Tetraquarks, pentaquarks and the like Old and new views

G.C. Rossi

Dipartimento di Fisica - Università di Roma Tor Vergata INFN - Sezione di Roma Tor Vergata Centro Fermi - Roma

December 10, 2015

Outline of the talk

- Pre-history (from 1968 to 2003: hints for tetra- & penta-quarks)
 - Motivation & Background
 - Duality (Rosner, 1968)
 - $MM \rightarrow MM, MB \rightarrow MB, B\bar{B} \rightarrow B\bar{B}$
 - Large N-expansions
 - $1/N_c @ g^2 N_c = const$ ('t Hooft, 1973)
 - $1/N_f @ g^2 N_c = const$ and $N_f/N_c = const$ (Veneziano, 1975)
 - Experiments (1975 -1980 & around 2003)
 - LEAR S [$M \sim 1936$, $\Gamma \sim 4 8$ MeV] & other candidates
 - A theoretical picture emerged from QCD predicting
 - "hidden baryon" states → Baryonium (Rossi, Veneziano, 1977)
- History (2003 today)
 - More "stable" experimental data (after 2011)
 - A better understanding of Baryonium (Rossi, Veneziano, 2015)
 - Phenomenology of tetra-quarks, penta-quarks, (Yaffe, 1977 - Guerrieri, Maiani, Polosa, Riquer, ... 2004 - 2015)

米国 とくほとくほど

The multi-quark saga

4q's & 5q's discovery history

G.C. Rossi (Tor Vergata)

Tetra- & penta-quarks

The evidence of 5q's states - Experiments

G.C. Rossi (Tor Vergata)

The evidence of 4q's states - Experiments

G.T. Bodwin, E. Braaten, E. Eichten, S.L. Olsen, T.K. Pedlar, J. Russ arXiv:1307.7425v3 [hep-ph]

State	M (MeV)	$\Gamma (MeV)$	J^{PC}	Process (decay mode)	Experiment $(\#\sigma)$	1^{st} observation
X(3823)	$3823.1 {\pm} 1.9$	< 24	??-	$B \rightarrow K + (\chi_{c1}\gamma)$	Belle [4] (3.8)	Belle 2013
X(3872)	$3871.68 {\pm} 0.17$	< 1.2	1^{++}	$B \to K + (J/\psi \pi^+ \pi^-)$	Belle [5, 6] (12.8), BABAR [7] (8.6)	Belle 2003
				$p\bar{p} \rightarrow (J/\psi \pi^+\pi^-) + \dots$	CDF [8–10] (np), DØ [11] (5.2)	
				$B \to K + (J/\psi\pi^+\pi^-\pi^0)$	Belle $[12]^a$ (4.3), BABAR $[13]^a$ (4.0)	
				$B \to K + (D^0 \bar{D}^0 \pi^0)$	Belle [14, 15] ^a (6.4), BABAR [16] ^a (4.9)	
				$B \rightarrow K + (J/\psi \gamma)$	Belle $[17]^a$ (4.0), BABAR $[18,19]^a$ (3.6)	
				$B \rightarrow K + (\psi(2S) \gamma)$	$BABAR [19]^a$ (3.5), Belle $[17]^a$ (0.4)	
				$pp \to (J/\psi \pi^+ \pi^-) + \dots$	LHCb [20] (np)	
X(3915)	3917.5 ± 1.9	20 ± 5	0^{++}	$B \rightarrow K + (J/\psi \omega)$	Belle [21] (8.1), BABAR [22] (19)	Belle 2004
				$e^+e^- \to e^+e^- + (J/\psi\omega)$	Belle [23] (7.7), BABAR [13, 24](7.6) $$	
$\chi_{c2}(2P)$	3927.2 ± 2.6	24 ± 6	2^{++}	$e^+e^- \to e^+e^- + (D\bar{D})$	Belle [25] (5.3), BABAR [26] (5.8)	Belle 2005
X(3940)	3942^{+9}_{-8}	37^{+27}_{-17}	$?^{?+}$	$e^+e^- \to J/\psi + (D^*\bar{D})$	Belle [27] (6.0)	Belle 2007
				$e^+e^- \to J/\psi + ()$	Belle [28] (5.0)	
G(3900)	3943 ± 21	52 ± 11	$1^{}$	$e^+e^- \to \gamma + (D\bar{D})$	BABAR [29] (np), Belle [30] (np)	BABAR 2007
Y(4008)	4008^{+121}_{-49}	$226{\pm}97$	$1^{}$	$e^+e^- \to \gamma + (J/\psi \: \pi^+\pi^-)$	Belle [31] (7.4)	Belle 2007
Y(4140)	4144.5 ± 2.6	15^{+11}_{-7}	$?^{?+}$	$B \rightarrow K + (J/\psi \phi)$	CDF [32, 33] (5.0), CMS [34] (>5)	CDF 2009
X(4160)	4156^{+29}_{-25}	$139\substack{+113 \\ -65}$	$?^{?+}$	$e^+e^- \to J/\psi + (D^*\bar{D}^*)$	Belle [27] (5.5)	Belle 2007

Narrow states are below the **BB** threshold

G.C. Rossi (Tor Vergata)

Tetra- & penta-quarks

The evidence of 4q's states - Experiments

G.T. Bodwin, E. Braaten, E. Eichten, S.L. Olsen, T.K. Pedlar, J. Russ arXiv:1307.7425v3 [hep-ph]

