

SM&FT2015 – Bari, December 11

TURBULENCE OVER A FRACTAL FOURIER SKELETON

ALESSANDRA S. LANOTTE

Istituto di Scienze dell'Atmosfera e del Clima

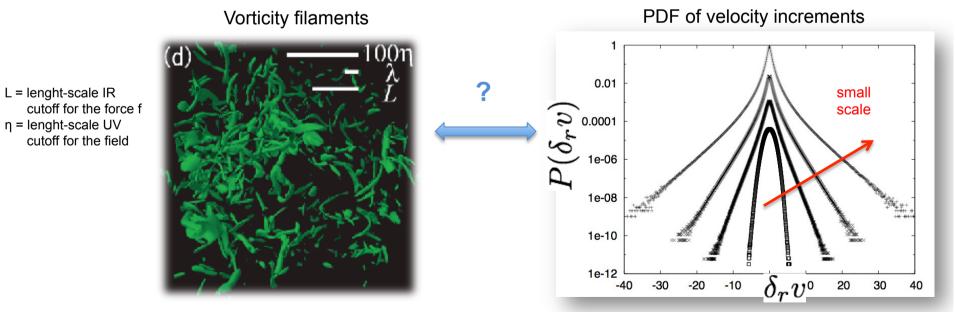
INFN and CNR - ISAC Lecce, ITALY

in collaboration with

Roberto Benzi, Luca Biferale, Shiva K. Malapaka

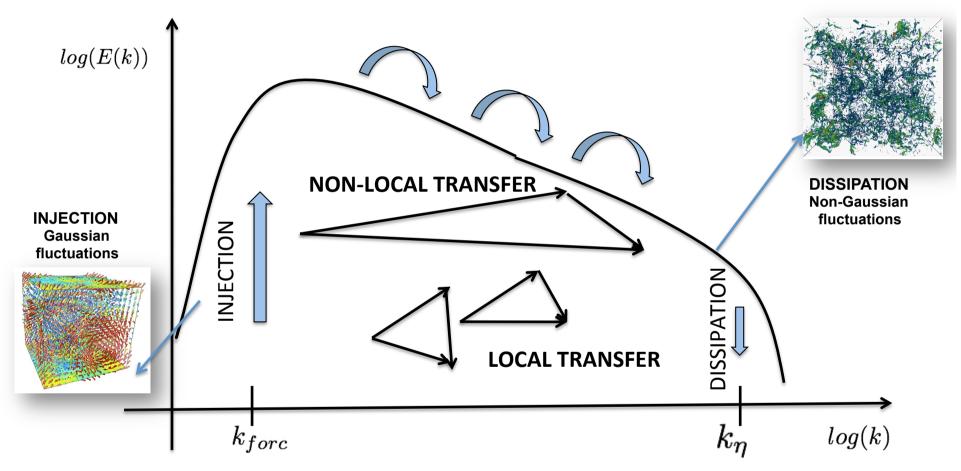
Univ. of Rome Tor Vergata, Italy

Federico Toschi Technical Univ. Eindhoven, The Netherlands

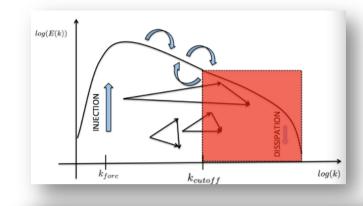

HOMOGENEOUS AND ISOTROPIC (classical) TURBULENCE

3D Navier-Stokes equations for an incompressible flow

$$\begin{cases} \partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla p + \nu \Delta \mathbf{v} + \mathbf{f} \\ \nabla \cdot \mathbf{v} = 0 \\ \clubsuit & \text{Boundary conditions} \end{cases}$$


$$Re = \frac{UL}{\nu} \to \infty$$

- out-of-equilibrium, multi-scale interactions
- fully chaotic
- vortex-stretching mechanism amplifies vorticity
- Statistical laws with universal scaling exponents for $< (\delta_r v) > \sim r^{z(p)}$ with $z(p) \neq p/2 z(2)$


THE PROBLEM: Intermittency, i.e. scale invariance of statistical laws is broken

ON THE ORIGIN OF INTERMITTENT CORRECTIONS IN 3D HOMOGENEOUS AND ISOTROPIC TURBULENCE

CAN WE HAVE A BETTER UNDERSTANDING OF INTERMITTENCY BY **DECIMATING** INTERACTIONS IN THE NON LINEAR TERM ?

