

Present and future neutrino oscillation physics with T2K

A.Longhin (INFN-LNF)

BOMA, 11/06/2015

INFN

T2

Istituto Nazionale di Fisica Nucleare

T2K oscillation physics

v mixing and oscillations

More PMNS symmetries? Majorana/Dirac?

Long baseline neutrino oscillation

3

The far detector (295 km): Super-Kamiokande

Off-axis near detector analysis

Fit of v_{μ} spectrum to constrain flux X cross-section (v_{μ} also constrain v_{e} via correlation in the production mechanism). 3 subsamples with final state π "CC 0π ", "CC 1π " and "CC other"

8

"Impact" of the near detector

A. Longhin (INFN-LNF), 11/06/2015, JENNIFER, Roma

> 10²¹ pot (60% nu, 40% anti-nu mode) 365 kW achieved recently!

Data sample

¹⁰

Data selection (6.57·10²⁰ POT)

v_u disappearance

446 ± 23 exp. (no osc.) 120 obs.

v_{μ} disappearance: Δm^2_{23} & $\sin^2 2\theta_{23}$

A. Longhin (INFN-LNF), 11/06/2015, JENNIFER, Roma

Joint v + v analysis

Solid: normal hierarchy Dashed: inverted hierarchy

- δ_{CP} : phase of the ellipses
- δ_{CP} driven by v_a app.
- θ_{23} by v_{μ} disapp.
- Hierarchy- θ_{23} : similar effects

Previously:

• v appearance $\rightarrow \theta_{13}$, δ

all 4 parameters

 \rightarrow joint analysis

• v disappearance $\rightarrow \theta_{23}$, $|\Delta m^2_{32}|$

Reconstructed v_{μ} Energy (GeV)

A. Longhin (INFN-LNF), 11/06/2015, JENNIFER, Roma

0.5

Reconstructed v_e Energy (GeV)

At 90% CL T2K excludes δ_{CP} = [0.15,0.83] π (N.I.) δ_{CP} = [-0.08,1.09] π (I.H.)

Joint v_{μ} + v_{e} analysis

A. Longhin (INFN-LNF), 11/06/2015, JENNIFER, Roma

s 18

Hyper-Kamiokande

Ring-imaging water Cherenkov detector Tochibora mine: 648 m rock overburden (1.750 mwe) 2.5 deg. 295 km (as Super-K)

A. Longhin (INFN-LNF), 11/06/2015, JENNIFER, Roma

1 Mton mass

99.000 20" PMTs 20% photo-coverage 25.000 8" PMTs Light attenuation > 100 m @ 400 nm

Hyper-K: $v_samples \& \delta_{CP}$

Neutrino mode: Appearance

Antineutrino mode: Appearance

A. Longhin (INFN-LNF), 11/06/2015, JENNIFER, Roma

Hyper-K: CPV reach and $\delta_{_{CP}}$ precision

10 Normal mass hierarchy **CPV** discovery $\sigma = \sqrt{\chi^2}$ Well known detector technology + analysis. 5σ Robust/realistic estimation of 3σ systematic uncertainties 2 CPV: $\delta_{CP} = 0 \text{ or } \pi$ 50 -150 -100-50 0 100 150 δ_{CP} [degree] δ_{CP} [degree] 10050 $\delta_{CP}[\,\%]$ Fraction of values of $\delta_{c_{R}}$ for which CPV can be discovered 90 45 $\delta = 0$ 80 40 $\delta_{_{CP}}$ precision 70 δ **= 90** 35 60 Fraction of 30 68% CL error of 50 25 5σ 40 20 30 15 $\mathbf{3}\,\sigma$ 2010 1010 8 2 8 10 6 Integrated beam power [MW 10⁷ sec] Integrated beam power [MW 10⁷ sec] A. Longhin (INFN-LNF), 11/06/2015, JENNIFER, Roma T2K oscillation physics 24 295 km \rightarrow small matter effects \rightarrow limited contribution from CPV induced by matter effects \rightarrow clean measurement of genuine CPV

Hyper-K atmospheric data

Would mass hierarchy be still unknown by the time of Hyper-K: use large samples of atmospheric neutrinos for which matter effects are definitely large.

Hyper-K: θ_{23} octant

26

T2K with 13% of the final POT: 90% CL exclusion for some δ_{CP} regions. Best fit at $-\pi/2 = maximal CPV$. World leading θ_{23} measurement. Large space for improvement with nominal POT in next years. Hyper-K can constraint CP violation in the leptonic sector with high probability/precision. After the first results on anti- v_{μ} disappearance the anti- v_{e} appearance analysis with 4e20 pot is foreseen soon, stay tuned!

