
Exclusive |V_{cb}|

Exclusive $|V_{cb}|$: status as of 2015

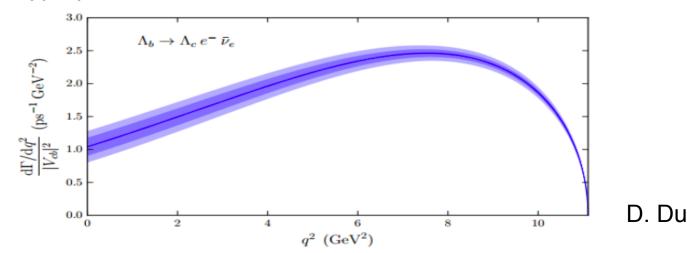
$B \rightarrow D^* I \nu$

- This is still an interesting and well studied channel to extract |V_{cb}|
- 2014 LQCD calculation of F(1) + HFAG:

$$|V_{cb}| = (39.04 \pm 0.49_{\text{expt}} \pm 0.53_{\text{QCD}} \pm 0.19_{\text{QED}}) \cdot 10^{-3}$$

- LQCD error now compatible with experimental error
- QED error stems from not separating charge and neutral decays
 - Lots of discussions about QED corrections (static Coulomb effects)
- LCSR estimated lower value for F(1) but the uncertainties are not solids enough
- Progress on Lattice: calculate all 4 FF at non-zero recoil (just starting)
- LHCb: to extract Vcb a normalization channel is needed
 - Which channel?
 - An angular analysis should be possibile and can be combined with the existing BF(D*I v) measurements to extract |V_{cb}|
 - Is the w and angular resolution enough?

$B \rightarrow D I v$


- In the future this could be the golden channel for exclusive |V_{cb}|:
- 2015 FNAL/MILC results at non-zero recoil + BaBar data: 4% error
 - Dominated by experimental uncertainty
 - Belle data already available (a combined fit prefers an higher Vcb)
 - HPQCD calculation similar to FNAL/MILC: expected improvements
- LHCb: this could be normalized to D* to cancel the B production uncertainties and some other experimental efficiencies (D reco, trigger, PID)
 - Is this channel feasible?
 - B \rightarrow D⁺ I v no down-feed from D*0/+ (still large from D** states)
 - Using B_{s2}* allows to study B⁺.
 - Pros: The large down-feed from D*/D** can be reduced using the Missing Mass variable.
 - Cons: efficiency is small (very small, ~0.3%)

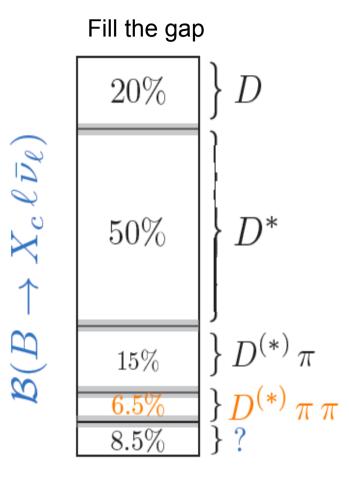
Others: $\Lambda_b \to \Lambda_c \mu \nu$

- $\Lambda_b \to \Lambda_c \; \mu \nu$ the FF is known with good precision (some caveats about the use of the z-expansion in the baryonic case)
 - Experimentally: How to normalize this channel?
 - Is the fit of the q² spectra interesting? Which model?
 - It could be nice an helicity study of the $\Lambda_{\rm c}$ in the final state as a function of q² (S.Simula PRD60 (1999) 074018)

 $\Lambda_b \to \Lambda_c \ell \nu$ (Detmold et al. 2015)

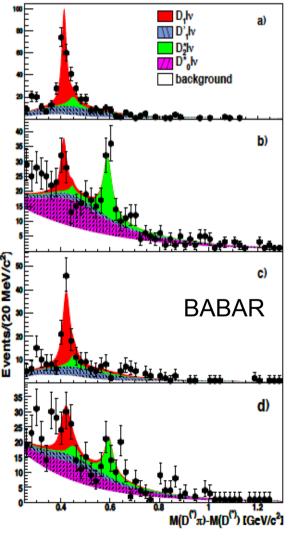
- ► Error in high- q^2 : ~2%
- Experimental difficulty: $Λ_b$ production fraction; but could determine ratio $|V_{ub}|/|V_{cb}|$ 1504.01568

Others: $B_s \rightarrow D_s^{(*)} I v$

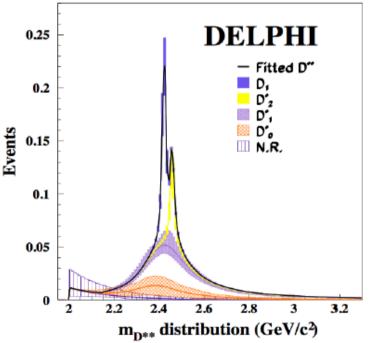

- $B_s \rightarrow D_s^{(*)} I \nu$: interesting channel from theory:
 - Strange spectator: less noisy lattice correlators
 - Chiral extrapolation only for sea quarks
 - Upcoming calculations from HPQCD and other collaborations
 - Experimentally (difficult at Belle-II), what about LHCb?
 - D_s: large down feed from D_s* and D_s**
 - D_s^* : no upfeed from D_s and small downfeed from $D_s(2460)$ but requires the reconstrution of the soft gamma
- (We do not cover $B_c \rightarrow J/psi I v$)