State	M (MeV)	Γ (MeV)	J^{PC}	Process (decay mode)	Experiment $(\#\sigma)$	$1^{\rm st}$ observation
Y(4260)	4263^{+8}_{-9}	95 ± 14	1	$e^+e^- \to \gamma + (J/\psi\pi^+\pi^-)$	$B\!A\!B\!A\!R$ [35, 36] (8.0), CLEO [37] (5.4)	BABAR 2005
					Belle [31] (15)	
				$e^+e^- \rightarrow (J/\psi \pi^+\pi^-)$	CLEO [38] (11)	
				$e^+e^- \rightarrow (J/\psi \pi^0 \pi^0)$	CLEO [38] (5.1)	
Y(4274)	$4274.4\substack{+8.4\\-6.7}$	32^{+22}_{-15}	??+	$B \rightarrow K + (J/\psi \phi)$	CDF [33] (3.1)	CDF 2010
X(4350)	$4350.6\substack{+4.6\\-5.1}$	$13.3\substack{+18.4 \\ -10.0}$	$0/2^{++}$	$e^+e^- \to e^+e^- \left(J/\psi \phi \right)$	Belle [39] (3.2)	Belle 2009
Y(4360)	4361 ± 13	$74{\pm}18$	$1^{}$	$e^+e^- \rightarrow \gamma + (\psi(2S)\pi^+\pi^-)$	$B\!A\!B\!A\!R~[40]$ (np), Belle [41] (8.0)	BABAR 2007
X(4630)	$4634^{+ 9}_{-11}$	92^{+41}_{-32}	$1^{}$	$e^+e^- \rightarrow \gamma \left(\Lambda_c^+ \Lambda_c^- \right)$	Belle [42] (8.2)	Belle 2007
Y(4660)	4664 ± 12	48 ± 15	1	$e^+e^- \rightarrow \gamma + (\psi(2S) \pi^+\pi^-)$	Belle [41] (5.8)	Belle 2007
$Z_{c}^{+}(3900)$	3898 ± 5	51 ± 19	$1^{?-}$	$Y(4260) \rightarrow \pi^- + (J/\psi \pi^+)$	BESIII [43] (np), Belle [44] (5.2)	BESIII 2013
				$e^+e^- \rightarrow \pi^- + (J/\psi \pi^+)$	Xiao et al. [45] ^a (6.1)	
$Z_1^+(4050)$	4051_{-43}^{+24}	82^{+51}_{-55}	?	$B \rightarrow K + (\chi_{c1}(1P) \pi^+)$	Belle [46] (5.0), BABAR [47] (1.1)	Belle 2008
$Z_2^+(4250)$	4248^{+185}_{-45}	177^{+321}_{-72}	?	$B \rightarrow K + (\chi_{c1}(1P) \pi^+)$	Belle [46] (5.0), BABAR [47] (2.0)	Belle 2008
$Z^{+}(4430)$	4443^{+24}_{-18}	107^{+113}_{-71}	?	$B \rightarrow K + (\psi(2S) \pi^+)$	Belle [48, 49] (6.4), $B\!A\!B\!A\!R$ [50] (2.4)	Belle 2007
$Y_b(10888)$	$10888.4{\pm}3.0$	$30.7^{+8.9}_{-7.7}$	1	$e^+e^- \to (\Upsilon(nS)\pi^+\pi^-)$	Belle [51, 52] (2.0)	Belle 2010
$Z_b^+(10610)$	$10607.2{\pm}2.0$	$18.4{\pm}2.4$	1^{+-}	$\Upsilon(5S) \rightarrow \pi^- + (\Upsilon(nS)\pi^+), n=1,2,3$	Belle [53, 54] (16)	Belle 2011
				$\Upsilon(5S) \to \pi^- + (h_b(nP)\pi^+), n = 1, 2$	Belle [53, 54] (16)	
$Z_b^+(10650)$	10652.2 ± 1.5	$11.5{\pm}2.2$	1^{+-}	$\Upsilon(5S) \to \pi^- + (\Upsilon(nS)\pi^+), n=1,2,3$	Belle [53, 54] (16)	Belle 2011
				$\Upsilon(5S) \rightarrow \pi^- + (h_b(nP) \pi^+), n = 1, 2$	Belle [53, 54] (16)	

Narrow states are below the **BB** threshold

G.C. Rossi (Tor Vergata)

The emergence of **Baryonium** interpretation - Theory

- The physically interesting limit of QCD is $g^2 \& \lambda = g^2 N_c$ small
- We have a (more or less) good control of the theory
 - in perturbation theory: $g^2 \rightarrow 0 @ N_c$ fixed
 - in the 't Hooft limit: $1/N_c \rightarrow \infty @ \lambda = g^2 N_c$ fixed
 - in the strong coupling limit: $1/g^2 \rightarrow 0 @ N_c$ fixed (possibly large)
 - in the AdS/CFT limit: $1/N_c \rightarrow 0 @ \lambda$ fixed and large
- The overall situation is pictorially illustrated in the next figure
- As we shall see, "naturally"
 - mesons appear in the 't Hooft and strong coupling limit
 - baryons & baryonia in the strong coupling limit
- The key question is: can we walk clockwise to real physics?
- With some optimism we shall argue that this is, indeed, the case

The interesting limits of **OCD**

G.C. Rossi (Tor Vergata)

Duality in $MM \rightarrow MM$ amplitudes

From my 1977 CERN seminar

G.C. Rossi (Tor Vergata)

Tetra- & penta-quarks

December 10, 2015 9 / 69

4 A N

From my 1977 CERN seminar

G.C. Rossi (Tor Vergata)

Tetra- & penta-quarks

Duality in $MB \rightarrow MB$ amplitudes

G.C. Rossi (Tor Vergata)