Supplementary slides

T2K collaboration

Canada TRIUME

J. Alberta B. Columbia

U. Regina

U. Toronto U. Victoria **U.** Winnip

'ork U.

rance CEA Saclay

IPNLyon LLR.E. Po LPN

Germany

U. Aachen

Near & Far 🏑 sites:

INFN, U. Bari INFN, U. Napoli INFN, U. Padova INFN, U. Roma

ICRR Kamioka ICRR RCCN Kavli IPMU KEK. Kobe

Kyoto U. Miyagi U. Edu. Osaka City U. Okayama U. Tokyo Metro U.

land IFJ PAN, Cracow NCBJ, Warsaw U. Silesia, Katowice U. Warsaw arsaw T.U. Wroclaw U

Russia

Spain IFIC, Valencia U.A. Barcelona Switzerland

ETH Zurich U. Bern **U.** Geneva

Imperial C. L Lancaster U Oxforf U. Queen Mary U.L. STFC/Daresbury STFC/RA **U. Liverpool U. Sheffield** U. Warwick

Boston U Colorado S. Duke U. Louisiana S. U. Stony Brook U U. C. Irvine U. Colorado **U.** Pittsburgh **U.** Rochester U. Washingto

Oscillation analysis strategy

A. Longhin (INFN-LNF), 11/06/2015, JENNIFER, Roma

T2K oscillation physics 31

Joint v_e / v_μ analyses Systematic uncertainties

1Re: 1 ring electron-like (ν_e) 1Rµ: 1 ring muon like (ν_μ)

Effect on predicted number of

Category	source Near/Far detectors	# of params
Beam	Beam flux prediction common	25
ν interactions	Constrained by ND280 common	8
	Unconstrained by ND280 independe	ent 12
Far detector	SK detector efficiency independe	ent 52+6
	SK momentum scale independe	ent 1
FSI	Final State Interactions independe	ent 52+6
PN	Secondary interaction Photo-nuclear effect independe	ent 52

List of the systematic newspectars

Effect on predicted number of v_e and v_{μ} events (%) Grouped by category of uncertainty

Error category	1Re sample	$1R\mu$ sample
Constrained by near detectors measurements	2.92	2.73
Other ν interactions uncertainties	4.39	4.55
Far detector	3.56	4.92
Total	6.28	7.35

A. Longhin (INFN-LNF), 11/06/2015, JENNIFER, Roma

v_{e} and v_{μ} events (%)				
Error source	1Re sample	$1R\mu$ sample		
Beam only	7.41	6.08		
M_A^{QE}	3.07	2.76		
M_A^{Res}	1.02	2.36		
CCQE norm.	6.22	4.60		
$CC1\pi$ norm.	2.03	2.99		
$NC1\pi^0$ norm.	0.43	N/A		
CC other shape	0.12	0.89		
Spectral Function	1.11	0.21		
E_b	N/A	0.21		
p_F	0.11	0.14		
CC coh. norm.	0.24	0.81		
NC coh. norm.	0.24	N/A		
NC $1\pi^{\pm}$ norm.	N/A	0.76		
NC other norm.	0.5	0.86		
$\sigma_{\nu_e}/\sigma_{\nu_{\mu}}$	2.86	< 0.01		
$\sigma_{\overline{\nu}}/\sigma_{\nu}$	0.14	1.2		
W shape	0.23	0.26		
pion-less Δ decay	2.0	4.03		
SK parameters	3.56	4.92		
SK momentum scale	0	0		
Total	6.28	7.35		

π⁰ Fit Performance

- Previous T2K v_e appearance cut: $m_{\pi 0} < 105 \text{ MeV/c}^2$
- The π⁰ mass tail is much smaller for fiTQun
 - Significant spike at zero mass in previous fitting algorithm (APFit)
- Lower plot:
 π⁰ rejection efficiency vs lower photon energy
 - fiTQun is more sensitive to lower energy photons

ND280

Two main target regions:

- Pi-0 Detector (P0D): optimised for (NC) π⁰ events
 - Tracker: optimised for charged particle final states
 Both regions have passive water planes

POD, Barrel and DownStream ECAL

Scintillator planes with radiator Measure EM showers from inner detector (γ for NC π^0 , bremstrahlung in v_e measurement) Sand muon rejection

Gas-amplification

26cm

2 FGDs (Fine Grained Detectors) 3 TPCs (Time Projection Chambers): Thin, wide scintillator planes Provides active target mass Optimised for p recoil detection PID via dE/dx measurement

FGD1: Scintillator planes ~ 1 ton, FGD2: Scinti. & H₂0 planes ~ 0.5 & 0.5 ton

A. Longhin (INFN-LNF), 11/06/2015, JENNIFER, Roma

Yoke Fe mass ~ 900 tons

Photo-Sensor

mm

SMRD (Side Muon Range Detector)

Scintillator planes in magnet yoke. Detect muons from inner detector (neutrino rate, side muon veto, cosmic trigger) Momentum measurement

POD (π^0 Detector)

Scintillators planes interleaved with water and lead/brass layers Optimised for y detection

P0D mass: 16.1 tons w/ water 13.3 tons w/o water

