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Matter in heavy nuclei and in compact stars is NOT isospin symmetric
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TOWARD REALITY

The grandcanonical description of heavy hadronic matter requires the
inclusion of

Our goal: description of nuclear interactions in an isospin asymmetric
environment

What for?

I

Decay processes

: Nuclear matter relevant for
in nuclear matter

for compact stars



Chiral perturbation theory
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Chiral perturbation theory is an eftective field theory: A realization of
hadronic matter at soft energy scales
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Expanding
At non-asymptotic energy scales QCD is a nonperturbative theory

Chiral perturbation theory is an eftective field theory: A realization of
hadronic matter at soft energy scales

p << A~1GeV

Qualitative picture: We assume to know (or to have a big deal of
information about) the nonperturbative vacuum and we “expand” around

that vacuum.

Since we are expanding, we do have control parameters




The guiding principles are symmetries. For massless quarks

GQCD — SU(Nf)L X SU(Nf)R X U(l)B
D [U(1)e.m |

For describing the mesonic multiplets, we use the fact that some global
symmetries of QCD are spontaneously broken



The guiding principles are symmetries. For massless quarks

GQCD — SU(Nf)L X SU(Nf)R X U(l)B
D [U(1)e.m |

For describing the mesonic multiplets, we use the fact that some global
symmetries of QCD are spontaneously broken

SU(Nf)L X SU(Nf)R X U(l)B T SU(Nf)V X U(l)B
D [U(1)e.m | D [U(1)e.m |

The N7 —1 broken generators correspond to the (pseudo) Nambu-
Goldstone bosons identified with the pseudoscalar mesons



Expanding

fluctuation SU(Ny) generators

/

Y = udu with = e

T |

vacuum mesonic multiplet

The O(p?) Lorentz invariant Lagrangian density for pseudoscalar mesons

Gl F2 F2 )
= ZOTr(D,,ZD”ET) + ZOTr(XZT +¥XT

. J

We have introduced the external currents to take into account inmedium
propagation, formally preserving the Lorentz invariance
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Expanding (Here v, -2

Qb 1i1 (ﬂ--l-vﬂ-—)ﬂ-())

DMZ — (%Z ¥i 2[?)/;“23]\2{@“, Z} D= 230(8 10T Zp)
external currents
( h
a’,u i 07 D= 07 s~ M
0 = Ora A L DT S L Ll
: U U103
po = diag(fiu, pa) = |
3 2
\_ 8
i
A= §(6A0 + up,eA) i
Does not couple to mesons

Al = (eAg + p,eA)
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Increasing the isospin charge

Mass splitting i
proporional to the isospin charge Mzpo = Mg
M— = My —|_ /’LI what happens for m, = ,UI?

Most general vev

Y =€e'*7 =cosa+in - osino

Lagrangian at the vev

Al F2
Lo(a,ns, A") = Fymy cos o+ — 1 sin® a Al Ag, (1 — nj)

12



Increasing the isospin charge

Mass splitting

proporional to the isospin charge

Most general vev

M0 = My

M- = Mg i 123 what happens i i = ,uj?

10O

Dii=He = Ccos & + 1 - o SIn «

Lagrangian at the vev

A 5

Lo(a,ns, A*) = F2m?2 cos o + 7sm Sty A AR L 2

~

\_

for uy < my
for ur > mx

cosa = 1 Lo independent of n

COS Qr = M2 /U7 ng = 0 residual O(2) symmetry

)
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Condensation
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Phase diagram

solid line: second order

dotted line: first order

Kogut and Toublan PhysRevD.64.034007
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Phase diagram

solid line: second order

dotted line: first order

Kogut and Toublan PhysRevD.64.034007

In the condensed phases, a superfluid of charged bosons: a superconductor!

Mz = M;, = Fie’(sin o)”

14 A. Mammarella and M.M. Phys.Rev. D92 (2015) 8, 085025



Mixing and mass splitting

In the conensed phases mesons mix
and have nontrivial mass splitting

77'+ M| U1 1 U12 T4
70 L U21 U22 7ig At
mass charge
eigenstates eigenstates

U = U (G )
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Mixing and mass splitting

Mass(MeV)

In the conensed phases mesons mix
and have nontrivial mass splitting
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Mixing and mass splitting

Mass(MeV)

In the conensed phases mesons mix
and have nontrivial mass splitting
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Leptonic decays

Processes #_ — (¢*v, and el
1
FO . °
il ¢ = u solid line
N m condensation ¢ = e dashed line

i F,u‘VM/FOﬂ
1011 F,u+vM/FO#
T Fe‘Ve/l—‘Oe
T Fe+ ve/l—‘Oe
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Conclusions

* The realistic conditions in heavy nuclei and in compact stars require a
nonvanishing isospin chemical potential

* If isospin is broken nontrivial mass dependence

* In the condensed phase there is mixing and mesons have nontrivial masses
and decay patterns
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Conclusions

* The realistic conditions in heavy nuclei and in compact stars require a
nonvanishing isospin chemical potential

* If isospin is broken nontrivial mass dependence

* In the condensed phase there is mixing and mesons have nontrivial masses
and decay patterns

Outlook

Studying nucleon strong interactions in isospin rich matter

A. Mammarella, M.M. and S. Carignano in preparation
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Upcoming conference

Compact Stars in the QCD phase diagram V

23-27 May 2016 LNGS and GSSI L’ Aquila, Italy

http://agenda.infn.it/event/compact-stars

e Equation of state and QCD phase transitions

 QCD in astrophysics of compact stellar objects, supernovae and compact stars mergers
e Strangeness in Compact Stars

e Strange Stars

 Hadron production in heavy-ion collisions

* Nonequilibrium and transport phenomena in dense matter
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Superfluid vs Superconductors

-
Definitions
Superfluid: frictionless fluid withv = V¢ = Vxv=0 (irrotational or quantized vorticity)

Superconductor: “screening” of magnetic fields: Meissner effect (almost perfect diamagnet)
{ 2,

Superfluid
Broken global symmetry

Goldstone theorem = Easy” transport of the quantum
numbers of the broken group

Superconductor

“Broken gauge symmetry”

{ ; Gauge fields with mass, M,
L > penetrate for a length A oc 1/M

21



Fermionic and bosonic superfluids at T=0

4He BOSONS 5He FERMIONS

electrons

Electrically neutral Neutral or charged
(really superfluids) (superfluids or superconductos)
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Fermionic and bosonic superfluids at T=0

4
He  posons

Bosons “like” to move together, no

dissipation

“He becomes superfluid at

T. = 2.17 K, Kapitsa et al (1938)

Electrically neutral
(really superfluids)

29

‘He FERMIONS

electrons

Neutral or charged
(superfluids or superconductos)



Fermionic and bosonic superfluids at T=0

= 3
He  gosons He FERMIONS
electrons
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Bosons “like” to move together, no An arbitrary weak interaction leads to
dissipation the formation of Cooper pairs
“He becomes superfluid at He becomes superfluid at
T. = 2.17 K, Kapitsa et al (1938) T. = 0.0025 K, Osheroff (1971)
Electrically neutral Neutral or charged

(really superfluids) (superfluids or superconductos)
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