DECIMATION TO A FRACTAL SET OF FOURIER MODES

log(E(k))

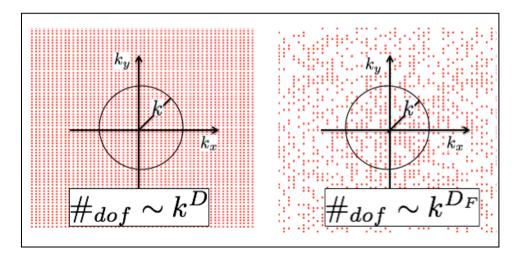
NJECTION

 k_{forc}

0

 Truncation of modes |k| > k_{cutoff} Example : Closures, Large-eddy simulations

- Random **DECIMATION** of Fourier modes on a Fractal set of dimension D_F
- Degres of freedom reduction $\#_{dof} \sim k^{DF}$ with a tuning parameter


$$\mathbf{v}(\mathbf{x},t) \rightarrow \mathbf{v}^{\mathbf{D}_{\mathbf{F}}}(\mathbf{x},\mathbf{t}) = \mathcal{P}^{\mathbf{D}_{\mathbf{F}}}\mathbf{v}(\mathbf{x},\mathbf{t}) = \sum_{\mathbf{k}\in\mathcal{Z}^{3}} \mathbf{e}^{\mathbf{i}\mathbf{k}\mathbf{x}}\gamma_{\mathbf{k}}\hat{\mathbf{v}}(\mathbf{k},\mathbf{t})$$
Fourier modes are decimated ($\gamma_{\mathbf{k}}$ = 0) with probability ~ $1 - k^{D_{F}-3}$

log(k)

SELF-SIMILAR REDUCTION OF 3D NAVIER-STOKES DYNAMICS

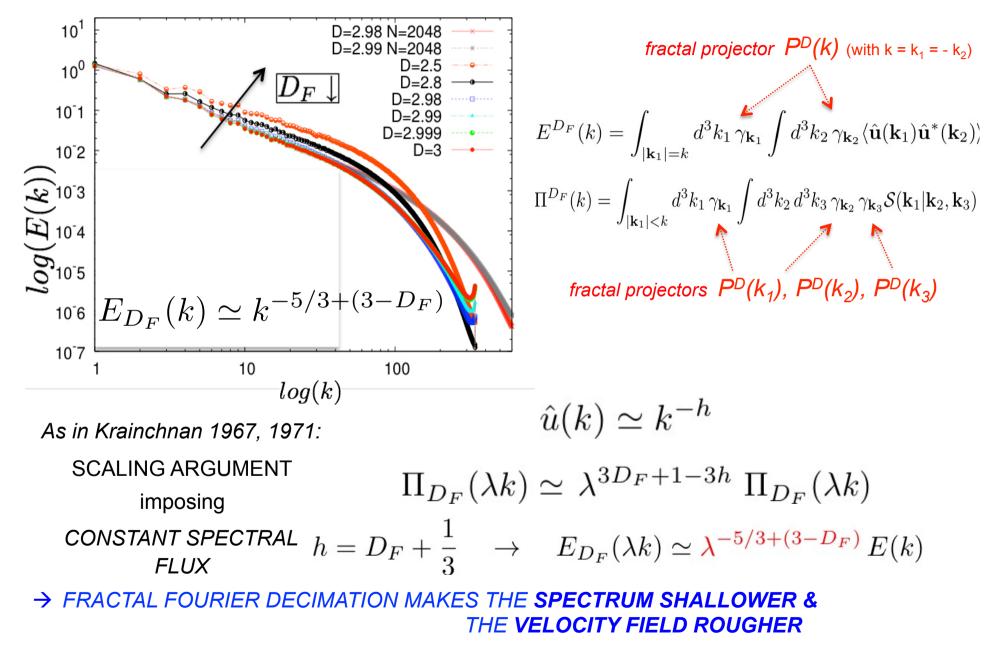
$$\mathbf{u}(\mathbf{x},t) \to \mathbf{v}^{D_F}(\mathbf{x},t) = \mathcal{P}^{D_F}\mathbf{u}(\mathbf{x},t) = \sum_{\mathbf{k}\in\mathcal{Z}^3} e^{i\mathbf{k}\mathbf{x}} \gamma_{\mathbf{k}} \,\hat{\mathbf{u}}(\mathbf{k},t)$$
$$\gamma_k = \begin{cases} 1 & \text{with probability } h_k = k^{D_F-3} \\ 0 & \text{with probability } 1 - h_k. \end{cases}$$