Tetra- & penta-quarks

December 10, 2015 11 / 69

H N

Image: A matrix

December 10, 2015 12 / 69

▲ 클 ▶ ▲ 클 ▶ 클 ∽ (~ December 10, 2015 13 / 69

Duality in $B\bar{B} \rightarrow B\bar{B}$ amplitudes

G.C. Rossi (Tor Vergata)

Tetra- & penta-quarks

December 10, 2015 14 / 69

э

3 > 4 3

Guide: Gauge airwience + duckity
Provide: Gauge airwience + duckity
Provide: Area airwience

$$M_1(q\bar{q}) \leftrightarrow \bar{\psi}(x_1) (axp g] ({}^{y}A_{\mu}dx^{\mu}) \stackrel{i}{\rightarrow} (x_2) \leftrightarrow$$

 $M_1(q\bar{q}) \leftrightarrow \bar{\psi}(x_1) (axp g] ({}^{y}A_{\mu}dx^{\mu}) \stackrel{i}{\rightarrow} (x_2) \leftrightarrow$
 $M_1(q\bar{q}) \leftrightarrow \bar{\psi}(x_1) (axp g] ({}^{y}A_{\mu}dx^{\mu}) \stackrel{i}{\rightarrow} (x_2) \leftrightarrow$
 $M_2(q\bar{q}) \leftrightarrow \bar{\psi}(x_1) (axp g] ({}^{y}A_{\mu}dx^{\mu}) \stackrel{i}{\rightarrow} (x_2) \leftrightarrow$
 $M_3(qqq) \leftrightarrow \bar{\psi}(x_1) (axp g] ({}^{y}A_{\mu}dx^{\mu}) \stackrel{i}{\rightarrow} (x_2) \leftrightarrow$
 $M_2(q\bar{q}) \leftrightarrow \bar{\psi}(x_1) (axp g] ({}^{y}A_{\mu}dx^{\mu}) \stackrel{i}{\rightarrow} (x_2) \leftrightarrow$
 $M_2(q\bar{q}) \leftrightarrow \bar{\psi}(x_1) (axp g] ({}^{y}A_{\mu}dx^{\mu}) \stackrel{i}{\rightarrow} (x_2) \leftrightarrow$
 $M_2(q\bar{q}) \leftrightarrow \bar{\psi}(x_1) (axp g] ({}^{y}A_{\mu}dx^{\mu}) \stackrel{i}{\rightarrow} (x_2) \leftrightarrow$
 $M_2(q\bar{q}) \leftrightarrow \bar{\psi}(x_1) (axp g] ({}^{y}A_{\mu}dx^{\mu}) \stackrel{i}{\rightarrow} (x_2) \leftrightarrow$
 $M_2(q\bar{q}) \leftrightarrow \bar{\psi}(x_1) (axp g] ({}^{y}A_{\mu}dx^{\mu}) \stackrel{i}{\rightarrow} (x_2) \leftrightarrow$
 $M_2(q\bar{q}) \leftrightarrow \bar{\psi}(x_1) (axp g] ({}^{y}A_{\mu}dx^{\mu}) \stackrel{i}{\rightarrow} (x_2) \leftrightarrow$
 $M_2(q\bar{q}) \leftrightarrow \bar{\psi}(x_1) (axp g] ({}^{y}A_{\mu}dx^{\mu}) \stackrel{i}{\rightarrow} (x_2) \leftrightarrow$
 $M_2(q\bar{q}) \leftrightarrow \bar{\psi}(x_1) (axp g] ({}^{y}A_{\mu}dx^{\mu}) \stackrel{i}{\rightarrow} (x_2) \leftrightarrow$
 $M_2(q\bar{q}) \leftrightarrow \bar{\psi}(x_1) (axp g] ({}^{y}A_{\mu}dx^{\mu}) \stackrel{i}{\rightarrow} (x_2) \leftrightarrow$
 $M_2(q\bar{q}) \leftrightarrow \bar{\psi}(x_1) (axp g] ({}^{y}A_{\mu}dx^{\mu}) \stackrel{i}{\rightarrow} (x_2) \leftrightarrow$
 $M_2(q\bar{q}) \leftrightarrow \bar{\psi}(x_1) (axp g] ({}^{y}A_{\mu}dx^{\mu}) \stackrel{i}{\rightarrow} (x_2) \leftrightarrow$
 $M_2(q\bar{q}) \rightarrow$
 $M_2(q\bar{q}) \leftrightarrow \bar{\psi}(x_1) (axp g] ({}^{y}A_{\mu}dx^{\mu}) \stackrel{i}{\rightarrow} (x_2) \leftrightarrow$
 $M_2(q\bar{q}) \leftrightarrow$
 $M_2(q\bar{q}) \rightarrow$
 $M_2(q\bar{$

< A

QCD string breaking & fusion

QCD string breaking & fusion

G.C. Rossi (Tor Vergata)

QCD string breaking & fusion

G.C. Rossi (Tor Vergata)

December 10, 2015 18 / 69

Image: A matrix

Pre-historical phenomenology

- Birth
- Rise
- Evaporation

of Baryonium states

and the second se				
MASS (MaV)	WINTH (NeV)	STATIST. EVI DENCE	REACTION	
1455 1660 1695		99% C. L. 97.5% C. L. 9822% C.L.	β++> χ 420+12 THE TO L+E3= 2162 9 182+2	
1794.5±1.4	48	95% C.L.	pd+ + (pm)+ + (2m) TC	
1897±1	25±6		pd → + (pm) → p X	
• 1936±4	4:8		(pF→pF dT(pF) pF→(2m) PRONGS	
2020 ± 3	24 ±43	7.6 s.a.	ボトック た(トラ)	
2204±5	16-16	5.5 5.5.	SAME	
- 2600 ± 10 · 2460 ± 10 2850 ± 5	<19 \$10 <39	5.5 c.d. 5 s.d. 5.1 s.d.	Ϸ →(κ πεπ.) [±] πππ χ [®] κ ⁺ Ϸ→ (⊼ρπ ⁺) [∞] Ϸ d→ β SPECT. (N M) [∞] π ⁻	
2350±10	<15	6 s.d.	ענהקקן קרקה	
3050±10	<20	3.1 s.d.	Pd-> P TE (NH)"	
T/M = 10-2				

