = 2B0(s+ ip)

external currents

� ⇠ (⇡+,⇡�,⇡0)

(Here Nf = 2)
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Expanding

Dµ⌃ = @µ⌃� i

2
[vµ,⌃]�

i

2
{aµ,⌃} X = 2B0(s+ ip)

external currents

� ⇠ (⇡+,⇡�,⇡0)

Ãµ
I =

1

3
(eA0 + µB , eA)

Ãµ
3 = (eA0 + µI , eA)

Does not couple to mesons

aµ = 0, p = 0, s ⇠ M
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Increasing the isospin charge
Mass splitting
proporional to the isospin charge m⇡0 = m⇡

m⇡� = m⇡ + µI

m⇡+ = m⇡ � µI
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cos↵ = 1

cos↵⇡ = m2
⇡/µ

2
I

for µI < m⇡

for µI > m⇡

L0 independent of n

n3 = 0 residual O(2) symmetry
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Condensation
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Kogut and Toublan PhysRevD.64.034007

Phase diagram

solid line: second order

dotted line: first order
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Kogut and Toublan PhysRevD.64.034007

Phase diagram

solid line: second order

dotted line: first order

In the condensed phases, a superfluid of charged bosons: a superconductor!

M2
D = M2

M = F 2
0 e

2(sin↵)2

A. Mammarella and M.M. Phys.Rev. D92 (2015) 8, 08502514



Mixing and mass splitting

In the conensed phases mesons mix
and have nontrivial mass splitting
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Leptonic decays
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A. Mammarella and M.M. Phys.Rev. D92 (2015) 8, 08502516



Conclusions
• The realistic conditions in heavy nuclei and in compact stars require a 
nonvanishing isospin chemical potential 

• If isospin is broken nontrivial mass dependence

• In the condensed phase there is mixing and mesons have nontrivial masses 
and decay patterns
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Conclusions
• The realistic conditions in heavy nuclei and in compact stars require a 
nonvanishing isospin chemical potential 

• If isospin is broken nontrivial mass dependence

• In the condensed phase there is mixing and mesons have nontrivial masses 
and decay patterns

A. Mammarella, M.M. and S. Carignano in preparation

Outlook
Studying nucleon strong interactions in isospin rich matter
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Upcoming conference

Compact Stars in the QCD phase diagram V
23-27 May 2016 LNGS and GSSI L’Aquila, Italy

• Equation of state and QCD phase transitions

• QCD in astrophysics of compact stellar objects, supernovae and compact stars mergers

• Strangeness in Compact Stars

• Strange Stars

• Hadron production in heavy-ion collisions

• Nonequilibrium and transport phenomena in dense matter

http://agenda.infn.it/event/compact-stars
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Definitions
Superfluid: frictionless fluid with v = 𝞩ϕ   ⇒   𝞩× v = 0  (irrotational or quantized vorticity)

Superconductor: “screening” of magnetic fields: Meissner effect (almost perfect diamagnet) 

Superfluid vs Superconductors

Higgs mechanism Gauge fields with mass, M, 
penetrate for a length 

Superconductor 
“Broken gauge symmetry”

� / 1/M

Goldstone theorem “Easy” transport of the quantum 
numbers of the broken group

Superfluid 
Broken global symmetry
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BOSONS FERMIONS
4He 3He

Fermionic and bosonic superfluids at T=0

electrons

Electrically neutral
(really superfluids)

Neutral or charged
(superfluids or superconductos)
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Bosons “like” to move together, no 
dissipation

4He becomes superfluid at 
Tc ≃ 2.17 K,  Kapitsa et al  (1938)  
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Bosons “like” to move together, no 
dissipation

4He becomes superfluid at 
Tc ≃ 2.17 K,  Kapitsa et al  (1938)  

BOSONS

An arbitrary weak interaction leads to 
the formation of Cooper pairs  

3He becomes superfluid at 
Tc ≃ 0.0025 K, Osheroff (1971)

FERMIONS
4He 3He

Fermionic and bosonic superfluids at T=0

electrons

Electrically neutral
(really superfluids)

Neutral or charged
(superfluids or superconductos)
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