$$\partial_t \mathbf{v}^{D_F} + \mathcal{P}^{D_F} [\mathbf{v}^{D_F} \cdot \nabla \mathbf{v}^{D_F}] = -\mathcal{P}^{D_F} \nabla p + \nu \Delta \mathbf{v}^{D_F} + \mathcal{P}^{D_F} f$$

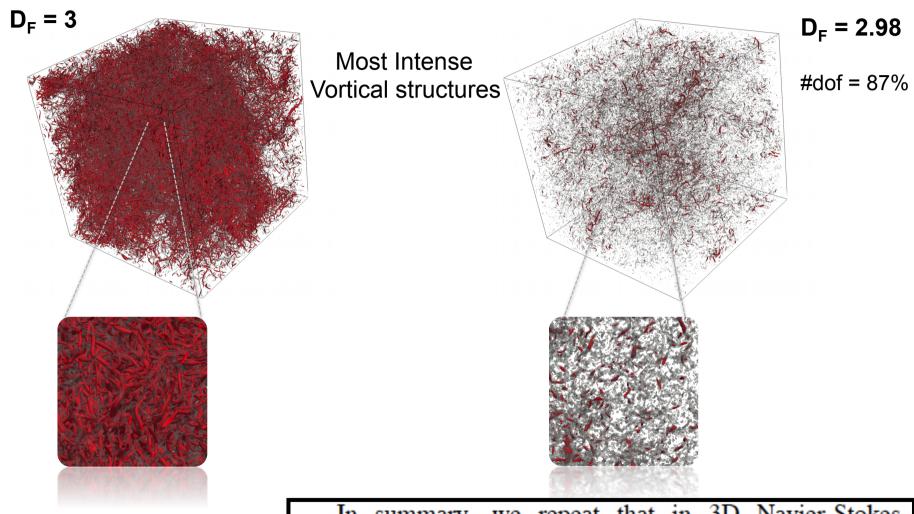
SELF-SIMILAR GALERKIN TRUNCATION

- Decimation is random but frozen in time
- same inviscid invariants as 3D NS
- Statistical symmetries preserved
- no external scale introduced

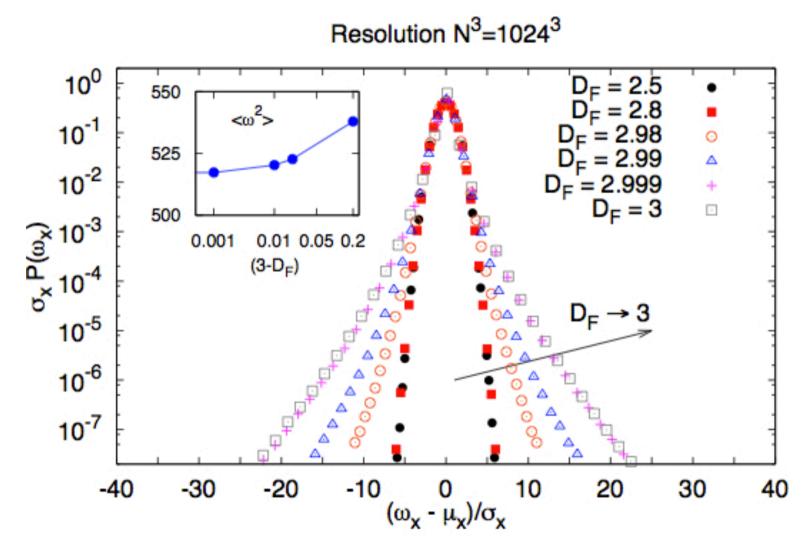
Frisch, Pomyalov, Procaccia, Ray *"Turbulence in non-integer dimensions by fractal Fourier decimation"* PRL 2012 Grossmann, Lohse, Reeh *"Developed Turbulence: From Full Simulations to Full Mode Reductions"* PRL 1996