Tetra- & penta-quarks

December 10, 2015 21 / 69

▶ ▲ 臣 ▶ 臣 • • • • •

December 10, 2015 22 / 69

æ

Tetra- & penta-quarks

December 10, 2015 23 / 69

December 10, 2015 24 / 69

크

< ≥ > < ≥ >

Fig. 1. Effective mass distribution for the (K***** combinations from the 6-prong-V* events: for the total sample, and for positive and negative charges. The invert shows the estimate of the background and of the experimental resolution.

is 108 ± 10 combinations. It would require a fluctuation of the background of 5.5 standard deviations to reach the signal.

An estimate of the product of the production cross section σ_i for the I peak times its branching ratio BR into the observed final state, integrated over our experimental resolution, gives σ_i the ≈ 20 planm (corrected for the neutral decay mode of K/p)¹⁴. The I appear equally in the positive and negative electric charges as shown by fig. 1.

BEBC was filled with hydrogen and photographed by 4 cameras. The exposure yielded approximately

*¹ The inclusive cross sections and charged multiplicities are given in ref. [2].

186

250000 pictures, with an average number of 5.2 incident antiprotons of 12 GeV/ per picture. The momentum of each incident track, which varies slowly according to the point of entry into the chamber, is known with [a0] = 0.000 GeV/. The π contaminis tion of the 3-tages RF separatel beam is 5 \pm 39. The scanning of the film yielded \pm 3000 events of the Geyrong and \geq 1 V° topology, in a selected flucial yolume, with a scanning efficiency of 80%.

The high magnetic field (35 kG) and long tracks observed in a large chamber (β 3.7 m) enable us to reach a high resolution, requiring also a high accuracy in measurement and event reconstruction. The events were measured in the different participating laboratories, on the automatic devices Erasme and Polly.

M= 2600 ±10 T < 18 *RTRIT

G.C. Rossi (Tor Vergata)

Tetra- & penta-quarks

December 10, 2015 25 / 69

Figure 4 — a) Spectre de masse du système hypéronique R⁺ pour des vérenemest dans lesquels le π^- provenut de la réaction $K^+p \rightarrow \pi^- R^+$ se situe dans l'hémisphère arrière du système du centre de masse. La couvbe en trait plein représente l'ajustement du fond avec une probabilité maximale. L'impulsion du K^- incident était de 8,25 GeV/c.

b) Spectre de masse du R⁺ pour les mêmes événements que dans la figure 4a, par intervalles de 5 MeV. K⁻ p → π⁻ R⁺ R⁺→ ΣK $\overline{K}/\Lambda K\overline{K}/\Xi K$

T. Amirzadeh *et al.* CERN/EP 79-101 September 18, 1979

A narrow pentaquark? $M \approx 3.17 \text{ GeV}$

The systematics of hadronic states and amplitudes

G.C. Rossi (Tor Vergata)

Tetra- & penta-quarks

December 10, 2015 27 / 69

Table IIa

HADRON	GAUGE INVARIANT OPERATOR	STRING PICTURE
$M_2 = q\bar{q}$ meson	$\bar{q}^{j_{2}}(x_{2}) \left[P exp\left(ig \int_{x_{1}}^{x_{2}} A_{\mu} dx^{\mu} \right) \right]_{j_{2}}^{j_{1}} q_{j_{1}}(x_{1})$	×2 ×1 ⊙ ¶ q
M _o = quarkless meson	$Tr\left[P \exp\left(ig \oint A_{\mu} dx^{\mu}\right)\right]$	\bigcirc
B ₃ = qqq baryon	$ \begin{split} & \varepsilon^{j_{1}j_{2}j_{3}}\left[P \exp\left(ig\int_{x_{1}}^{x}A_{\mu} dx^{\mu}\right)q(x_{1})\right]_{j_{1}} \\ & \left[P \exp\left(ig\int_{x_{2}}^{x}A_{\mu} dx^{\mu}\right)q(x_{2})\right]_{j_{2}}\left[P \exp\left(ig\int_{x_{3}}^{x}A_{\mu} dx^{\mu}\right)q(x_{3})\right]_{j_{3}} \end{split} $	$q \begin{array}{c} x_1 & x_2 \\ c & x_3 \end{array}$

Simplest mesons and baryons : colour structure and string picture

Table IIb

The three (N_c = 3) baryonium families : colour structure and string picture . The symbol exp $\int_{\mathbf{x}}^{\mathbf{y}}$ is a shorthand for the path ordered exponential used in Table IIa.

