The INFN-SUMA project

R. (lele) Tripiccione
tripiccione@fe.infn.it

SM&FT 2015
Bari, December 9™ - 11™ 2015

SU:MA

mailto:tripiccione@fe.infn.it

On the menu today

What is SUMA?
A quick survey of the project.

Learning to use “new” computers for physics efficiently and (if
possible) comfortably.

Conclusions and take-away lessons.

SUMA: what does it mean?

We have drunk suma (soma??) and become immortal;
We have attained the light, the Gods discovered.
(Rigveda 8,48,3)

One cubic centimetre
cures ten gloomy

sentiments.
(A. Huxley,
Brave New World, 1932)

A quick survey of the SUMA project

An INFN “special-project” (progetto premiale) running for three years
(Jan. 2012 — Dec. 2015); focus is the support of HPC computing for
theoretical physics:

NO LONGER developing our own machines (terribly unfashionable
today), but rather --->

1.- Making sure INFN physicists have access to HPC resources
2.- Supporting theoretical | computational post-docs

3.- Learning to use “new” HPC computers as efficiently (and
comfortably) as possible

the SUMA project: access to HPC machines

An effort going into two different directions:
1) Agreements with large computing centres (CINECA)

Access to 100 Mcore-hours | year on the CINECA Tier-0 machine

(BG/Q) - (nicely matches ~100 Mcore-hours | year from PRACE
projects with INFN Pls)

SUMA has cofunded the CINECA Tier-1 Cluster (traditional multi-core
CPUs + GPUs + Intel |MIC, 1 Pflops peak)

Reserved use of 20% of the machine, i.e. ...
(additional ~30 Mcore-hours BG /Q-equivalent)

the SUMA project: access to HPC machines

An effort going into two different directions:

2) A smaller INFN-maintained cluster for algorithm /code development,
tests, fine-tuning of programs ...

Some 1000 computing cores
Infiniband QDR
+ Experimental nodes (GPUs)

up and running since Sept. 2013

the SUMA project: post-docs

Several post-docs hired for (on average) 2 years

M. Brambilla (Parma, LGT)

E. Calore (Ferrara, LBE)

L. Scorzato (Trento, LGT)

A. Feo (Parma, Grav.)

G. Engel (Milano, LGT)

M. Schrock (Roma 3, LGT)

F. Negro (Pisa, LGT)

G. Caruso (Pisa, Programming)
F. Stellato (Roma 2, @-Bio)

P. Vilaseca Mainar (Roma, LGT)
L. Riggio (Roma3, LGT)

the SUMA project: any results??

As of Nov. 30™, 2015 (and counting):
- 35 journal papers (LGT, nucl. Physics, q-bio, complex systems)
- 38 confererence papers (as above...)

Details on some physics results at this conference, see talks by:
C. Bonati

F. Cuteri
L. Giusti
M. Mesiti
S. Morante
A. Papa

SUMA: learning to use “new” computers

Computers are quickly changing todays, in terms of
- their architecture
- (more directly relevant) the way one uses them efficiently

Problems come from the fact that computers are increasingly parallel in
structure and that many decades of computer programming experience
have neglected this option...

However, this is going to stay in the foreseeable future, for basic reasons
connected to the physics constraints on how computer work

Physics hints on how computers should be

Basic physics reasoning provides a few hints on how computers should
be done....

1) Parallellelism has good reasons to be the way to go ...
... or parallel computing is the physics sponsored way to compute:

The basic object in computers today is the transistor

Industry learns to build smaller and smaller transistors. As \—(Q
obviously Nocl/N* but speed scales less favourably Toc\

Trade rules: perform more and more things in parallel
rather than a fixed number of things faster and faster

Physics hints on how computers should be....

Basic physics reasoning provides a few hints on how computers should
be done....