DNS OF TURBULENCE ON A FRACTAL FOURIER SKELETON

> Periodic, regular grid N³ points; pseudo-spectral solver

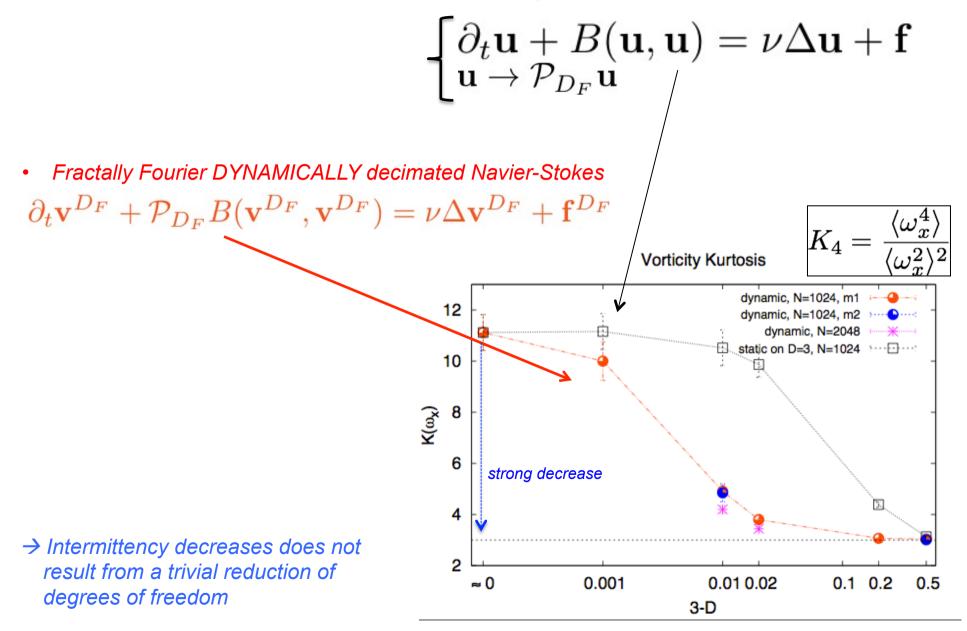

> Homogeneous, isotropic forcing f yielding a constant energy injection rate

LINEAR CORRECTION TO KOLMOGOROV "-5/3" SPECTRUM EXPONENT



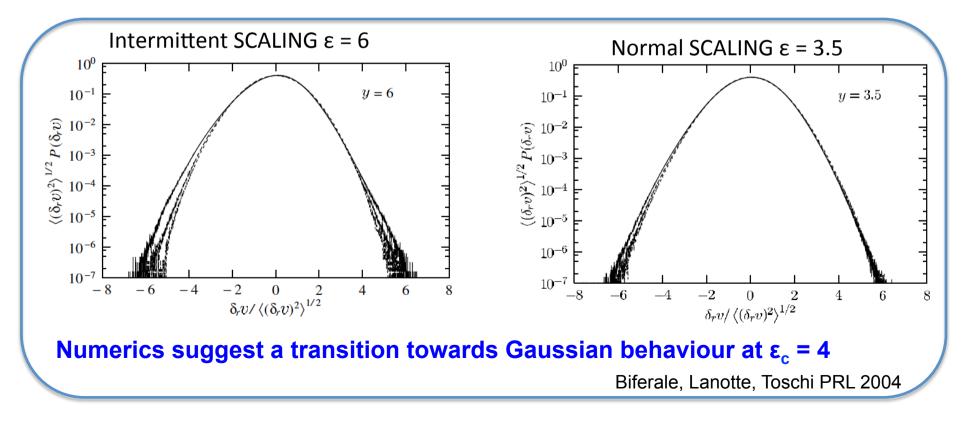
WHAT ABOUT SMALL SCALES ?