HADRON	GAUGE INVARIANT OPERATOR	STRING PICTURE
M4 ^J = baryonium with qqqq quantum numbers	$ \begin{bmatrix} c_{j_{1}j_{2}j_{3}} & c_{1}k_{2}k_{3} & \left[\bar{\mathfrak{q}}(y_{1}) \exp \int_{y}^{y_{1}}\right]^{j_{1}} & \left[\bar{\mathfrak{q}}(y_{2}) \exp \int_{y}^{y_{2}}\right]^{j_{2}} \\ \left[\exp \int_{x}^{y} \int_{x_{1}}^{y_{3}} & \left[\exp \int_{x_{1}}^{x} \mathfrak{q}(x_{1}) \right]_{k_{2}} & \left[\exp \int_{x_{2}}^{x} \mathfrak{q}(x_{2}) \right]_{k_{3}} \end{bmatrix} $	$\begin{array}{c} \begin{array}{c} x_1 \\ y_1 \\ y_2 \\ y_2 \\ q \\ \overline{q} \end{array} \\ \begin{array}{c} y \\ \varepsilon \\ q \end{array} \\ \begin{array}{c} x_1 \\ \varepsilon \\ z_2 \end{array} \\ \begin{array}{c} x_1 \\ z_2 \\ q \end{array} \\ \begin{array}{c} x_2 \\ z_2 \end{array} \\ \begin{array}{c} x_1 \\ z_2 \end{array} \\ \begin{array}{c} x_2 \\ z_2 \end{array} \\ \end{array} \\ \begin{array}{c} x_2 \\ z_2 \end{array} \\ \begin{array}{c} x_2 \\ z_2 \end{array} \\ \end{array} \\ \begin{array}{c} x_2 \\ z_2 \end{array} \\ \begin{array}{c} x_2 \\ z_2 \end{array} \\ \end{array} \\ \begin{array}{c} x_2 \\ z_2 \end{array} \\ \end{array} \\ \begin{array}{c} x_2 \\ z_2 \end{array} \\ \end{array} \\ \begin{array}{c} x_2 \\ \end{array} \\ \begin{array}{c} x_2 \\ z_2 \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} x_2 \\ \end{array} \\ \end{array} \\ \begin{array}{c} x_2 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} x_2 \\ \end{array} \\ \end{array} \\ \begin{array}{c} x_2 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} x_2 \\ \end{array} \\ \begin{array}{c} x_2 \\ \end{array} \\ $
$M_2^J = baryonium$ with $q\bar{q}$ quantum numbers	$ \begin{bmatrix} c_{j_1 j_2 j_3} & c^{k_1 k_2 k_3} & \left[\overline{q}(y_1) & \exp \int_y^{y_1} \right]^{j_1} \\ \left[\exp \int_x^y & \right]_{k_1}^{k_2} \begin{bmatrix} \exp \int_x^y \right]_{k_2}^{k_2} \begin{bmatrix} \exp \int_x^x q(x_1) \\ x_1 & y_2 \end{bmatrix}_{k_3} \end{bmatrix} $	$y_1 \xrightarrow{y} \overbrace{q}^{x} \xrightarrow{x_1} e^{q}$
M ₀ ^J = quarkless baryonium	$ \begin{bmatrix} c_{j_{4}j_{2}j_{3}} & c_{1}k_{2}k_{3} \\ c_{y_{1}j_{1}j_{3}} & c_{1}k_{2}k_{3} \end{bmatrix} \begin{bmatrix} c_{y} & c_{y} \\ c_{y} & c_{y} \end{bmatrix}_{k_{3}}^{j_{1}} \begin{bmatrix} c_{y} & c_{y} \\ c_{y} & c_{y} \end{bmatrix}_{k_{3}}^{j_{3}} $	y a x x

G.C. Rossi (Tor Vergata)

Tetra- & penta-quarks

December 10, 2015 29 / 69

According to our nulls one can formally
and truct offer exertic states beside
$$M_{0,2,4}^{J}$$

 J_{J} J_{J} J_{J} J_{J}^{J}
 $B_{5} - B M_{3}^{J}$ $E_{6} - M_{3}^{J} M_{3}^{J}$ $E_{6}^{J} - B B B B$
Important for duality in 2 body reactions
For mintance : existence of M_{4}^{J} and B_{5}
Modifies the pattern of EXD for
baryon trajectonies, as obtained from
the obsence of exotics mi BB -> MM
and MB -> BM.
This is very velocing becomen such a
pattern is mi cuffiet with experimental
eridence.

 $\frac{\text{Table 111a}}{\text{Contributions to BB scattering (N_e=3)}}$

a) s' is the invariant mass of the final state excluding the leading baryons b) to estimate the s-behavior we have taken $\alpha_{\rm R}=0.5$

G.C. Rossi (Tor Vergata)

Tetra- & penta-quarks

December 10, 2015 31 / 69

Table IIIb Contributions to BB annihilation (N_=3)

a) To estimate the s-behaviour we have taken $\alpha_{_{I\!\!R}}\simeq 0$.

G.C. Rossi (Tor Vergata)

Tetra- & penta-quarks

December 10, 2015 32 / 69

Regge trajectories

G.C. Rossi (Tor Vergata)

Tetra- & penta-quarks

December 10, 2015 33 / 69

æ

3 > 4 3

BARYONIUR REGGE TRAJECTORIES
ANNIHIALATION DIACRAPS,
$$S^{\alpha_{1}^{3}(c)-1}$$
 where s
 μ_{L}^{3} μ_{2}^{3} μ_{2

듣▶ ★ 돋≯

æ

BARYONIUM Using their dual relation to meson jet production, one obtains estimates for x to, x (0) M (I=0,1,2) Q(M2) (I=0,1) M20 - M4 MI M3 (I=0) M2<0 + M3 4 01/2 Mixing effects will modify this picture. (I) Mixing between baryonium states VOZ R It is induced by planer quark loops. Mixing in the I= 0 Mixing in the I= 0,1 sector. Aector un mixed