Not meant to be inclusive, focused on publicized results

Lattice Group	Fermilab/MILC	HPQCD	Atoui et al.	Detmold et al.
Process	$B o D^* \ell \nu$	$(B o D\ell u)$	$B_s o D_s \ell \nu$	$\Lambda_b \to \Lambda_c \ell \nu$
	$B o D\ell u$	$(B_s o D_s\ell u)$	$(B o D^{**}\ell u)$	
	$B_s \to D_s \ell \nu$			
Gauge Ensembles	MILC asqtad	MILC asqtad	ETMC twQCD	Domain-Wall
Sea flavors	2+1	2+1	2	2+1
a (fm)	0.045-0.12	0.09-12	0.054-0.098	0.086-0.11
M_{π}	$\geq 177~{ m MeV}$	$\geq 354~{\rm MeV}$	$\geq 280~{ m MeV}$	$\geq 295~{ m MeV}$
l-quark action	asqtad	HISQ	Twisted Wilson	Domain-Wall
b-quark action	Fermilab Clover	NRQCD	Wilson (ratio method)	RHQ
current renormalization	mostly non-perturb.	perturb.	non-perturb.	mostly non-perturb.
Ref.	arXiv:1403.0635	arXiv:1310.3207	arXiv:1310.5238v3	arXiv:1306.0446
	arXiv:1503.07237			arXiv:1503.01421v2


Lattice Group	lat%	Curr. expt%	Curr. $ V_{cb} \%$
$Fermilab/MILC(B \to D^*\ell\nu)$	1.3%	1.4%	1.9%
$Fermilab/MILC(B \to D\ell\nu)$	1.4%	3.9%	4.0%
$HPQCD(B o D\ell u)$			5.3%
Detmold et al. $(\Lambda_b o \Lambda_c \ell u)$	2.2%		

D** (Dnπ)? 3 good reasons

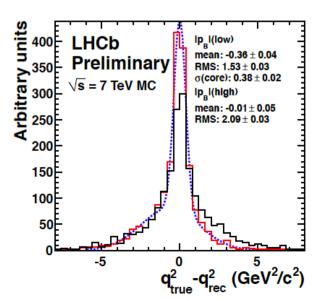

Understand the HQET ($\frac{1}{2}$ < $\frac{3}{2}$ puzzle)

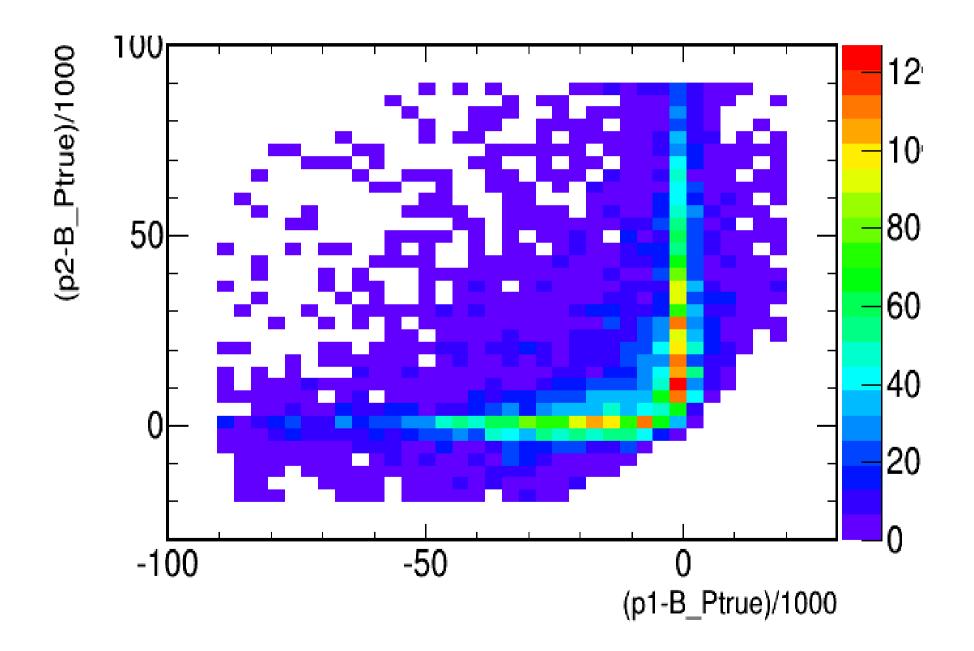
Measure D1' and D2* FF

Extract the hadronic Moments (with E_{cut} > 0 GeV) Useful for inclusive Vcb

EPJ C45, 35 (2006)

Experimental challenges @ LHCb


- Signal selection:
 - Vertex isolation
 - What about the neutrals?


C 1

Are there common

tools available?

- Corrected mass with the cut on the error seems powerful (introduced for Lambdab → pmunu). Is it useful in other channels?
- The neutrino is reconstructed with a 2-fold ambiguity
 - The q2 can still be reconstructed reasonably well
 - How can we check the migration-matrix on data?
 - Control samples
 - How do we choose the best solutions?
 - Other ideas?
 - If we use both the solutions....