HINT: S. Grossmann, D. Lohse , A. Reeh, PRL 1996 In summary, we repeat that in 3D Navier-Stokes turbulence the main origin of intermittency corrections seems to be the proper resolution of the phase space at the scale of interest. Reflections from the VSR seem


VORTICITY PDF AT CHANGING FRACTAL DIMENSION D_F

At D_F =2.98, the fluctuations have decreased their intensity by ~ 30% already. while mean enstrophy is unchanged

FRACTAL FOURIER DECIMATION : dynamics or geometry ?


• Fractal Fourier APOSTERIORI Projection on 3D Navier-Stokes realizations

RANDOM NAVIER-STOKES DYNAMICS

$$\begin{cases} \partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla p + \nu \Delta \mathbf{v} + \mathbf{f} & \text{Forster, Nelson, Stephen PRA 1977} \\ \nabla \cdot \mathbf{v} = 0 \\ \langle f_i(\mathbf{k}, t) f_j(\mathbf{k}', t') \rangle \simeq k^{4-D-\epsilon} P_{ij}(\mathbf{k}) \,\delta(\mathbf{k} + \mathbf{k}') \,\delta(t - t') \end{cases}$$

RG-calculation for $\epsilon \rightarrow 0$ and D=3 predicts energy spectrum $E(k) \sim k^{1-2/3\epsilon}$ For $\epsilon = 4$, Kolmogorov spectrum recovered E(k) = k^{-5/3}

SUMMARISING

We studied NAVIER-STOKES TURBULENCE in non-integer dimensions $D_F = 3 \rightarrow 2.5$

- \rightarrow The method is a RANDOM REMOVAL OF DEGREES OF FREEDOM
- SAME INVISCID INVARIANTS (kinetic energy and helicity)
- and STATISTICAL SYMMETRIES : HOMOGENEITY & ISOTROPY
- 1 tuning parameter : Fractal Dimension D_F
- → The Fourier Decimated Navier-Stokes eqs. are SELF-SIMILAR, which allows to speculate on the importance of the anomalous vs scale-invariant realizations
- → The goal: how intermittency is modified at changing the vortex stretching mechanism and the weight of local and non-local interactions in the NS equations.

- For the MEAN FLUCTUATIONS, SMALL CORRECTIONS
 - a LINEAR CORRECTION " $-5/3 + (3 D_F)$ " in the Kinetic Energy Spectrum exponent
- For the LARGE FLUCTUATIONS, HUGE CORRECTIONS!!
- i. An almost Gaussian statistics is observed at D_F =2.98 already. The system is Gaussian at D_F =2.8.
- ii. Critical dimension at which intermittency vanishes?
- The absence of some Fourier modes modifies the stat of all the others.
- *i.* Either by killing singular solutions responsible of the intermittent behaviour
- *ii.* Or by modifying the nature of coherent structures governing vortex stretching and turbulent bursts
- Is INTERMITTENCY a perturbative effect in (3 D_F) ?
 Possible if singular solutions responsible for anomalous scaling survive tiny decimations

Turbulence on a Fractal Fourier set Lanotte, Benzi, Biferale, Malapaka, Toschi, to appear on Phys. Rev. Lett. (2016)

ACKNOWLEDGEMENTS This work is partially financed by ERC AdG NewTURB (L. Biferale) DNS performed with a EU-PRACE grant @ CINECA (A. Lanotte).