Tetra- & penta-quarks

December 10, 2015 36 / 69

Approaching today's phenomenology

- Birth
- Rise
- Evaporation
- of pentaquarks

< 17 ▶

H N

э

PENTA QUARK STATES
OLD TIMES (1974-1980)
S
$$\begin{cases} M \approx 1936 \quad p\overline{p} - ELASTIC \\ \Gamma \approx 20 \\ T^{E} = 3^{-1} \end{cases}$$

BARYON IUM PICTURE GC DOSSI G. KENEPLANO
M= $\begin{cases} B = \int_{a}^{b} S(M_{a}^{T}) = \int_{a}^{b} \Theta^{T}(B_{a}^{T}) = \int_{b}^{a} \\ PRESENT DAYS (JULY 8H, 203---) \end{cases}$
H (M $\approx 1526 \quad ym \rightarrow k^{-}\Theta^{T}$
 $T \approx 20 \quad ym \rightarrow k^{-}\Theta^{T}$
 $S = \int_{a}^{c} S(M_{a}^{T}) = \int_{a}^{b} \Theta^{T}(B_{a}^{T}) = \int_{b}^{a} \\ M = \int_{a}^{b} S(M_{a}^{T}) = \int_{a}^{b} \Theta^{T}(B_{a}^{T}) = \int_{b}^{a} \\ M = \int_{a}^{b} S(M_{a}^{T}) = \int_{a}^{b} \Theta^{T}(B_{a}^{T}) = \int_{b}^{a} \\ M = \int_{a}^{b} S(M_{a}^{T}) = \int_{a}^{b} \Theta^{T}(B_{a}^{T}) = \int_{b}^{a} \\ M = \int_{a}^{b} S(M_{a}^{T}) = \int_{a}^{b} \Theta^{T}(B_{a}^{T}) = \int_{b}^{a} \\ M = \int_{a}^{b} S(M_{a}^{T}) = \int_{a}^{b} \Theta^{T}(B_{a}^{T}) = \int_{b}^{a} \\ M = \int_{a}^{b} S(M_{a}^{T}) = \int_{a}^{b} \Theta^{T}(B_{a}^{T}) = \int_{b}^{a} \\ M = \int_{a}^{b} S(M_{a}^{T}) = \int_$

4 ≥ + < ≥ +</p>

æ

$$S = \left(\frac{1}{2} + \frac{1}{2}$$

Tetra- & penta-quarks

December 10, 2015 40 / 69

December 10, 2015 41 / 69

December 10, 2015 42 / 69

Back to theory!

- The limits of QCD
- from large g^2 & fixed N_c ...
 - Meson propagator and amplitudes
 - Baryon propagator and amplitudes
- ... to small $g^2 \& N_c$ continuum QCD

Recall ... the interesting limits of **CD**

G.C. Rossi (Tor Vergata)

Strong coupling

$$<\operatorname{Pexp}(ig \int A_{\mu} dx^{\mu}) = \frac{\int \mathcal{D}A_{\mu} \operatorname{Pe}^{ig \int A_{\mu} dx^{\mu}} e^{S}}{\int \mathcal{D}A_{\mu} e^{S}} = W(e)$$

$$= \frac{\int \mathcal{D}A_{\mu} \operatorname{Pe}^{ig \int A_{\mu} dx^{\mu}} e^{S}}{\int \mathcal{D}A_{\mu} e^{S}} = W(e)$$

$$W(e) \xrightarrow{}_{\operatorname{Lattrice}} < \operatorname{I} \operatorname{Tr}(\pi \cup)_{P} > =$$

$$= \frac{\int \pi d \cup_{i} \operatorname{I} \operatorname{Tr}(\pi \cup) e^{\frac{1}{2} \cdot S_{\omega}(\upsilon)}}{\int \pi d \cup_{i} e^{\frac{1}{2} \cdot S_{\omega}(\upsilon)}}$$

э.

• Fa end surfaces bounded by C
• Fa end surfaces bounded by C
•
$$V(C)_{N} \frac{1}{4} \left(\frac{1}{8}\right)^{P} \left(\frac{1}{N}\right)^{L} N^{V} = \left(\frac{1}{8^{T}N}\right)^{P} N^{P-L+V}$$

 $P_{-L+V=2-2h-b=1} \left(\frac{h=0}{b=1}\right)$
 $V(C) = \left(\frac{1}{8^{T}N}\right)^{A/a^{2}} = e^{-KA}$
 $K = \frac{1}{6^{T}} \log(3^{T}N)$
 $P = AO of plaquettes pairing S. $P = A/a^{2}$
 $V = AO of plaquettes pairing S. $P = A/a^{2}$
 $V = AO of planko$
 $L = AO of dinko$
The fle Aloong coeffing limit $1/g^{2} = O$
 $K \to \infty = W(C) = W(C) = O(-KA_{min})$$$

æ

 $q\bar{q}$ mesons are intermediate states in the gauge invariant correlator

 $G_{\mathcal{M}}(\mathcal{C}_{t'},\mathcal{C}_t) = \langle \mathcal{M}(\mathcal{C}_{t'}) \mathcal{M}^{\dagger}(\mathcal{C}_t) \rangle$

where

$$\mathcal{M}(\mathcal{C}_t) = \frac{1}{\sqrt{N_c}} \bar{q}(\vec{r}, t) \mathcal{U}[\mathcal{C}_t] q(\vec{s}, t), \quad \mathcal{U}[\mathcal{C}_t] = \mathcal{P} \exp\left[ig \int_{\vec{r}}^{\vec{s}} d\vec{x} \, \vec{\mathcal{A}}(\vec{x}, t)\right]$$