2) Physics moves information locally :a: : : : : : :
This has to go over to the computer structure -> ceoecocee
Keep data close in space to where it is processed %: : : ——— :
o & & & & & & O
Failure to do so will sooner or later o0 0000
k. o & & & & .J

bring a data bottleneck:

'f
[} .P"‘:

- —

- —

—

; Pe—

— @

.~ jm—

. ——
2) - -

\

A historical remark:

A historical remark:

Doing things one after the other
(serially)

Keeping data storage and data processing separated (in principle and
practice)

...are the cornerstones of the famous von Neumann model of computing

Q: So was Von Neumann wrong?
A: No

he was interested in the N ,>1 regime

while today we are approaching the N >0 regime

SUMA: learning to use “new” computers

Computer companies have apparently learned the lessons of the
previous slides and invented two new computer breeds:

- GPUs (e.g., NVIDIA)

- multi-many core processors, (e.g., Intel MICs)

This basically boils down to:

- Putting many smaller cores
within one chip

- Having each instruction operate
on many data items

- Keeping a sizeable amount of data
within the chip (large caches)

Intel® Pentium® processor (1993)

MMX™ (1997) lustrated with the number of 32bit data processed

-- by one "packed” instruction

Intel® Streaming SIMD Extensions (Intel® SSE in 1999 to Intel®™ S5E4.2 in 2008)

Intel® Advanced Vector Extensions (Intel® AVX in 2011 and Intel® AVX2 in 2013)

Intel Many Integrated Core Architecture (Intel® MIC Architecture in 2012)

Questions worth being answered...

Are current massively-parallel processors efficient compute
engines for our typical (massively-parallel) algorithms ...

... if you are ready to make an “unreasonable” effort to adapt
your algorithm /code to the machine?

Is there a way to squeeze a large fraction of the potentially
available computing power with a “reasonable” effort?

Is this “reasonable effort” re-usable, as new processors /computers
become available in the near future.

Can we have “ (mildly-)quantitative” answers to these questions?

Trying to provide (experimental) answers...

Direct experience in 2 real-life cases:

Fluid — dynamics using the Lattice Boltzmann (LB) method

LQCD with staggered fermions.

The LB method

LB is discrete in position and momentum space.

LB solves numerically the Boltzmann equation on a lattice with
sufficient accuracy (i.e. up to a given power of momenta) to

reproduce the features of the fluid-flow described by the Navier-
Stokes equations (dx>1)

ek b I, 4

The LB method

An extended set of tests on the D2Q37 LB model

Surprisingly similar to LGT simulations in many of its
computational details.

- Massively-parallel algorithm, easily partitioned on many nodes
- Just two computationally critical kernels (collide - propagate)

- No significant role of global sums (at variance with LQCD)

Trying to provide (experimental) answers...

In practical terms: can we make a transition from here

. Original

Trying to provide (experimental) answers...

In practical terms: can we make a transition from here to here

...... Original
-__] -

.... and be happy with performance and portability

Our Graal: openACC

Is there a programming language that makes this perspective
possible and efficient?

It looks like it does: it is called openACC (or maybe openMP4)

Let’s have a look ---->

inline void propagate (
const data_tx* restrict prv, data_tx restrict nxt) {
int ix, iy, site_1i;
#pragma acc kernels present(prv) present(nxt)
#pragma acc loop gang independent
for (ix=HX; ix < (HX+SIZEX); ix++) {
#pragma acc loop vector independent
for (iy=HY; iy<(HY+SIZEY); iy++) {
site_i = (ixx*NY) + 1iy:
nxt [site_i] = prv] site i-—-3xNY+1];
nxt [NX«NY+site_i] = prv[NX*NY+site_ i-—3xNY |];

by

Our Graal: openACC

How much do we lose in performance, if we are only ready to
make a reasonable effort??

