Exclusive |V_{ub}|

Step forward in $|V_{ub}|$ from exclusive

• With existing $B \rightarrow \pi I \nu$ measurements: reached $\sigma_{\tau \sigma \tau} = 4.4\%$!

- Great improvements in lattice (FNAL2015)

• New experimental result in the game: $\Lambda_{\rm b} \rightarrow p \; \mu \nu$ from LHCb

Fermilab/MILC 2015 + BaBar + Belle, $B \rightarrow \pi l v$ Fermilab/MILC 2008 + HFAG 2014, $B \rightarrow \pi l v$ RBC/UKQCD 2015 + BaBar + Belle, $B \rightarrow \pi l v$

 $|V_{ub}| = (3.72 \pm 0.16) \times 10^{-3}$

HPQCD 2006 + HFAG 2014, $B \rightarrow \pi l v$ Detmold *et al.* 2015 + LHCb 2015, $\Lambda_b \rightarrow p l v$ BLNP 2004 + HFAG 2014, $B \rightarrow X_u l v$ UTFit 2014, CKM unitarity

Future steps toward a clean |V_{ub}|

- $B \rightarrow \pi I v$: simultaneous Lattice+Experiment fits are becoming standard. Use the BCL parameterization for $B \rightarrow light$ transitions
 - Move to a combined Data+FLAG (+LCSR) average
 - Caveats about theory correlations and treatments of the theoretical errors from lattice calculations.
 - LCSR and L-QCD calculations largely independent and complementary
 - Difficult mode at LHCb but very high precision expected at Belle-II
- $\Lambda_b \rightarrow p \mu v$: experimentally clean at LHCb
 - For the time being rely just on one FF calculation (Deltmod 2015)
 - Further calculations would be desirable and are actually expected in the near future
 - Measurements in q²-bins are planned, at least in the high-q² region
- A further "golden" mode: $B_s \rightarrow K I v$ Easy to handle on L-QCD: some calculations are already available others are coming
 - This channel is accessible at LHCb with the present data (and in future at Belle-II with the run at Y(5S), but very difficult !)

Other charmless modes I

• Some modes already studied at B-Factories:

- $B \rightarrow \rho/ \; \omega \; I \; \nu$ and $B \rightarrow \eta/ \; \eta' \; I \; \nu$

- Full understanding of these modes is crucial to reduce uncertainties on both inclusive and exclusive $|V_{ub}|$
- Huge improvements on these modes expected from Belle-II
 - Full angular analysis of $B{\rightarrow}V$ will become possibile with the future datasets
- $B^+ \rightarrow \rho^0 I v$ could be studied with the present data available @LHCb
 - L-QCD calculations are needed to extract |V_{ub}|: work in progress but wide resonances are difficult to simulate
 - For the time being rely on the existing LCSR, but improvements are needed
 - LCSR for $B \rightarrow \rho \ I \nu$ is insufficient, have to be complemented by a complete calculation of P- and S-waves ($\pi\pi$) components

Other charmless modes II

- Others in the waiting list:
 - $B \rightarrow \pi \tau v$: way to measure the scalar FF f₀(q²) that are only predicted by L-QCD, this is important to check because of the issues with $B \rightarrow D \tau v$
 - B → KK I v: a measurement of the rate and of the KK mass distribution is interesting to evaluate contributions of the *ss-popping* rate (relevant for inclusive $|V_{ub}|$) in b → u transitions
- $B_s \rightarrow K^{*+} I v$: similarly to $B \rightarrow \rho I v$, it allows to make observables sensitive to possibile RH currents in the b \rightarrow u transitions
 - Together with other inputs (from other $b \rightarrow u$ and $b \rightarrow c$ channels), this can strongly constrain some New Physics models
 - Difficult at LHCb because of the K^{*+} (it requires the reconstruction of a K_s (low efficiency) or a π^0 (low efficiency and high background)