 C_t is a line joining the point (\vec{r}, t) with (\vec{s}, t) Contracting the quark fields, one finds

$$G_{\mathcal{M}}(\mathcal{C}_{t'},\mathcal{C}_{t}) = \frac{1}{N_{c}} \frac{\int \prod_{i} dU_{i} \operatorname{Tr} \left(U^{\dagger}[\mathcal{C}_{t}] S_{F}(\vec{r},t;\vec{r},t') U[\mathcal{C}_{t'}] S_{F}(\vec{s},t';\vec{s},t) \right) e^{-\frac{1}{g^{2}} S_{LYM}(U)}}{\int \prod_{i} dU_{i} e^{-\frac{1}{g^{2}} S_{LYM}(U)}}$$

In the static limit we replace the quark propagator with

$$S_F(\vec{s},t';\vec{s},t)
ightarrow U[\vec{s},t'-t] = \prod_{ au \in [t,t']} U[\vec{s}, au]$$

$$G_{\mathcal{M}}(\mathcal{C}_{t'},\mathcal{C}_{t}) = \frac{1}{N_{c}} \frac{\int \prod_{i} dU_{i} \operatorname{Tr} \left(U^{\dagger}[\mathcal{C}_{t}] U^{\dagger}[\vec{r},t-t'] U[\mathcal{C}_{t'}] U[\vec{s},t'-t] \right) e^{-\frac{1}{g^{2}} S_{LYM}(U)}}{\int \prod_{i} dU_{i} e^{-\frac{1}{g^{2}} S_{LYM}(U)}}$$

$$\vec{s}, t$$
 $U[\vec{s}, t'-t]$ \vec{s}, t'

 $G_M(\mathcal{C}_{t'}, \mathcal{C}_t) = \langle \text{Wilson loop with sides } |\vec{s} - \vec{r}| \times |t' - t| \rangle$

$MM \rightarrow MM$ amplitude

 $\mathcal{M}_{MM
ightarrow MM}(\lambda) \propto \lambda^{-A_{min}}$

G.C. Rossi (Tor Vergata)

December 10, 2015 50 / 69

æ

Baryon propagator and amplitudes

In $SU(N_c)$ QCD the (normalized) wave-function of the baryon reads

 $B(\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_{N_c}) = \frac{1}{\sqrt{N_c!}} \epsilon_{i_1 i_2 \dots i_{N_c}} U[\mathcal{C}_1]_{j_1}^{i_1} q(x_1)^{i_1} U[\mathcal{C}_2]_{j_2}^{i_2} q(x_2)^{j_2} \dots U[\mathcal{C}_{N_c}]_{j_{N_c}}^{i_{N_c}} q(x_{N_c})^{j_{N_c}}$

$$U[\mathcal{C}_k]_{j_k}^{i_k} = \mathcal{P} \exp\left[ig \int_{\mathcal{C}(x_J, x_k)} dy^{\mu} A_{\mu}(y)\right]_{j_k}^{i_k}, \quad k = 1, 2, \dots, N_c$$

with $\mathcal{C}(x_J, x_k)$ a curve joining the point x_J to x_k .

We want to compute in the strong coupling limit the correlator

 $G_{B}(\{\vec{r}_{k}, k=1,2,\ldots,N_{c}\}, \vec{r}_{J}; t'-t) = \langle B(\mathcal{C}_{1},\mathcal{C}_{2},\ldots,\mathcal{C}_{N_{c}})B^{\dagger}(\mathcal{C}_{1}',\mathcal{C}_{2}',\ldots,\mathcal{C}_{N_{c}}') \rangle$

The computational strategy outlined for the meson propagator leads to a kind of book with pages sewed by a Levi-Civita symbol

Figure : The $N_c = 3$ baryon propagator.

Tiling the pages of the book with plaquettes from the action

Figure : Tiling each of the the $N_c = 3$ pages with two plaquettes.

The group integral on the links along the dotted lines gives

$$\sum_{\ell_{k}} \int dU U_{i_{1}\ell_{1}} U_{i_{2}\ell_{2}} \dots U_{i_{N_{c}}\ell_{N_{c}}} \int dU U_{j_{1}\ell_{1}} U_{j_{2}\ell_{2}} \dots U_{j_{N_{c}}\ell_{N_{c}}} = \\ = \frac{1}{N_{c}!^{2}} \epsilon_{i_{1}i_{2}\dots i_{N_{c}}} \epsilon_{j_{1}j_{2}\dots j_{N_{c}}} N_{c} \sum_{\ell_{k}} \epsilon_{\ell_{1}\ell_{2}\dots\ell_{N_{c}}} \epsilon_{\ell_{1}\ell_{2}\dots\ell_{N_{c}}} = \frac{1}{N_{c}!} \epsilon_{i_{1}i_{2}\dots i_{N_{c}}} \epsilon_{j_{1}j_{2}\dots j_{N_{c}}}$$

$B\bar{B} ightarrow B\bar{B}$ amplitude

Figure : Baryon-antibaryon scattering amplitude with M_4^J intermediate states

A hierarchical classification

 $\lambda = g^2 N$

From strong coupling to AdS/CFT

- $W(g^2, N_c) \rightarrow W(\lambda, N_c)$
- Large λ & N_c expansion O' Brien Zuber

$$W(\lambda, N_c) = W_0(\lambda) \Big[1 + O(1/N_c) \Big]$$
$$W_0(\lambda) = \sum_{A=A_{min}} \lambda^{-A} F^{(A)} = \lambda^{-A_{min}} \Big[1 + O(1/\lambda) \Big]$$

• Large g^2 & N_c expansion $W(\lambda, N_c) = W_0(\lambda, N_c) [1 + \Delta], \quad \Delta = O(1/g^2) = O(N_c/\lambda)$ $W_0(\lambda, N_c) = \widehat{W}_0(\lambda) [1 + O(1/N_c)]$