Tesla K40 Tesla K80
Code Version CUDA OCL OACC CUDA OCL OACC
Tprop [msec] 13.78 15.80 13.91 7.60 7.79 7.51
GB/s 169 147 167 306 299 310
Ep 59% 51% 58% 64% 62% 65%
Ig. [msec] 4.42 6.41 2.76 1.11 1.58 0.71
1 cotide [msec] 39.86 136.93 78.65 16.80 61.73 36.39
MLUPS 99 29 50 234 64 108
En 45% 13% 23% 52% 14% 249
Twc/iter [msec] 58.07 159.14 96.57 26.84 T1.12 44,61

MLUPS 68 25 41 147 55 88

Our Graal: openACC

Once we have our nice openACC code, can we use it (without
changes) on a different (yet a new) computer????

E5-2630 v3 | GK210 | Hawaii XT
compiler ICC15 ICCI15 PGI159 | NVCC7.5 NVCC17.5 PGI159 | GCC PGI15.9
model Intrinsics OMP OACC CUDA OCL OACC | OCL OACC
propagate pertf. [GB/s] 38 32 32 154 150 155 232 216
Ep 65% 54% 54% 64% 62% 65% | 73% 70%
collide perf. [IMLUPS] 14 11 12 117 32 55 76 54
collide perf. [GFLOPs] 02 71 78 760 208 356 494 351
E. 30% 23% 25% 52% 14% 249% | 19% 14%

Tot perf. [MLUPS] 11.5 9.2 9.8 | 80.7 28.1 45.6 | 63.7 47.0

From LB to LQCD

A LQCD code with staggered fermions + improved action + (two
level) stout smearing

earlier moved to GPUs by M. Delia and collaborators
... and now going back to good old C + openACC

The physics problem: what happens to the quark potential in an
external magnetic field R

09 -1

o B=0 -
o B=24 XY g
E & B Xvz S 1
. ° S ,,’:,::,’ﬁ::’ ”_‘ﬂg—’
(C. Bonati et al., arXiv:1403:6094) =] A
S pel e
z AT
5 ﬁ’;sf:i/
(40"N4) — (483 x 96) o
she?”

From LB to LQCD

Code fully (re-)written and tested (C + openACC)

Almost ready for physics runs
Preliminary performance tests on K20 — K40 — K80 GPUs
Comparison against the golden benchmark today (BG/Q)

Measured Expected

1 K20 GPU — 80BG/Qcores (93) /
1 K40 GPU

— 96 BG /@ cores (110)
1 K80 GPU — 160 BG/Q cores (190)
1 “heavy” GPU node —1300 BG /@ cores

Is it all gold that glitters??

Obuviously not

Some new processors not yet supported by openACC | openMP4
Non negligible (but acceptable) performance gap still present

Not all programs automatically OK...

And ...

The problem in the next few years will again be in the match
between processing power and communication capacity among
compute nodes (Nothing as good as BG /X will be available in

the near future....)

Is it all gold that glitters (2) ??

Still, after some (non
trivial) tuning is done
(once for all) ...

Reasonable windows for
efficiency can be found

round-trip time [usec]

14000

12000 [

10000 [

8000

6000 [

4000

2000

cudawné : GPUO-cudawn7:GPUO0 w/o GPU-DIRECT 4X ---%---
cudawné : GPUO-cudawn7 :GPU0 w/o GPU-DIRECT 8X ---3--- B
cudawné : GPUO-cudawn7:GPUO w/ GPU-DIRECT 4X ---#--- |.-"

6:GPUO-cudawn7:GPUQ w GPU-DIRECT 8X ol

cudawn

ot

L
™
eet®

"

""""

0.003

0.002

seconds

0.001

1 |
5000 10000
packet size [KB]

e—e Communication time (remote gpu-direct)
e—e Computation time

20000

Concluding remarks

Some specific support is needed (at least in Italy) for the
theoretical physics | computational community

SUMA has probably provided a fair amount of support in the last
three years

The future however looks gloomy, as it is not clear whether a
second round will be funded

Lack of “continuous” support may have dramatic consequences

Concluding remarks (2)

Fighting against computer programming to have fast-running
codes has always been in the rules of the game

This has become more serious in recent years, as computer
evolution has become faster

Good news is that we start to have programming environments

that are very close to providing portable AND efficient codes with
reasonable human effort.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