• If we can say $\Delta = O(1/\lambda)$ O' Brien Zuber, then

$$W(\lambda, N_c) = \widehat{W}_0(\lambda) \Big[1 + O(1/N_c) + O(1/\lambda) \Big]$$

• Thus in the large $\lambda \& N_c$ limit $\rightarrow \widehat{W}_0(\lambda) \propto \lambda^{-A_{min}}$

Conclusions and Summary

ヨ▶ ▲ ヨ ▲ ヨ → �� �

December 10, 2015 59 / 69

æ

Thanks for your attention

Back-up slides

G.C. Rossi (Tor Vergata)

Tetra- & penta-quarks

December 10, 2015 61 / 69

æ

E.M. mixing (3)
+ Absence of S(4936) signed in
$$p\overline{p} + m\overline{n}$$

may be an indication of a rather annex
sing property of baryonium.
(1) with backgrowned
mitably choosen
(2) bt. Izo, Is 2 economics
white back growness
(3) bt. Izo, Is 2 economics
white back growness
and againerste in mean
In case (2) $\Delta M < T/2 \simeq 2 \div 4 MeV$: his or
equal them em Aplit. whithin an isospin
multiplet !
Preexamin pattern of mixing, including en
isospin breaking, which may not be negligible
Simple and well known case of mesons
 $f = \frac{1}{\sqrt{2}} (n\overline{n} + d\overline{d}) \quad A_2 = \frac{1}{\sqrt{2}} (n\overline{n} - d\overline{d})$
 $T=0 \qquad T= d$

December 10, 2015 62 / 69

▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → りへ(?)

Nacunary conditions:
1) Large manues to have annall OZI vislations
2) no and/or d quarks (or better, hearier
dowblets). (q. a I- better)
3) Small noiths (i.e. a relation rule
again at decaying nits light mesons).
(anter on employment light mesons).
A condidate : Banyonine
Guride Fm. or
$$\pi p \rightarrow \pi p$$
)
Two Q=-1 intermediate states in
F $\int_{a}^{a} \int_{a}^{a} \int_{a}^{b} F$ F $\int_{a}^{a} \int_{a}^{a} \int_{a}^{b} F$
m $\int_{a}^{b} \int_{a}^{a} \int_{a}^{c} F$ F $\int_{a}^{a} \int_{a}^{a} \int_{a}^{c} M$
 $|M_{y}\rangle = |\pi\pi Ad\rangle$ $(M_{y}\rangle = |\piddd\rangle$
 $|I=d\rangle \pm |I=2\rangle$

December 10, 2015 65 / 69

æ

(문) * 문

With these scales physical states are
more than 90% (Mu) and (Ms)
Phenomenological consequences
1) In Find For (
$$\pi$$
 p \rightarrow π p) 2 peaks with
 $\Delta m \approx 2\gamma \approx 40 \pm 15$ MeV
2) Maximal notation of G - posity:
 $T(M_{0,b} \pi p) = T(M_{0,b} \rightarrow \pi d^{2} p)$
3) $T(M_{0} \rightarrow \pi d^{2} p) = 4 T(M_{0} \rightarrow \pi d^{2} p)$
(In Dall- Yan the factor of G in
 $T(\pi C \rightarrow d^{2} px) = 4 T(M_{0} \rightarrow \pi d^{2} p)$
is expected in the continuum.)
Experimental situation
4) No evidence of two peaks (no good date).
2) However the ratio:
 $\frac{T_{d}(F_{D})}{T_{d}(F_{D})} = \frac{T(x_{0}) + 3T(T_{d})}{T(x_{0}) + 3T(T_{d})} = \frac{1}{T_{0}} = \frac{1}{4/3}$
is experimentally $= \frac{1}{2}$, as are arould
predict.

December 10, 2015 66 / 69

æ

▲ 클 ▶ ▲ 클 ▶ 클 ∽ ↔ December 10, 2015 67 / 69

Define
$$\lambda = \frac{T(kF - m\bar{n})}{T(kF - p\bar{F})}$$
 spean
plot Kout/Soz gon which $\lambda < 4/15$, on a
gunction of Siz/Soz $k + 45$ bound
Tout/Soz $\frac{0.6}{0.4}$
 $\frac{1}{0.4}$ $\frac{1}{0.2}$ $\frac{1}{0.4}$ $\frac{1}{0.$

December 10, 2015 68 / 69

$$= - MIXING$$

$$= - (ASIGAS) = 4860$$

$$= \begin{cases} (ASIGAS) = 4865 (POBE + A = ** \pi^{+}) \\ (ASIGAS) = 4855 \\ (ASIGAS) = 4855 \end{cases}$$

$$= \circ \left\{ CVSICASI = 4550 (PORE + = ** \pi^{+}) \\ (ASIGAS) = 4550 (PORE + = ** \pi^{+}) \\ (BAIDAS = 4550 (PORE + = ** \pi^{+}) \\ (BAIDAS = 4550 (PORE + = ** \pi^{+}) \\ (BAIDAS = 4550 (PORE + = ** \pi^{+}) \\ (BAIDAS = 4550 (PORE + = ** \pi^{+}) \\ (BAIDAS = 4550 (PORE + = ** \pi^{+}) \\ (BAIDAS = 4550 (PORE + = ** \pi^{+}) \\ (BAIDAS = 4550 (PORE + = ** \pi^{+}) \\ (BAIDAS = 4550 (PORE + = ** \pi^{+}) \\ (BAIDAS = 4550 (PORE + ** PORE + ** PO$$

December 10, 2015 69 / 69

æ